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A high-resolution sea surface wind field (SSWF) has high application requirements, such as weather forecast, wind energy
evaluation, and oil spill monitoring. The models for retrieving SSWFs based on spaceborne synthetic aperture radar (SAR) are
important methods for obtaining high-resolution SSWFs. These models are continuously updated and improved from the
prototype to the model to achieve high-resolution and high-precision SSWF retrieval. With the development of SAR
technology and the gradual maturation of global ocean observations, SSWF quantitative estimation using SAR has developed
from scientific research to operational monitoring. This study summarises the principles and methods of SSWF with
multipolarized SAR. Finally, research suggestions and future development directions are put forward.

1. Introduction

Sea surface wind fields (SSWFs) are the main power source
for upper ocean movement and an important factor affecting
wave generation, water mass formation, and ocean current
movement [1]. High-resolution SSWFs retrieved using
spaceborne SAR play an important role in numerical weather
prediction, maritime transportation, maritime rescue,
marine oil spill monitoring, sea ice trajectory prediction,
typhoon intensity monitoring, offshore wind energy resource
assessment, and more [2]. The estimation of the wind speed
(WS) is an important parameter for offshore wind resource
assessment, and it can serve the marine fishing and maricul-
ture industries in the “blue breadbasket”-related industries,
especially offshore fishing and deep-sea farming, which are
closely related to China food security [3, 4].

Traditional SSWF monitoring methods such as on ships,
buoys, and land stations cannot meet the increasing demand.
These methods can only provide limited space and time
coverage data [3]. Spaceborne microwave radiometers and
scatterometers provide global-scale SSWF observations [5]
with relatively low resolution (about 25 km), which makes it
difficult to meet the needs of high-resolution SSWFs [6].
Using spaceborne SAR with a high resolution, a finer-scale
SSWF can be retrieved [4]. Additionally, the retrieval of
SSWF-based SAR has become a research hotspot [7, 8].

Spaceborne SAR has been widely used in SSWF inver-
sion, and it has achieved fruitful results [9]. In wind direc-
tion (WD) inversion research, Gerling [10] found that the
linear structural features of SEASAT SAR images were
related to the WD, and the WD was estimated based on
the image frequency spectrum with a Fourier transform.
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Subsequently, Fourier transforms, local gradients (LG), and
wavelet analysis have been used to retrieve WD. In WS
inversion, Jones et al. used SEASAT SAR data and found
that there was a certain relationship between the normalised
radar cross-section (NRCS) of the SAR and WS [11]. Then,
the geophysical model function (GMF) based on the
NRCS of copolarized SAR was proposed and continually
updated to form a series of empirical models [12, 13].
However, the phenomenon of saturation exists in WS
inversion with copolarized SAR when the WS exceeds
25m/s [14–16]. It was found that C-band cross-polarized
SAR could be used to retrieve high WS and was not sen-
sitive to the WD or the radar incidence angle (RIA) [17,
18]. Furthermore, many models have been constructed
based on cross-polarized SAR [19, 20].

Therefore, this paper discusses the methods for retriev-
ing SSWF from spaceborne SAR and comprehensively
summarises the research status in order to promote the
research on SSWF.

2. The Potential and Drawback for SSWF
Estimation Using SAR

Compared with other SSWF acquisition methods, such as
ships, scatterometers, or radiometers, the potential applica-
tions of SAR-based imagery for an SSWF include the follow-
ing [9]: (1) all-day, all-weather observation capability as well
as higher resolution [4]; (2) high-resolution SSWF data
obtained for near-shore waters to meet the demand for
research on small-scale and medium-scale SSWFs; (3)
long-term observations of near-shore SSWFs helping deepen
the understanding of the dynamics of the SSWF processes at
the sea surface and strengthen the high-resolution SSWF
prediction capability of numerical models [20]; (4) in-
depth research on the dynamics of small-scale and
medium-scale SSWF processes at the surface of the sea, espe-
cially in the near-shore region, which can help improve
climate models and enhance the ability of climate models
to predict small-scale and medium-scale phenomena near
the coast [21]; (5) real-time monitoring of disasters. Infor-
mation on the internal structures of extreme weather events
such as tropical cyclones and even typhoons can be
obtained, which can aid the in-depth research and dynamic
monitoring of typhoons and other disaster events [22]; and
(6) SAR inversion of sea surface SSWFs with high resolution
but slightly less coverage. The fusion of SSWF data from
scatterometers, radiometers, altimeters, SAR, and other
sensors to take advantage of the benefits of different
sensors and complement each other is more conducive
to obtaining more comprehensive and accurate global sea
surface SSWF data [9].

The disadvantages include the following aspects: (1) The
temporal resolution of the SAR data needs to be further
improved. (2) Models concerning the wind speed inversion
are mostly based on empirical (EP) fitting models, such as
the GMF [23, 24], and research on the physical methods
needs to be further improved. In general, wind speeds based
on the EP and electromagnetic (EM) models are quite simi-
lar for an RIA below 40° since they deliver close NRCS

values. Above 40°, wind speeds based on the EM models
tend to be overestimated, since the NRCS is smaller. The
reason for this is that the contribution of wave breaking
and foam to the NRCS has not been considered in the
description of EM models. This should be considered in
the next steps to improve radar scattering calculation with
the EM models [23]. (3) Regarding the inversion of the wind
direction, most algorithms are based on the presence of wind
streaks, but this feature is not present in every SAR image [9].

