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A multisensor alliance is established by the activation of tasks or occurrences. It is also characterized as a multisensor dynamic
alliance since it originates with mission development and disintegrates with task accomplishment. To overcome the constraint
that a single sensor can only gather a one-sided, little amount of erroneous target information, each sensor in the dynamic
alliance has diverse information collection capabilities and implements a cooperative methodology to complete the target
mission. This paper emphasizes on alliance formation in multisensor dynamic alliance control under diverse missions. To
begin with, we investigate the problem at the sensor recognition level for each target feature, delving into the concepts of
alliance formation, renewal, and dissolution and emphasizing the fuzzy relationship in the multisensor dynamic alliance for
multitarget. Moreover, dynamic alliance models are constructed using the fuzzy set calculation algorithm, which is powered by
target detection, recognition, and tracking tasks in that sequence. Last but not least, simulation experiments demonstrated that
the proposed model and algorithm outperform the existing models and algorithms. We may achieve the optimal alliance
scheme by introducing the fuzzy set calculation algorithm into the dynamic alliance establishment process, which completely
nullifies information redundancy and enhances the monitoring capabilities of the sensor network.

1. Introduction

Multisensor networks are widely applied in medical [1, 2],
agriculture [3, 4], forest [5, 6], vehicle and ocean [7, 8] mon-
itoring, and other fields. In particular, the application of
multisensor networks in intelligent transportation systems
has become a current research hotspot. In the research pro-
cess, many practical problems need to use a series of mea-
surement data of sensor networks to estimate the system’s
state. One of the most important information sources in an
intelligent transportation system is the sensor. Sensors can
be installed on vehicles or as part of infrastructures such as
bridges, roads, or traffic signs [9, 10], providing information
about weather and traffic conditions and improving the driv-
ing process. A sensor network consists of several microcom-
puters (nodes) that are outfitted with sensors and work
together to complete a certain mission [11]. These nodes
offer special sensing and wireless communication capabili-
ties and perform various ad hoc networking without the
need for a predefined physical infrastructure or centralized

administration. Currently, the resource scheduling issue
between sensors and targets is to eliminate sensor network
resource occupancy while guaranteeing sensor monitoring
efficiency for multiple targets. Selecting appropriate sensors
to detect and track targets is a multisensor scheduling prob-
lem [12, 13], a research hotspot for many years, and is the
core of this paper.

The multisensor scheduling problem is usually complex,
multidimensional, and NP-hard. It mainly refers to reason-
ably scheduling various sensor resources in the sensor net-
work to meet the requirements of multitarget detection
and tracking in a certain time interval according to specific
optimization criteria to achieve the comprehensive optimi-
zation of some or some indicators. The solving process of
the multisensor scheduling problem is generally two steps.
The first step is to establish the multisensor scheduling
model, that is, to construct the objective function according
to certain constraints. The second step is to find the optimal
solution for the model by designing an optimization algo-
rithm or exhaustive method to obtain the multisensor
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scheduling scheme. As a global optimization problem, the
multitarget sensor scheduling problem needs to compute
the simultaneous interpreting of all possible sensor manage-
ment actions on different sensors. When the scale of the
multisensor system is large, the global combinatorial optimi-
zation problem needs much computation, so it is necessary
to design an optimization algorithm to solve the multisensor
scheduling scheme. The solution to the scheduling problem
of large-scale systems mainly uses a swarm intelligence algo-
rithm. Swarm intelligence algorithm is primarily divided
into centralized algorithms, such as Harris hawk algorithm
(HHO) [14], whale algorithm (WOA) [15], slime mold algo-
rithm (SMA) [16], bee colony algorithm (BCO) [17], and
particle swarm optimization algorithm (PSO) [18]. In addi-
tion, auction algorithm (AA) [19] and contract network
algorithm (CNA) [20] are distributed algorithms. The cen-
tralized algorithm transmits all data to the fusion center to
calculate the optimal solution with more time and energy.
Each sensor can be regarded as an agent with computing
power in the distributed algorithm, exchanging information
with adjacent sensors with fast computing speed and low
energy consumption.

After a comprehensive review of the above references, we
may infer that the multisensor dynamic alliance control
problem based on fuzzy set theory still has three issues to
be solved.

(1) First of all, while investigating the detection proba-
bility of the sensor to the target, most research
papers frequently utilize the overall detection proba-
bility without considering whether the target’s spe-
cific features are correctly detected, which could
also contribute to information redundancy

(2) More significantly, the established sensor alliance
may fail to recognize a certain target characteristic,
causing the combat to be delayed. Moreover, sensor
monitoring alters as the intended flight progresses.
It should be considered to properly distribute sensor
resources throughout activities to minimize redun-
dancy and waste of sensor resources. Furthermore,
in establishing multisensor alliances, the concerns
of long solution time, low solution accuracy, and eas-
ily falling into local optimization of centralized and
distributed algorithms should be highlighted

(3) As a result, this research demonstrates a fuzzy set
and recommends a task-driven multisensor dynamic
alliance model for multitarget, which can effectively
minimize the information redundancy rate and
resource occupancy rate to ensure the completion
of target detection and recognition and tracking

Given the above analysis and summary, the following are
the significant contributions of this paper.

