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A convolutional neural network has the characteristics of sharing information between layers, which can realize high-dimensional
data processing. In general, the convolutional neural network uses a feedback mechanism to realize parameter self-regulation,
which solves the disadvantages of manual parameter adjustment. However, it is unable to determine the iteration number with
the best calculation accuracy. Calculation efficiency cannot be guaranteed while achieving the best accuracy. In this paper, a
multilayer extreme learning convolutional neural network model is proposed for feature recognition and classification. Firstly,
two-dimensional spatial characteristics of planetary bearing status data were enhanced. Then, extreme learning machine is
embedded in a convolution layer to solve convex optimization problems. Finally, the parameters obtained from the training
model were nested into a network to initialize the model parameters to separate each status feature. Planetary bearing
experimental cases show the effectiveness and superiority of the proposed model in the recognition and classification of weak
signals.

1. Introduction

With the improvement of automation level in a modern pro-
duction system, rotating machinery presents the development
direction of high speed, high efficiency, and maximum eco-
nomic benefit. However, a continuous production process
makes the equipment run under heavy load for a long time,
which will easily lead to accelerated fatigue of transmission
parts. Furthermore, tight connections between devices make
the health status of an individual component affect the effi-
ciency and quality of the entire system. Once the transmission
parts fail, it will lead to a series of chain reactions and even
make the whole equipment or even the whole production line
stop working. Therefore, reliable monitoring of transmission
parts is crucial to maintain the whole safety production
process.

In recent years, a planetary gearbox with dual rotor bear-
ings has become the main transmission component due to
its series of advantages with compact structure, large trans-
mission ratio, light weight, and strong bearing capacity. It

is widely used in automotive, wind power, aerospace, and
other fields. Because the equipment works in complex envi-
ronment for a long time, it is easy to cause accelerated
fatigue of transmission parts [1]. For example, wind energy
as green energy has promoted wind power generation to
become one of the fastest growing branches of the current
power generation field. Typically, a wind turbine consists
of a planetary gear train (I level transmission) and two
fixed-shaft gear trains (II level and III level transmission),
as shown in Figure 1. Planetary gear trains are usually
mounted at the low-speed end to withstand greater torque.
In addition, wind turbines are usually located in a relatively
wide-open area or offshore areas and often affected by irreg-
ular variable speed winds and the external ambient temper-
ature that change with the season. Due to the complex
working environment, the key components (gears and bear-
ing) of the planetary gearbox are easily damaged. For exam-
ple, the G52-850 wind turbine, consisting of Gamesa and
Echesa speed-increasing gearboxes and INDER generators,
showed abnormalities after 5-year work. Through
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endoscopic and unpacking tests, it was found that the fault
was caused by planetary bearings [2]. It is the key to main-
tain the whole safety production process to adopt a reliable
monitoring method to monitor the equipment condition.
Therefore, the working efficiency and safety of a wind power
generation system can be greatly improved when the plane-
tary bearing is operated in stable status.

From the evolution process of bearing failure (Figure 2), it
can be seen that the initial stage of failure accounts for a larger
proportion of the entire damage. As the fault continues to
deteriorate, the degradation rate increases exponentially. In
the early stage of failure, the abnormal symptoms are slight,
the impact on the mechanical system is small, and the mainte-
nance cost is relatively low. If fault goes undiagnosed or unno-
ticed at an early stage, it will lead to a catastrophic accident
when early fault develops and accumulates to a certain extent.
Therefore, early detection, early diagnosis, and early mainte-
nance are essential to ensure the safe operation of high-
precision equipment. In addition, under the demand of intel-
ligent devices, the amount of data that needs to be analyzed is
also large. Traditional fault diagnosis based on point-by-point
single-signal analysis is difficult to detect the characteristic
components related to fault quickly and accurately, which seri-
ously hinders the development process of high precision, high
speed, and high reliability of high-end equipment, whereas
intelligent fault diagnosis based on “data-driven” can solve this
problem with high precision, high speed, and high reliabil-
ity [3].