The GMF is one of the most important ways to perform
the inversion of SSWFs based on SAR data, which is
achieved empirically. The advantages of this method are that
the model is reliably stable and widely applicable, and the
accuracy of the inversion is further improved by the contin-
uous optimisation of the model [23]. There are, of course,
shortcomings in the model. The model requires wind direc-
tion as an input parameter, which is generally obtained with
the inversion of SAR images or from other SSWF data. The
former is subject to inaccuracies in the inversion process that
may lead to errors in wind speed estimation, while the latter
is difficult to reconcile with SAR images for both spatial and
temporal scales [25].

3. Wind Direction Retrieval

A precise and accurate estimation of the WDs is one of the
main issues for the SSWF retrieval from SAR images [26].
The inferred WDs are typically used as inputs to the GMFs
[27]. The lower the estimation errors of the retrieved WDs,
the higher the quality of the SAR-derived WSs and conse-
quently the SSWFs.

3.1. Methodology. Boundary layer rolls (BLRs) are atmo-
spheric roll vortices generated by thermal instabilities devel-
oping within the marine atmospheric boundary layer
(MABL) [28, 29], and they are typically associated with
unstable or neutral boundary layer conditions [30, 31]. They
appear as black and white linear texture features on the SAR
image, that is, wind streaks (or wind rows) [32, 33]. The
direction of the streak has a parallel relationship with the
sea surface WD [34, 35]. The WD is obtained by determin-
ing the direction of the wind streaks in the SAR image [36,
37], laying the foundation for WD inversion [38–40]. When
reaching a certain intensity, which for GMFs [41] is WS in
the range of 2.4-20m/s with the error within 2m/s [5, 40,
42], an SSWF will destroy the stability of the MABL, and a
secondary flow pattern (spiral atmospheric boundary layer
vortex) will be formed above the primary flow (average
SSWF) (Figure 1). The secondary flow acts on the sea
surface, resulting in convergence or divergence of the sea
surface. When the secondary flow direction acts downward
on the sea surface, it forms convergence points that appear
as bright spots in the image. When the secondary flow direc-
tion acts upward on the sea surface, it forms divergence
points that appear as dark spots in the image, resulting in
bright and dark stripes on the SAR images. The wind stripes
mentioned above are periodic, which provides the basis for
wind inversion based on SAR images [43, 44].
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3.2. Method. SAR is a side-looking radar with a fixed obser-
vation angle. It cannot measure multiple azimuth angles,
which makes it impossible to directly retrieve WS and direc-
tion information [9]. Based on the typical features of wind
streaks, many methods have been proposed, such as Fourier
transform [45–47], LG [38, 48], and wavelet analysis [49,
50]. LG has been widely exploited because the result of the
WD has higher resolution and precision. This paper is
focused on LG, optimised LG method, wavelet analysis
method, and other methods.

3.2.1. Local Gradient. In the SAR image with streaks, the gra-
dient shows the maximum value perpendicular to the streak
direction, the main gradient direction of the image is
obtained, and the direction perpendicular to this is the
WD [38]. The general steps are as follows.

(1) Reducing the Image Size. The convolution kernel B4 is
used for the smoothing processing for the ROIs (regions of
interest), and then, the resolution is halved by operator A2.
Finally, the convolution kernel B2 is used again for smooth-
ing, which can be expressed as R = B2A2B

4:
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1
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ð1Þ

(2) Computing LGs. For all points in the ROIs processed by

R, the optimised Sobel operator S is used to calculate the
gradient G:

Sx =
1
32

3 0 −3

10 0 −10

3 0 −3

2
664

3
775,

Sy = STx ,

G = Sx + iSy
� �

∗ ROIs1/2ð Þ,

ð2Þ

where i indicates the imaginary part and ROIs1/2 repre-
sents the ROIs processed by R.

(3) Unusable Points. After calculating all the LGs, the values
of the first two rows and the last two columns of the image
have to be discarded.

(4) Main Directions. For the gradient G, the histogram of the
gradient direction is calculated by using the modulus of the
gradient and the consistency parameter C as the weight.
The angle corresponds to the position of the maximum in
the smoothed histogram of the weighted usable LGs, that
is, the main direction of the LG [51]:

G′ = R ∗ G2� �
,

G′′ = R ∗ G2� �
,

C =
∣G′ ∣
G′′

:

ð3Þ

The direction perpendicular to this is the WD, and the
obtained WD is blurred in the 180° direction.
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Figure 1: Illustration of the secondary flow pattern related to atmospheric BLRs. (a) Perspective of the three-dimensional flow. The roll axes
are oriented between the directions of the mean surface wind and the geostrophic wind above the boundary layer [33]; (b) variation of the
vertical component uz of WS along the y direction; (c) variation of the horizontal components (in the x, y plane) [30, 33].
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3.2.2. Optimised Local Gradient Method

(1) Modified LG (LG-Mod). The LG-Mod method [52]
directly extracts the main LG direction (and then the pre-
dominant local WD) within the ROIs by using a specific
unbiased estimator, avoiding histogram analysis [26].
Figure 2 shows the flowchart of the LG and LG-Mod.