(1) To begin, this paper explores the principles of the
formation, renewal, and dissolution of the alliance
and the problem at the level of sensor detection of
each feature of the target to compensate for the

shortcomings of previous research, which does not
consider whether the specific qualities of the target
are properly detected

(2) Meanwhile, establishing a dynamic alliance model
driven by target detection, identification, and track-
ing tasks to tackle duplication and waste of sensor
resources caused by unjustified sensor resource allo-
cation when the task of sensor monitoring also varies
in various stages of target flight

(3) Then, we implement fuzzy set theory [21–24] to
solve the established dynamic alliance model, which
is driven by target detection, recognition, and track-
ing tasks. Then, we generate multisensor alliance
schemes driven by distinct goals to overcome the
issues of long solution time and low solution accu-
racy in establishing multisensor alliances via central-
ized and distributed algorithms

The remainder of this paper is arranged as follows. Sec-
tion 2 concentrates on the multisensor dynamic alliance
mechanism and establishes the model driven by target detec-
tion, identification, and tracking tasks. Section 3 validates
the methods and algorithms prescribed in this paper by uti-
lizing example simulation. Section 4 summarizes the work of
this paper.

2. Materials and Methods

2.1. Sensor Dynamic Alliance Mechanism

2.1.1. Definition of Multisensor Dynamic Alliance. The estab-
lished sensors in the sensor network that perform early
warning tasks are referred to as a multisensor dynamic alli-
ance. In various scenarios of target assault, the pairing of
sensors and targets is determined depending on monitoring
(detection, identification, and tracking) tasks in various
stages to establish a subsystem for each target, and each sub-
system is dynamically updated, relying on mission alter-
ations in various stages of target flight. Each alliance has 3
phases: formation, renewal, and disintegration.

2.1.2. Principles of Formation, Renewal, and Dissolution of
the Alliance

(1) Alliance Formation. In the beginning, the sensor forms
an alliance based on target identification and tracking mis-
sion. After gathering all of the target’s characteristic infor-
mation, it assesses the target’s flight path (assuming that
the sensor’s prediction result is valid) and then forms an alli-
ance based on the target tracking task.

(2) Alliance Renewal. When a sensor detects numerous tar-
gets, it must evaluate their priority and prioritize the targets
with the highest priority to ally. When multiple sensors
detect the same target, the relevance level of sensors in the
sensor network must be considered, and the participating
alliance with the lowest importance level must be chosen.
The new alliance based on a target tracking task involves at
least one sensor from the previous alliance discovered on
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the target detection and recognition task to share target
information with the sensor in the new alliance.

(3) Alliance Dissolution. When the target is demolished or
delivered to the precision-guided weapon system, the sen-
sors in the early warning system are no longer required to
track it; the alliance could dismiss depending on the tracking
mission.

2.1.3. Fuzzy Relation in Dynamic Alliance. Set up a sensor
network with m sensors and n incoming targets. Since a
sensor can participate in the dynamic alliance for multiple
targets simultaneously, the classification of a sensor ai in
the n-th dynamic alliance fG1,⋯Gj,⋯,Gng established
for target fb1, b2,⋯, bj,⋯, bng in the sensor network fa1,
a2,⋯, ai,⋯, amg is not the direct relationship of if ai ∈Gi,
then ai ∉Gi, but ai ∈ Gi, or ai ∈Gi+1, this and other fuzzy
relationship. Similarly, a target can be detected by multiple
sensors; the classification of each target fb1, b2,⋯, bj,⋯,
bng in the sensor set fO1,O2,⋯,Omg is also an ambiguous
relationship.

2.1.4. Target Priority Model. Target priority P is a mathemat-
ical number that indicates the target’s threat level. When the
target priority is high, it indicates that the target is highly
dangerous. The sensor needle must prioritize allying with it
to minimize the threat degree of the target.

Priority level elements bj include attribute pj1, type pj2,
speed pj3, angle pj4, height pj5, distance pj6, and situation
pj7. The factors listed above have varying effects on the target
priority, and the weighting function is typically employed to
establish the target priority level:

ϖ1 + ϖ2 + ϖ3 + ϖ4 + ϖ5 + ϖ6 + ϖ7 = 1, ð1Þ

pj = ϖ1pj1 + ϖ2pj2 + ϖ3pj3 + ϖ4pj4 + ϖ5pj5 + ϖ6pj6 + ϖ7pj7,
ð2Þ

where ϖiði = 1, 2,⋯,7Þ is the weight value of the factors men-
tioned above.