In 2006, the birth of the deep learning algorithm [4, 5]
marks the development of fault diagnosis towards rapidity,
efficiency, and intelligence. High target feature resolution
of a data set will get accurate fault diagnosis results, and
complete data volume can improve model learning ability.
These existing data-driven neural network models have
achieved good results in some ideal environments. However,
there are still some factors restricting their application in the

field of fault diagnosis. However, due to the randomness and
uniqueness of faults, the field of intelligent diagnosis faces
some bottlenecks. Rotating machinery is in a healthy status
for a long time, and most of the collected signals are in a
healthy status. Due to the high cost of collecting measured
fault samples, it is difficult to obtain all types of fault sam-
ples, which makes the sample set unbalanced. Besides, in
case of early fault or large external interference, the fault
characteristic information is weak or even submerged. The
model may give interference information a high confidence
output. Aiming at the incomplete characteristics of the fault
data set, Gao et al. and Liu et al. are committed to using
finite element method simulation to simulate a sample with
different fault statuses [6, 7]. An et al. [8] proposed a self-
learning transferable neural network for fault intelligence
diagnosis with unlabeled and imbalanced data. Most of the
weak fault intelligent diagnosis methods [9, 10] use tradi-
tional fault feature extraction as the preprocessing to extract
sensitive information, and there is a lack of research on
improving the robustness of the model itself.

A convolutional neural network (CNN) [11, 12] is one of
the representative models for intelligent recognition and
classification of weak fault signals of bearings. It has
attracted the attention of many researchers and been widely
used in many fields such as bearing fault diagnosis. Fu et al.
[13] used 1D convolution kernels of different scales to
extract multiscale features and performed dimensional
assimilation on feature space of different scales based on
fusion theory to adapt to convolution operation. Zhao
et al. [14] converted one-dimensional time-domain signal
into 2D grayscale images, which were used as the analysis
sample data of the CNN model. This solved the problem
of insufficient data and avoided the process of artificial fea-
ture extraction. Cyclic spectral coherence was adopted as
preprocessing to extract information that best characterized
the status of bearing [15]. Then, group normalization

Figure 1: Layout of wind turbine transmission components and schematic diagram of planetary bearings.
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calculation was introduced to balance the distribution differ-
ence of data. Ye et al. [16] proposed a new method called
deep morphological convolutional network, which consists
of two parallel branches: noise filtering and feature selection
algorithm. Noise filtering can update structure elements
based on backpropagation. A feature selection algorithm
was based on kurtosis weight fusion. Besides, values of vari-
ous hyperparameters directly affect the training speed and
accuracy of the CNN model. Currently, an error backpropa-
gation (EBP) mechanism was often used to modify the
model parameters. In the process of parameter adjustment,
the initialization values of some parameters may also affect
the classification results of the model. In addition, the range
of adjustable parameters involved in the algorithm directly
affects the computational complexity. Therefore, the CNN
model is not suitable for rapid online monitoring, especially
for early diagnosis of weak faults. An effective model is
urgently needed to improve the performance of online
monitoring.

In order to build a model framework with superior per-
formance, the extreme learning machine (ELM) principle is
adopted to deal with the convex optimization problem of a
convolution layer. ELM was firstly proposed by Huang
et al. [17] for a feedforward single-layer neural network.
Subsequently, ELM was gradually introduced into the multi-
layer model structure [18, 19]. Compared with other models
such as Deep Belief Network (DBN) [20, 21] and Stacked
Autoencoder (SAE) [22], the ELM model involves fewer
parameters and has higher computational efficiency and less
complexity. Therefore, ELM has been favored by researchers
in many fields, such as image processing [23], objective opti-
mization [24, 25], dimensionality reduction [26], and fault
diagnosis [27–29].