The main difference between the two is the part of the
main gradient extraction. The following section introduces
the part of the LG-Mod.

Specifically, the main gradient direction of each selected
ROI is determined as the maximum point of the following
function:

f α, βif gNi
� �

=
1
N
〠
N

1
cos2 α − βið Þ, ð4Þ

where α, N , and βi are a generic direction, the number of
ROI pixels, and the LG direction of the ith pixel, respec-
tively. The function f ðα, fβigÞ represents a mean collinear-
ity index between α and fβig. Assuming a single dominant
actual WD within the ROI, the LG direction maximises the
collinearity index.

For each ROI, the predominant direction is directly
obtained with the direct retrieval of the entire set of the
directions previously estimated, provided by the following
halved phase:

�β =
1
2
arctan 2 sin 2βN

i

� ���� ���, cos 2βN
i

� ���� ���� �
,

R′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2βN

i

� ���� ���2 + cos 2βN
i

� ���� ���2
r

,
ð5Þ

where fβigNi , �β, and R′ are the usable LG direction, the
mean angle, and the related accuracy, respectively.

Each direction estimate can be assigned as follows:

MEROI
α =

1
2
arcsin uα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αROI2
� �

2NROI RROI� �2
s !

, ð6Þ

where uα is the upper (1/2) α standard normal distribution
quartile and αROI2 = hcos ð4ðβN

i − hβN
i iÞÞi is the second cen-

tral trigonometric moment in the local direction of the
ROI’s doubling.

LG-Mod eliminates the noise by setting appropriate
thresholds. Different thresholding selections and errors are
shown in Table 1:

ROIrel = ROI ∣MEROI
α ≤METH

� 	
: ð7Þ

(2) Improved LG (ILG). For the ILG [53], the calculation
process is as shown in Figure 3(a). The difference between
the ILG and the LG is that the former combines the smooth-
ing and calculation of the LGs to avoid the difference
approximation error effect of the noise.

The smoothing of the ILG is achieved by the Gaussian
function as follows:

s′ x′, y′
� �

=∬s x, yð Þf x − x′, y − y′
� �

dxdy, ð8Þ

where s′ðx′, y′Þ, sðx, yÞ, and f ð·, · Þ are the image after
smoothing, the original image, and the Gaussian function
for smoothing, respectively:

f x, yð Þ = 1
2πσ2

e−x
2+y2/2σ2 , ð9Þ

where σ determines the smoothing window width and is an
empirical parameter. The gradients of the image can be
expressed as

∇s′ x′, y′
� �

=
∂
∂x′

s′ x′, y′
� �

e
∧
x +

∂
∂y′

s′ x′, y′
� �

e
∧
y, ð10Þ

where e∧x and e∧y are the unit vectors in the x and y direc-
tions, respectively:

∂
∂x′

s′ x′, y′
� �

= −s x, yð Þ ∗ hx x, yð Þ, ð11Þ

where ∗ denotes the convolution and hxðx, yÞ = ∂/∂xf ðx, yÞ:

F
∂
∂x′

s′ x′, y′
� �
 �

= −F s x, yð Þ½ � · F hx x, yð Þ½ �, ð12Þ

where Fð·Þ denotes the 2D Fourier transform.

Hx = F hx x, yð Þ½ � = −
ikx
σ2

e−2σ
2π2 k2x+k

2
yð Þ: ð13Þ

Therefore, Sx is

Sx = −F−1 F s x, yð Þ½ � ·Hxf g: ð14Þ

Similarly, Sy is

Sy = −F−1 F s x, yð Þ½ � ·Hy

� 	
,

G = Sx + Sy ∗ i:
ð15Þ

The other steps are the same as those in Koch’s
method [38].

3.2.3. Wavelet Analysis Method. The WD based on the wave-
let analysis method [54, 55] can quantitatively describe the
stripes, through the standard deviation of the mean cross-
section of the vertical detail within a wavelet decomposition.
The process is shown in Figure 4.

The original SAR image is preprocessed to eliminate
the influence of the speckle noise, and then, the image size
is reduced.

A two-dimensional continuous wavelet transform was
performed (e.g., Daubechies wavelet [49] and Mexican hat
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[50]) on the SAR image, to obtain the low-frequency wavelet
coefficients for the second layer of subdivision.

A two-dimensional FFT is performed on the energy
spectrum image to calculate the wave number spectrum of
wind streaks in the SAR image, and the two-dimensional
FFT [45] can be expressed as

Yl,m = 〠
n

j=1
〠
n

k=1
Xj,ke

−2πi jl+kmð Þ/n, ð16Þ

where Y is the wave number spectrum of wind streaks in
the SAR image, X is the image gray value, m = 1, 2,⋯,
n, and l = 1, 2,⋯, n.