ELM was combined with other models to improve the
training efficiency and recognition accuracy. For example,
ELM was combined with an autoencoder to mine deep fea-
tures of training data and proved to be superior to ELM,
SAE, and CNN [30]. Online sequential ELM was proposed
to classify and recognize the low-dimensional features
extracted from the SAE model, whose effectiveness of this
method has been proven for tool wear status recognition
[31]. ELM was used as an enhanced classifier to improve
the recognition accuracy of an integrating CNN model. Its
superiority in training speed and accuracy was verified by
comparing with other 6 models [32].

In general, ELM plays a role of an efficient classifier in
the hybrid model. The existing model framework based on
multilayer perceptron has shortcomings in improving the
training speed. The goal of this paper presented here is to
find a training model mechanism to improve the training
accuracy and speed. Based on this, a fast and effective
embedded hybrid model structure, called multilayer extreme
learning convolutional feature neural network model (M_
ELMConvNet), was proposed. The main contributions here
are twofold.

(1) The wavelet cyclic spectrum feature extraction
method [33] was used to convert the time-domain
signal into a two-dimensional image. Then, the
obtained image is partitioned, which is more suitable
for CNN analysis

(2) A new model training mechanism of embedding
ELM into a convolutional layer was proposed to
improve the calculation speed and classification
accuracy. The final classification and recognition
results are obtained by multilayer stacking structure.
The computational speed and accuracy of the pro-
posed algorithm are verified by comparing with the
results of other models

The remainder of this paper is structured as follows: the
relevant theoretical research background contents, such as
CNN and ELM models, are shown in Section 2. The pro-
posed model framework and implementation process are
introduced in Section 3. The proposed method is applied
to the experimental data in Section 4. Finally, conclusions
and the next step are described in Section 5.

2. Theoretical Background

2.1. CNN. CNN is a self-learning model that can automati-
cally extract the internal feature information of the input
data and implement classification tasks. Different from tra-
ditional neural networks, CNN generally contains a convo-
lution layer and a subsampling layer (also called pooling
layer). CNN learns hidden features by continuously running
the convolutional layer in a loop and performing pooling
operations. The convolution layer is used to convolute the
original input data with multiple local filters to generate
locally invariant feature information, which is used as the
input of the pooling layer to extract representative features.
The procedure is shown in Figure 3.

Suppose the size of the input layer is Height ×Width =
a × b, and the number of input layers is c which is the num-
ber of channels. Define a convolution kernel as K , whose size
is n × n. The entire operation process of the convolution
layer is to continuously perform convolution operations on
the input layer data and the convolution kernel. The features
extracted by the convolutional layer are served as the input
of the pooling layer to further reduce the dimension of the
feature matrix by calculating the local average or maximum.
Subsequently, the fully connection layer tiles the output
matrix of the pooling layer. The main task of each layer
before the fully connected layer is feature extraction. The
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Figure 2: Failure development trend chart.
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classification task starts at the fully connection layer. Gener-
ally, there are multiple full connection layers in the whole
network structure. Because the single-layer structure can
only solve the linear classification problem and most of the
problems in real life are nonlinear problems, the softmax
layer is also connected behind the fully connection layer to
further predict the label. By calculating the probability of
each sample’s category, the label category with the largest
probability value is assigned to the sample data.

2.2. ELM. ELM uses randomness and Moore-Penrose gener-
alized inverse theory to calculate parameters, which avoids
the use of EBP and greatly improves the training speed.
The input layer data is usually nonlinear and separable.
The core idea of the ELM algorithm is to map the original
data into a high-dimensional feature space by adding hidden
layer nodes on the premise that the input data is linearly sep-
arable. The connection weights between the input layer and
the hidden layer are randomly generated. The connection
matrix between the hidden layer and the output layer is cal-
culated by Moore-Penrose generalized inverse. The entire
training process only needs to adjust the number of hidden
layer nodes. The schematic diagram is shown in Figure 4.