WD with 180° directional blurring can be obtained by
plumbing the line of the two-dimensional wave number
spectrum peaks [50].

Finally, the external SSWF data is used to defuzzify the
WD, i.e., to obtain the WD.

3.2.4. Other Methods. Since Gerling [10] discovered that
there are wind streaks on SAR images that can be exploited
to retrieve the WD, other methods, such as detection of the
maximum variance direction method [56], the regular
method [57, 58], and the method of the gray-level cooccur-
rence matrix (GLCM) [59, 60], have been proposed.

In terms of the regular method [57, 58], the gradient is
solved with numerical differentiation, which can effectively
suppress the noise in the image while ensuring a minimum
error between the gradient and the “real” image intensity.
The method solves the gradient in the following way.

The exact function uðx, yÞ is known to be measured at
point ðxi, yiÞ as uδi , and δ is the observation error:

L2 Ωð Þ = u ∣
ð
Ω

u2 xð Þdx
� 1/2

<+∞
( )

, ð17Þ

where Ω is a subimage of the SAR image.
Then, the function f ðx, yÞ satisfying the following is

found:

J f x, yð Þ½ � =min
1
N
〠
N

i=1
f xi, yið Þ − uδi
� �2

+ α∥Δf x, yð Þ∥2L2 Ωð Þ

" #
:

ð18Þ

The Green [61, 62] function is used to reconstruct f ðx, yÞ
:

f x, yð Þ = 〠
N

j=1
cjaj xð Þ + b xð Þ, ð19Þ

where C = ðc1,⋯,cNÞT and AC = B:

A = αNI + aij
� �

N×N ,

B = uδ1 − b x1ð Þ,⋯,uδN − b xNð Þ
� �

:
ð20Þ

When a = δ2, a unique solution exists [61]. Further, f
ðx, yÞ and the gradient can be solved. The rest of the steps
are the same as those of the local gradient method [38] for
finding the wind direction.

Due to the complexity of SAR imaging and the variabil-
ity of the atmosphere and the marine environment, not all
SAR images contain features of wind streaks, which limits
the universal applicability of such methods.

An algorithm of simultaneous WS and WD retrieval
(hereinafter called Z-Model1), using CMOD5.N [63] and
C-2PO [14], the NRCS of the VV and VH polarizations,
and RIA, was proposed [64]. The flowchart for the method
is shown in Figure 5(a). The directional ambiguities were

Table 1: Different thresholding selections to LG-Mod directions.

Thresholding RMSE (°) MBE (°)

No 26.3 8.2

α = 0:05 ;METH = 15° 21.1 6.4

α = 0:05 ;METH = 10° 16.5 3.8

α = 0:05 ;METH = 5° 7.7 -0.4

SAR images

Smoothing, Reducing,
&Smoothing Local gradients

Discard unusable points

Remove ambiguity Wind directionWind direction resource

Specific unbiased
estimator

Maximum in the
histogram 

Extract the
main direction(a) (b)

Figure 2: Flowchart of LG-Mod (a) and LG (b) methods for WD retrieval.
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SAR images

2-D FFT

2-D IFFT

Reducing

Local gradients

Discard unusable points

Extract the main direction

Remove ambiguity

Wind direction
Wind direction resource

(a) (b)

Smoothing

Smoothing

Figure 3: Flowchart of ILG (a) and LG (b) methods for WD retrieval.

SAR

Two-dimensional
continuous wavelet

transform

Wavelet energy
spectrum

Wind direction with
180°directional blur Wind direction

Preprocessing

Wavelet base
selection

External wind
information

Two-dimensional
fourier transform

Figure 4: Flowchart of wavelet analysis method.

C-2PO

NRCS_VH

C-2PODWind speed

CMOD5.N

Incidence NRCS_VV

PCC MEIA

Wind direction

Wind speed

CMOD5.N

Ambiguity
wind direction

Ambiguity
wind direction

Wind direction(a) (b)

Figure 5: Flowchart of Z-Model1 (a) and Z-Model2 (b) for the simultaneous WS and WD retrieval algorithm.
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resolved by using the different symmetric characteristics of
the polarimetric correlation coefficient (PCC) between the
VV and VH channels and the NRCS values in quad-
polarization. They had odd symmetry and even symmetry
with respect to the WD.

Then, a new model (hereinafter called Z-Model2) was
proposed [65], which also achieved the simultaneous
inversion of the wind speed and the wind direction by
minimizing the cost function constructed by CMOD5.N
[63] and C-2POD [65]. Unlike Z-Model1, a parametric
two-dimensional sea surface inflow angle model, the
model-estimated inflow angle (MEIA) [66, 67], was used
to solve the directional ambiguities. The flowchart is
shown in Figure 5(b).

Recently, another new approach [22] (hereinafter
called the F-Model) has been proposed regarding extreme
weather conditions. This approach uses the local gradient
method [38] to estimate tropical cyclone (TC) wind direc-
tions, and it removes wind direction ambiguities according
to TC SSWFs in the northern direction. The procedure of
deblurring the WD is shown in Figure 6, as follows: (1)
determine the eye centre position of the TC according to
[68], (2) ascertain the quadrant of the proper subimage
based on the eye centre positions and the specific sub-
image position, and (3) derive the unique WD according
to the criteria in Table 2.