3. Proposed Architecture and Method

3.1. Formulated General Model Framework. Suppose there is
a set of bearing status data to be classified. The data set are
Dx = fx1,⋯, xNg, xj ∈ R1×n×c, and the target matrix is DY =
fY1,⋯, YNg, Y j ∈ RC , where n and c are the length and the
number of channels of the input data, respectively. N is the
number of samples in the data set. C is the number of target
category to which the input data belongs. The relationship
between the sample set and the label matrix can be achieved
by the classification function, as shown in the following for-
mula:

DY = f c Dxð Þ, ð1Þ

where f c is the classification function of Dx.

3.2. Data Graphical Processing and Enhancement. In order to
improve the accuracy of model recognition, the two-
dimensional CNN model was used for data processing.
The original sample data is one-dimensional, which reflects
the time-domain waveform information and often over-
whelms some fault active components. In this paper, one-

dimensional time-domain data are converted into 2D
images based on wavelet cyclic spectrum theory [33] and
the periodic characteristics of nonstationary bearing infor-
mation are extracted. The local information in cycle spec-
trum of each fault type is similar. In order to make up for
the shortage of faulty data samples and improve the quality
of sample data, the converted image is further processed by
block localization. Suppose that Ws = fS1,⋯, SNg, Sj ∈
Rw×h×c is the 2D cyclic spectrum sample matrix, w and h
are the width and height of each single image sample matrix,
respectively, and the label matrix is WL = fL1,⋯, LNg, Lj ∈
RL. For the sample Ws, we regard it as being composed of
several submodules WP . Ps = fSP1 ,⋯, SPNg ⊆WP , and corre-
sponding labels PL = fLP1 ,⋯, LPNg.

PL = f p PIð Þ, ð2Þ

WL = f q f p ⊗WP

� �
, ð3Þ

where ⊗ is the tensor product and f p and f q are the classi-
fication functions for PI and Ws, respectively.

3.3. Parameter Transfer

3.3.1. Convolution Layer Detector Based on ELM. The ELM
algorithm is integrated into the model to further improve
the classification characteristics of the algorithm. As men-
tioned above, ELM is superior in complexity and accuracy
compared with other algorithms [34]. The weight matrix of
the input layer is randomized; that is, the weight matrix of
the input layer and the input data are independent of each
other. We can set it arbitrarily according to some distribu-
tion theories. The output matrix of the hidden layer and
the weight matrix between the hidden layer and output layer
need to be calculated relying on label data.

The specific implementation process is as follows:
Assuming there are N test samples ðXj, LjÞ, Xj =

fxj,1,xj,2,xj,3, ⋯ xj,ngTand corresponding labels are Lj =
fl j,1,l j,2,l j,3, ⋯ l j,ngT . NH is the number of hidden layer nodes.
Hidden layer output can be expressed as

Ho =Wi∙Xj + bi, ð4Þ

where Wi = fwi,1,wi,2 ⋯wi,ng is the connection matrix
between the input layer and hidden layer and bi is the offset
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Figure 3: CNN model frame diagram.
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vector. Both of them are randomly generated. The output
layer matrix can be expressed as

Oj =
f W1∙X1 + b1ð Þ ⋯ f WNH

∙X1 + bNH

� �

⋮

f W1∙Xn + b1ð Þ ⋯ f WNH
∙Xn + bNH

� �

2
664

3
775

β1

β2

⋮

βNH

2
666664

3
777775
= f Hoð Þβi,

f Hoð Þ =
σsig W1∙X1 + b1ð Þ ⋯ σsig WNH

∙X1 + bNH

� �

⋮

σsig W1∙Xn + b1ð Þ ⋯ σsig WNH
∙Xn + bNH

� �

2
664

3
775: ð5Þ

Oj = fo1, o2,⋯ong indicate the categories of the output
target label. βi is the layer connection weight (LW) between
the hidden layer and output layer. βi is unknown and must
be calculated based on the label data in the process of predic-
tion classification results of the ELM algorithm. The expres-
sion is