3.3. Accuracy Verification. The error statistical results of the
SAR WD inversion are listed in Table 3. Compared with the
SSWF products of the buoy, the numerical model reanalysis
data, and the microwave scatterometer, it can be found that
the results have good consistency, and the root mean square
difference or standard deviation between the data meets the
requirements of WD operational accuracy.

4. Wind Speed Retrieval

WS is the main driving force of upper ocean movement, and
it is an important factor affecting wave generation, water
mass formation, and ocean current movement [70]. Addi-
tionally, WS data have important applications for many
areas, such as typhoon intensity monitoring and ocean wind
energy resource evaluation [71].

4.1. Methodology. In the microwave band, there is an obvi-
ous positive correlation between the intensity of the micro-
wave backscattered signal on the sea surface and the
intensity of the WS. For no-WS or extremely low-WS condi-
tions, the sea surface can be regarded as a quasimirror sur-
face. The sea surface echo signal received by the SAR as a
side-looking radar is very small. As the WS increases, the
sea surface roughness becomes larger, and the sea surface
signal is gradually enhanced [27], as shown in Figure 7.
The backscattered signal reaches its maximum value when
the incident direction of the radar is parallel to the WD,
and the intensity of the echo signal when the wind blows
toward the radar is slightly stronger than the intensity of
the wind away from the radar. The NRCS as a function of
the WD relative to the radar observation direction based
on different GMFs is shown in Figure 8. The SAR echo
signal changes regularly with the WS, which lays the founda-
tion for WS inversion [72, 73].

N

N

0° (360°)

0° (360°)Φ

270°

270°

90°

90°

180°

180°

�ird

Fourth First

E

E

Second

Figure 6: Diagram of typical TC wind direction structure in the northern hemisphere. The black arrows are wind directions [22].

Table 2: The criteria to derive WD.

Quadrant The first The second The third The fourth

Φ (270°, 360°) (0°, 90°) (90°, 180°) (180°, 270°)

Note: where Φ is WD. When the subimage is in the first quadrant, Φ is
greater than 270° and less than 360°, and other quadrants and so on.
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4.2. Method. In order to quantitatively retrieve the SSWF
from the radar backscatter signal, a forward model between
the SSWF and the radar backscatter must be established [73,
74]. Models can be divided into two categories: empirical
(EP) and electromagnetic (EM) approaches [23]. At present,
it is difficult to accurately model the interaction between

radar electromagnetic waves and a complicated and rough
sea surface, resulting in the accuracy of the microwave
remote sensing model of the SSWF based on the physical
mechanism being lower than that for the empirical model
based on statistics [75–77]. Therefore, studies related to the
inversion of an SSWF based on SAR data are mostly based

Table 3: SAR WS retrieval statistics.

Method Reference data Error (°) SAR data 180° blur Reference

LG Situ 26.54∗ Sentinel-1 Yes La et al. [25]

LG-Mod Situ 9.4∗ Sentinel-1 Yes Rana et al. [69]

ILG
ECMWF 21.57∗∗ RADARSAT-2 Yes

Zhou et al. [53]
CCMP 21.61∗∗ Envisat ASAR Yes

GLCM
ECMWF 39.49∗∗

ENVISAT and RADARSAT-2
Yes

Zheng et al. [59]
CCMP 38.90∗∗ Yes

Z-Model1 Situ 22.5∗ RADARSAT-2 fully polarimetric No Zhang et al. [64]

Z-Model2
QuikSCAT 19.37∗ RADARSAT-2 dual-polarized No Zhang et al. [65]

Situ 22.22∗ Gaofen-3 No Wang et al. [60]

F-Model Buoy 13.3∗ RADARSAT-2 and Sentinel-1A dual-polarized No Fan et al. [22]

Note: ∗ and ∗∗ indicate RMSE and root mean square, respectively.

Incident wave Incident wave Incident wave

Scattered wave Diffuse wave
Specular wave

Smooth surface Moderately rough surface Rough surface

Figure 7: Radar scattering from surfaces with different roughnesses [9].

–2

–4

–6

–8

Relative wind direction (°)

N
RC

S 
(d

B)

CMOD4 CMOD5
CMOD5.NCMOD_IFR2

360270180900

Figure 8: The function of NRCS and relative WD based on different GMFs (RIA = 30°, WS = 20m/s) [16].
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on EP models [4, 11, 27, 78]. EPs based on different polar-
ized modes are introduced in Sections 3.2.1–3.2.3, and EMs
are introduced in Section 3.2.4.