β =Ho
−1L: ð6Þ

In the training stage, the number of hidden layer nodes is
an uncertain factor, which has an impact on the prediction
performance. In order to evaluate the performance of the
parameters calculated by the model, the error minimization
loss function was used as an evaluation index of prediction
ability, shown as

E =min 〠
N

j=1
Oj − Lj

�� ��,  j = 1, 2, 3⋯N: ð7Þ

The parameters corresponding to the minimum E value
are the optimal values that best characterize the target fea-
tures. Finding the minimum number of hidden layers while
ensuring the highest accuracy is another factor to improve
operation efficiency.

3.3.2. Pooling Layer. The pooling layer is actually a down-
sampling layer, which is mainly used to extract local features
and prevent overfitting. The procedure is as follows: first,
define the size and step of the local pool module. Then, the
local feature extraction method is determined. The most
common method is to calculate the average or maximum
value of each module. In this paper, the pooling layer is
followed by the random parametric dimension reduction
layer, as shown in equation (4). The pooling process adopts
the method of calculating the average value as shown in

A u1, u2ð Þ = 〠
NH

u1=1
〠
NH

u2=1

1
r × r

〠
r

i=1
〠
r

j=1
O i + u1 − 1ð Þ × r, j + u2 − 1ð Þ × rð Þ,

ð8Þ

where r is the size of each step.

3.3.3. Normalization. After the pooling layer and before the
ELM classification layer, a min-max standardization process
was added to prevent the occurrence of gradient disappear-
ance. The normalization result is obtained by

Sx =
Ax −min Axð Þ

max Axð Þ −min Axð Þ × Nmax −Nminð Þ +Nmin, ð9Þ

where min and max are operators for calculating the
maximum and minimum elements in the matrix Ax, respec-
tively. Nmax and Nmin are the range of the interval for nor-
malizing the matrix.

3.4. Test Model. Intelligent diagnosis methods based on deep
learning theory mostly rely on a large amount of training
data to achieve classification and recognition. The premise
is that the performance of connection weights must be eval-
uated and modified on the basis of data with accurate label.
In this paper, a method based on parameter transfer theory
is proposed. The existing labeled data is input into the super-
vised model for training, and the connection weights of each
module are obtained. Afterward, interlayer connection
matrices are input into the test model to recognize and clas-
sify the unlabeled data.
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Figure 4: Schematic diagram of ELM structure and principle.
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3.5. Fault Diagnosis Method Based on M_ELMConvNet. This
paper presents a fast feature learning method based on two-
dimensional CNN and ELM, and the model frame is shown
in Figure 5.

Figure 6 shows the flowchart of the present method, and
the procedures are as follows:

Firstly, samples were collected and processed with 2D
data transformation and enhancement.

(1) The acceleration signals of bearings in four different
working conditions were collected. About 85% of the
data were labeled as training samples. The rest of the
data is unmarked and is considered the test sample

(2) The original data is transformed into a 2D image by
wavelet cyclic spectrum analysis

(3) Subsequently, the obtained image is partitioned to
enhance the data according to equation (3)

Secondly, an efficient and accuracy neural network clas-
sification model is constructed.

(1) The entire model framework consists of two parts.
One is the training process for labeled data, and the
other is the predictive classification process for unla-
beled data

(2) The labeled data is input into the supervised training
model. The first step of this model is to reduce the
dimension of the data by randomizing the connec-
tion matrix. The specific implementation process
was based on the ELM training principle, as shown
in equation (4). Then, the dimensionless data is
entered into the pooling layer and standardized.
Finally, the data is input to ELM for supervisory test-
ing. The error rate between the test data and the label
data is used as the loss function to adjust the random
parameterized dimensionality reduction and the
number of ELM hidden nodes. Subsequently, the
optimal node number was assigned to the model to
predict the connection matrix between each layer

(3) In the prediction process of the test sample set, based
on the idea of parameter transfer, the connection
matrix W1in,W2in and layer connection weight LW
obtained by the supervised test process were input
into the test model of the corresponding prediction
sample as the preset model parameter values, and
the final prediction results were obtained

Thirdly, the whole training process is applied to the rec-
ognition and classification of bearing status data.

4. Experimental Validation

The data for verifying the effectiveness of the proposed algo-
rithm were obtained from the comprehensive test bench for
power transmission fault diagnosis. The sample data analyzed
were measured under different conditions at different times.

4.1. Experiment Setup and Data Description. The power
transmission system of the testbed consists of a planetary
gearbox, a parallel shaft gearbox supported by rolling bear-
ings or sleeve bearings, bearing load, and programmable
magnetic brake, as shown in Figure 7. The testbed includes
all the necessary powertrain configurations for studying
gearbox dynamics and noise characteristics, health monitor-
ing techniques based on vibration signal analysis, lubrication
conditions, and wear particle analysis. The testbed has stable
performance and can withstand strong load impact. There is
enough space for the replacement and installation of gears
and the installation of a monitoring device. Planetary gear
systems, sun gears, planetary gears and gear rings, brackets,
and bearings are easy to be disassembled.

The vibration signals under four statuses: no damage,
first-stage planetary bearing outer ring failure, first-stage
planetary bearing inner ring failure, and first-stage planetary
bearing ball failure, were collected for analysis. In the exper-
iment, the relevant parameters are set as follows: sampling
frequency is 15360Hz and motor speed is 2100 r/min. Mul-
tiple acceleration signals under different working conditions
were collected. The data collected under each health condi-
tion were separated into 470 equal parts. Randomly select

Win

LW

Win

Pooling Normalization

Win

Pooling Normalization

Win
LW

Y

Z
𝛿

Figure 5: Framework of the proposed algorithm.
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400 pieces of data in these four statuses as the training data
set and 70 pieces as the test data set, respectively. A detailed
partition of the sample set for status data analysis is shown
in Table 1. The time waveforms for 2.5 s and the spectrum
with bandwidth ½0Hz 2500Hz� of the vibration signal for
four statuses are shown in Figure 8. It can be seen from
Figure 8 that the time-domain waveforms and spectrums
for different four-status signals are inevitably affected by
external interference information, which is also one of the
factors that reduce the ability of model recognition.

4.2. Result Analysis. The purpose of this paper is to propose a
fast and effective intelligent classification method for weak
fault data of planetary bearings. In order to further verify

the effectiveness of the proposed M_ELMConvNet neural
network model, the experimental data were analyzed by
the algorithm described in Section 3.5. For comparison,
three other models including ELM, BP-based CNN, and
Deep Autoencoder (DAE) were also applied to status identi-
fication of experimental data.

The average recognition accuracy of the algorithm under
different hidden layer nodes is calculated by executing the
model for 20 times. The results are shown in the box dia-
gram in Figure 9. As shown in Figure 9, the prediction accu-
racy rate of most testing results was above 98%. The validity
of M_ELMConvNet in planetary bearing status recognition
is further verified. With the increase in the number of hid-
den layer nodes, the recognition accuracy rate fluctuates
slightly. When the number of hidden layer nodes is set to
290, the average prediction accuracy is relatively high and

Measured fault signals

2D Image transformation and 
feature extraction

Wavelet cyclic 
spectrum analysis

Data enhancementImage partition

Training samples Testing samples

Randomized connection 
matrix

Training CNN modelConvolution layer convex 
optimization

Normalization

Training ELM 

Testing CNN 
model

Normalization

Testing ELM 

Classified by the 
training ELM Classification results

Figure 6: The flowchart of the proposed fault diagnosis method.