4.2.1. Geophysical Model Function. The empirical model
describing the quantitative relationship between the radar
backscatter signal and the SSWF is called the “geophysical
model function (GMF).” The model function must meet
the following conditions:

(1) The corresponding WS and the direction can be
calculated from the observations of the spaceborne
radar system

(2) The functions can be tabulated or in the form of
functions

(3) The GMF does not rely on additional meteorological
and marine data that is difficult to obtain in real time
in business operations. The general form of the GMF
is

σ0
VV = B0 1 + B1 cos ϕð Þ + B2 cos 2ϕð Þ½ �z , ð21Þ

where σ0, ϕ, and σ0HH are the VV NRCS (dB), the
included angle (degree) between the WDs, and the radar
incident direction, respectively. B0, B1, andB2 are constants
determined by the WS, incidence angle, polarized mode,
and frequency, and Z is a constant corresponding to the
function. The CMOD5 GMF at a 42° incident angle is
shown in Figure 9.

GMFs were originally designed to be used in the SSWF
inversion of a microwave scatterometer. Then, they under-
went long-term operational optimisation. Because the char-
acteristics of the sea surface backscattering signals obtained
by a scatterometer and SAR are similar, they are suitable
for the SAR SSWF inversion if the SAR has the same radar
wave frequency, polarized mode, and incidence angle distri-
bution range as the scatterometer. Commonly used models
are CMOD4 [79], CMOD_IFR2 [80], CMOD 5 [81], CMOD
5.N [63], and CMOD 7 [41].

With the accumulation of SAR data, Mouche and
Chapron [82] used ENVISAT-ASAR data and the SSWF of
ASCAT, and they established the C-band VV-polarized
SAR WS GMF, called C_SARMOD. The comparison with
the in situ buoy experiments showed that the RMSE was
1.63m/s [83]. Lu et al. used RADARSAT-2 and Sentinel-
1A VV-polarized SAR images and buoy WS observations
to establish the model, called C_SARMOD2, which was
verified with buoy observation. Its RMSE was 1.84m/s [24].

It was necessary to convert the HH-polarized SAR data
into VV-polarized backscatter coefficients and then use the
GMFs (other empirical models for HH-polarized SAR data
are introduced in Section 3.2.2). In order to minimize the
possible errors caused by the polarized model, Zhang
et al. [84] used Envisat ASAR images and ASACT SSWF
data to establish the new model called CMODH. The
model was available for HH- and VV-polarized SAR with-
out the need for the polarized ratio model. According to the

verification with the WS observed by the buoy, its RMSE
was 1.66m/s [85].

4.2.2. Model for HH-Polarized SAR. For the HH-polarized
SAR data, the polarized ratio (PR) model and GMFs are gen-
erally used for WS inversion [86, 87]. Other methods are
used for HH-polarized SAR, such as Komarov’s model [88].

(1) Polarization Ratio Model. For the HH polarimetric SAR,
if using CMOD, PR is first used to convert the NRCS from
HH polarization to VV polarization, and then, the GMF is
used [89]. These models can be divided into two categories:
empirical and theoretical models.

(1)1. Empirical PR. The empirical PR contains three
categories.

(a) Only Related to the RIA, as shown inTable4. The rela-
tionship between the PR and the incident angle for
this kind of model is shown in Figure 10.

(b) PR Depends on the Incidence Angle and the Azimuth
Angle [87]. The general expression is as follows:

PR θ, ϕð Þ = C0 θð Þ + C1 cos ϕð Þ + C2 θð Þ cos 2ϕð Þ,
PR θð Þ = Aϕ exp Bϕθ

� �
+ Cϕ,

C0 θð Þ = PR θ, 0ð Þ + PR θ, πð Þ + 2PR θ, π/2ð Þ
4

,

C1 θð Þ = PR θ, 0ð Þ − PR θ, πð Þ
2

,

C2 θð Þ = PR θ, 0ð Þ + PR θ, πð Þ − 2PR θ, π/2ð Þ
4

:

ð22Þ

(c) PR Models Related to the WS. For example, Biao and
Perrie [18] proposed a PR model considering the
influence of the WS:

PR = P θð ÞUQ θð Þ
10 , ð23Þ

where PðθÞ = P∗
1θ

2 + P∗
2θ + P3 and QðθÞ =Q1 ∗ θ +Q2

(P1, P2,Q1, andQ1 are constants).

(1)2. Theoretical PR. With the widespread applications of
spaceborne SAR in the ocean, physical models for the inter-
action between the ocean surface and radar scattering have
been proposed [89], such as the generalised curvature model
(GCM) and the two-scale Bragg model [93]. Then, the
model should consider the contribution of the wave break-
ing related to the statistical description of the sea surface
[94]. A new physical PR model has extended the improved
GCM model [95]. The PRs described above depend on the
RIA, WS, and WD [89]. However, the accuracy of the model
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needs to be further improved, and the application of this
kind of PR is rare [96, 97].

(2) Komarov’s Model for HH-Polarized SAR. When estimat-
ing the WS using the CMOD and PR for the HH-polarized
SAR, the approximate value of the co-PR may introduce a
large error. Additionally, the WD provided by the numerical
forecast model may introduce new errors. Therefore,
Komarov et al. [88] proposed the new model (hereinafter
called “Komarov’s model”) based on HH-polarized SAR
data without an input WD. The limitation of Komarov’s
model is that it is only applicable when the WS < 16m/s
[25]. The general formula can be expressed as

V = a0 + a1σ
0
HH + a2θ + a3 σ0

HH
� �2 + a4θ

2 + a5σ
0
HHθ, ð24Þ

where V , θ, and σ0HH are the WS (m/s), the incidence angle
(degree), and the HH NRCS (dB), respectively. The coeffi-

cients a0, a1, a2, a3, a4, and a5 are -16.50189, 0.81709,
1.365899, 0.06022, 0.00333, and 0.06981, respectively. The
model simulation diagram is shown in Figure 11.

The research [25] shows that (1) for HH-polarized SAR
data, Komarov’s model produces better WS estimates than
CMOD5.N, which has also been reported in [88], and (2)
for VV-polarized SAR data, CMOD5.N produces better
WS estimates than Komarov’s model. Additionally, in view
of the importance of the wind direction to the GMF, Komar-
ov’s model’s WS inversion effect for the model without
consideration of the WD can demonstrate better accuracy.

4.2.3. Model for Cross-Polarized SAR. Cross-polarized SAR
has a unique advantage for polarimetric synthetic aperture
radar. In 2011, Vachon and Wolfe [17] and Zhang et al.
[64] found that the sea surface backscattering signal of C-
band cross-polarized SAR was not sensitive to the WD and
RIA but rather a linear function of the WS, which could be
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Figure 9: CMOD5 GMF at 42° incident angle. CMOD5 is a GMF which described the relationship of NRCS, WS, and relative WD.

Table 4: PR formula related to incidence angle (θ) only.

PR model Formula Coefficient values

PRT [86]

PR =
1 + 2tan2θ
� �2
1 + αtan2θð Þ2

α = 0:6

PRH [90] α = 1:0

PRV [91] α = 1:2

PRE [92] PR =
1 + 2tan2θ
� �2
1 + 2sin2θ
� �2 —

PRM1 [87]

PR = Aexp Bθð Þ + C

A = 0:00799793, B = 0:125465, C = 0:997379

PRZ1 [18] A = 0:2828, B = 0:0451, C = 0:2891

PRL [89] A = 0:453041, B = 0:0324573, C = 0:524303
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directly used for WS inversion for the first time [18]. Subse-
quently, Biao and William [14] found that the cross-
polarized SAR echo signal could not easily be saturated for
the condition of high WS, and they proposed a model called
C-2PO that was suitable for high WS inversion. Zhang et al.
[19] found that the sea surface echo signal of C-band cross-
polarized SAR was dependent on the incident angle by
considering the contribution of the cross-polarized band
non-Bragg scattering. Using the observation data for the
RADARSAT-2 satellite and a hurricane, an improved C-

3PO model function was proposed. Zhu et al. [98] proposed
a semiempirical algorithm that considered the influence of
the WS and the incident angle on a cross-polarized NRCS.
The introduction of cross-polarized SAR observation signif-
icantly improved the accuracy of the C-band SAR inversion
of an SSWF for a high WS [99–105]. Some representative
cross-polarized models are shown in Table 5, and the rela-
tionship between WS and VH is shown in Figure 12.

The cross-polarized backscatter coefficients do not satu-
rate at WSs up to 60m/s [106, 107], and the WS inversion
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using cross-polarized SAR has higher accuracy than that of
the copolarized SAR at wind speeds above 20m/s [14, 15].
Given that the cross-polarized backscatter coefficients are
more suitable than the copolarized backscatter coefficients
for SSWF inversion under high WS conditions, the utilisa-
tion of cross-polarized SAR data is a new frontier for SAR
SSWF inversion [9]. However, the high noise equivalent
sigma zero [3] leads to large uncertainty in the WS inversion
for low to moderate WS conditions, and thus, there are cer-
tain limitations that hinder cross-polarized SAR current use.

4.2.4. Electromagnetic Approach. The physical approach
attempts to reveal the relationship between radar scattering
and an SSWF based on the principle of electromagnetism
(EM) [23]. The EM models are constructed based on qua-
siexact calculations or the asymptotic method. The former
includes the method of moment [108] and the forward-
backward method [109] and the latter the composite two-
scale model [110], the small slope approximation [111],
and the Resonant Curvature Approximation (RCA) [112].
When the range of the RIA is from 20° to 60°, the EM

Table 5: GMFs developed for C-band cross-polarized SAR.