Figure 7: Comprehensive test bench for power transmission fault
diagnosis.

Table 1: Description of status data sample set.

Planetary bearing
damage statuses

No
damage

Inner-
race fault

Outer-
race fault

Ball
fault

Number of training
samples

400 400 400 400

Number of test samples 70 70 70 70

Label 1 2 3 4
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the stability is strong. Meantime, the model training time
also showed an exponential growth trend, as shown in
Figure 10. In the subsequent analysis, the number of hidden
layer nodes was set to 290 based on the balance training time
and prediction accuracy.

Figure 11 is the confusion matrix of multistatus classifi-
cation and recognition accuracy based on the proposed
method. As can be seen from Figure 11, the highest predic-
tion accuracy is 100% for status 4. The minimum recogni-
tion accuracy is status 3 because there is no obvious
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Figure 8: Signal waveforms listed in Table 1: (a) no-damage bearing signal in the time domain; (b) the spectrum of no-damage bearing
signal; (c) inner-race fault bearing signal in the time domain; (d) the spectrum of inner-race fault bearing signal; (e) outer-race fault
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the spectrum of ball fault bearing signal.
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distinction between status 2 and status 3. In general, the pro-
posed method in this paper can achieve high predictive rec-
ognition accuracy in each status.

4.3. Comparative Verification. The diagnosis performances
of the original data and multiparameters DAE and CNN

with the original data and wavelet cycle spectrum were also
compared with the M_ELMConvNet proposed in this paper.
Each model was executed multiple times, and the average
result was calculated. Figure 12 shows that the M_ELM-
ConvNet achieved the highest average prediction accuracy
of 99.24%. Thus, the proposed algorithm in this paper has
strong noise suppression capability in the identification
and classification of weak fault statuses.

In order to further verify the superiority of the proposed
algorithm in computing time, the CNN model based on EBP
was used as a comparison model to analyze the same sample
data set with M_ELMConvNet. The results are shown in
Figures 10 and 13. As can be seen from the figure, the calcu-
lation time of the algorithm increases linearly with the
increase in the number of hidden units and the number of
iterations. At the same time, the recognition accuracy of
the algorithm gradually improves and tends to be stable.
Considering the influence of the number of hidden units
and the number of iterations on the recognition accuracy,
the calculation time of 410 hidden units and 28 iterations
was compared. One was 0.43 s, and the other was about
2000 s. The time difference is several orders of magnitude,
which proved the superiority of the M_ELMConvNet algo-
rithm in computational efficiency.
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Figure 13: The result of different iteration times of the CNN model
based on BP for planetary bearing status recognition.
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5. Conclusions and Further Works

In this paper, a new deep feature extraction and diagnosis
method was proposed to improve the recognition accuracy
and reduce computational complexity for weak failure signal
of planetary bearing with large data volume. In M_ELM-
ConvNet, ELM was embedded in the CNN model instead
of convolution operation to avoid a repeated EBP operation
process. After two processes of ELM feature dimensionality
reduction and extraction, the amount of calculation was
reduced and the prediction accuracy was improved. In addi-
tion, based on the parameter transfer theory, the model
parameters extracted from the labeled training sample data
are introduced into the unlabeled sample data training
model to achieve prediction. The effectiveness and superior-
ity are proven on experiment setup testing data. Moreover,
analysis results show that the proposed model has advan-
tages in recognition accuracy and operation speed compared
with other methods.

The present work is mainly carried out in the case of suf-
ficient sample data. However, in the actual operation of
planetary bearings, the sample size of analysis data is unbal-
anced; that is, the trouble-free sample size is large, while the
failure sample size is small. For failure data, such as in the
early stage or in the case of large external noise, manual
marking often leads to missed diagnosis or misdiagnosis.
How to realize the self-supervised learning of unlabeled data
and make it able to automatically extract data features and
perform labeling is the work to be done in the future.
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The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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