Name Formula Data Speed (m/s) Reference

Model-V σ0cross‐pol = 0:592U10
N − 35:6

RADARSAT-2

<25 Vachon and Wolfe [17]

C-2PO σ0VH = 0:580U10
N − 35:652 <25 Zhang et al. [64]

C-2POD σ0VH = 0:332U10
N − 30:143 <40 Zhang et al. [14]

Model-H σ0cross‐pol = 0:3802U10
N + 33:7276 RADARSAT-2 ScanSAR 22:5 ≤U10

N < 40 Horstmann et al. [15]

Model-Z1-S
σ0VH = 0:59U10

N − 35:60
σ0VH = 0:218U10

N − 29:07

RADARSAT-2

U10
N ≤ 21

21 <U10
N < 40

Van Zadelhoff et al. [102]

Model-Z1-E
σ0VH = 0:76U10

N − 39:53
σ0VH = 0:213U10

N − 28:09
U10

N ≤ 21
21 <U10

N < 40

Model-Z2 σ0VH = 0:218U10
N − 29:07 21 <U10

N < 40

S-C2PO

σ0VH = −0:0045 U10
N

� �2 + 0:6404U10
N − 34:0061

Sentinel-1 <25 Zhang et al. [3]σ0VH = −0:0011 U10
N

� �2 + 0:6077U10
N − 35:3929

σ0VH = −0:0109 U10
N

� �2 + 0:9812U10
N − 39:8282
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models based on asymptotic calculations are more widely
used, since their descriptions are much simpler and they
work more rapidly, with similar results. Among the EM
models based on the asymptotic method, the NRCS calcu-
lated with the approximation models is closer to the EP
approach [23, 113].

4.3. Accuracy Verification. The authenticity test of an SSWF
retrieved with SAR is the premise of its quantitative applica-
tion [5, 23]. Table 6 shows the error statistical results of
some representative SAR SSWF remote sensing products.
After comparison with the fixed buoy, numerical model
reanalysis data, and microwave scatterometer SSWF remote
sensing products, it can be found that the SAR remote sens-
ing SSWF products have good consistency with the other
SSWF data, and the root mean square difference or standard
deviation between the data is less than 2.0m/s. However, the
inversion accuracy obtained from different satellites or dif-
ferent polarized data for the same satellite is still different,
which is associated with the data quality of the satellite load,
calibration accuracy, mode function, and the use of external
auxiliary data. Overall, for the conditions of low and
medium WSs (<20m/s), the retrieval accuracy of SAR can
be similar to or the same as that of other remote sensing
methods. However, for the condition of high WSs, the
retrieval of an SSWF by SAR still faces challenges.

5. Conclusion and Outlook

The WD inversion for the SAR image data is based on the
wind streak features in the SAR data. Due to the complexity
of the SAR imaging and the variability of the sea and air
environment, not all of the SAR images contain clear wind
streak features [118, 119]. There are certain limitations in

obtaining the WD with this method [64, 120]. Hence,
scholars have proposed the inversion of the WD based on
numerical calculation methods [121, 122] in view of the fact
that there are not many applications of this type of algorithm.

In the WS inversion research, the GMF model has
undergone a series of updates and improvements, and
the accuracy of the model has been improved. This
model is the most widely used. However, at high WSs,
there is saturation based on the copolarized data [19,
123]. The cross-polarized model is more suitable for the
inversion of the WS in extreme weather (such as hurri-
canes) [124, 125], but in terms of the applicability and
accuracy of the model, there is still a large amount of
room for improvement.

Overall, however, the SSWFs retrieved based on SAR
data already have similar accuracy to those for other micro-
wave remote sensors, as well as high resolution and strong
observation capabilities in coastal waters. This type of
retrieval has been operationalized in the meteorological
and oceanographic departments of many countries.

With the development of SAR technology, the spatial
coverage and continuous observation capabilities of SAR
SSWF data will be further improved, and the dynamic
and continuous observation of global seas is expected to
be achieved.

In terms of SAR wind farm technology, there are still
some problems that need to be resolved:

(1) The WD inversion method based on the features of
wind stripes in SAR images still has a lot of room
for research

(2) The inversion of high WS (>35m/s) still has large
uncertainties

Table 6: C-band SAR WS retrieval statistics.

Data Polarization Reference data Error Speed Reference

RADARSAT-1
HH Buoy 1.76 <20 Monaldo et al. [114]

HH QuikSCAT 1.54 <20 Thompson et al. [115]

ENVISAT/ASAR

VV Buoy 1.41 <15
Yang et al. [42]VV ASCAT 1.77 <15

VV NOGAPS 1.61 <15

Sentinel-1

VV
ASCAT

1.42 <20
Monaldo et al. [40]

HH 1.48 <25
VV+VH SMAP 2.59 <50 Mouche et al. [116]

Gaofen-3

VV ASCAT 2.04 <20

Ren et al. [117]
VV HY2A/SCAT 1.93 <20
HH ASCAT 1.85 <20
HH HY2A/SCAT 1.73 <20
HV

NDBC buoys
2.02 <20

Zhu et al. [98]
VH 1.96 <20

RADARSAT-2
VH QuikSCAT 3.63 <40 Zhang et al. [65]

VH SFMR 2.81 <40 Zhang et al. [104]

Note: the error is the standard deviation or root mean square error, and the units of the error and speed are m/s.
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(3) There are few studies considering the interference of
rain with the radar backscattered signal on the sea
surface

(4) The method of combining multiplatform and multi-
source data is used to obtain SSWF information with
higher spatial and temporal resolution

(5) The research on ocean SSWF inversion based on
machine learning and deep learning has broad
prospects

(6) For an SSWF, the wave field and the current field are
mutually coupled, and the new system of radar satel-
lites provides new opportunities and challenges for
sea surface dynamic parameter inversion
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