The priority of each objective among all objectives is
expressed by normalization, that is,

Pj =
pj

∑n
1pj

: ð3Þ

2.1.5. Sensor Importance Level Model. Q is a mathematical
number that indicates the sensor’s relevance in the sensor
network. When a sensor’s relevance level is high, it performs
an essential detecting task in the sensor network. When sen-
sor resources are occupied, the sensor network’s resource
consumption is high.

Sensor performance qi1, sensor deployment position qi2,
sensor detection area qi3, sensor type qi4, and sensor anti-
interference ability qi5 are the main factors determining the
second critical level of the i-th sensor.

When many sensors compete for the same goal in a sen-
sor alliance, the sensors with the lowest relevance level join

the alliance to reduce resource consumption in sensor net-
works.

β1 + β2 + β3 + β4 + β5 = 1, ð4Þ

qi = β1qi1 + β2qi2 + β3qi3 + β4qi4 + β5qi5, ð5Þ
where βiði = 1, 2,⋯,5Þ is the weight value of the factors

mentioned above.
The priority of each objective among all objectives is

expressed by normalization, that is,

Qi =
qi

∑m
1 qi

: ð6Þ

The target can be monitored when the linear distance
between bj and dij is less than the detection radius of the
sensor ri0, in which ri0 ≥ dij.

Following the formation of a dynamic alliance for all tar-
gets, the sensor network must detect all features of all targets
to the fullest degree possible. Each target requires seven fea-
ture identifications, bj and vj features are detected, which
may be stated as follows:

max 〠
n

j=1
vj: ð7Þ

Simultaneously, to reduce the total of the basic levels of
sensors participating in the alliance, which may be stated
as follows:

min 〠
n

j=1
Qjoccupy: ð8Þ

To eliminate the number of sensors involved in the alli-
ance, that is,

min 〠
n

j=1
sj: ð9Þ

2.2. Establishment of the Dynamic Alliance Model

2.2.1. Alliance Model Based on Target Detection and
Recognition Task

(1) Constructing Fuzzy Sets. When taking the sensor’s overall
recognition degree to the target as the discussion item, the
alliance process may result in information duplication, and
more significantly, it may result in inadequate detection
information. Assuming that each target characteristic
accounts for 1/7 of the total elements, when the recognition
degree of ai to bj is Ωij = 6/7, which cannot recognize the
speed of bj, and the recognition degree Ωi+1j = 5/7 of ai+1
to bj, which cannot identify the kind and speed of bj, the
two sensor partnerships did not increase the degree of target
recognition. However, they resulted in information duplica-
tion and the waste of sensor resources.
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In the operational scenario of a specific target attack, if
there are only two results that ai can recognize (state ο = 1)
and cannot recognize (state ο = 0) for the k-th feature pjk
of bj, it can be established that a sensor network can specify
the domain, and the division of O1,O2,⋯,Om on U is

O1 =
ο111
P11

+ ο112
P12

+⋯+ ο117
P17

+⋯+
ο1j1
Pj1

+
ο1j2
Pj2

+⋯
ο1j7
Pj7

+⋯,

⋯⋯

Oi =
οi11
P11

+ οi12
P12

+⋯+ οi17
P17

+⋯+
οij1
Pj1

+
οij2
Pj2

+⋯
οij7
Pj7

+⋯,

⋯⋯

Om = οm11
P11

+ οm12
P12

+⋯+ οm17
P17

+⋯+
οmj1
Pj1

+
οmj2
Pj2

+⋯
οmj7
Pj7

+⋯,

ð10Þ

where O1,O2,⋯,Om are the fuzzy sets corresponding to
a1, a2,⋯, ai,⋯, am; οi jk represents the recognition effect of
ai the k-th feature bj. Written in vector form, there are

O1 =

ο111 ο121 ⋯ ο1n1

ο112 ο122 ⋯ ο1n2

⋯ ⋯ ⋯ ⋯

ο117 ο127 ⋯ ο1n7

2
6666664

3
7777775
,⋯,

Oi =

οi11 οi21 ⋯ οin1

οi12 οi22 ⋯ οin1

⋯ ⋯ ⋯ ⋯

οi17 οi27 ⋯ οin7

2
6666664

3
7777775
,⋯,

Om =

οm11 οm21 ⋯ οmn1

οm12 οm22 ⋯ οmn1

⋯ ⋯ ⋯ ⋯

οm17 οm27 ⋯ οmn7

2
6666664

3
7777775
:

ð11Þ

(2) Alliance Establishment Steps. In general, all sensors can
detect and identify several targets simultaneously, fulfilling
the task requirements.

In practice, generally, no more than five sensors can
detect bj simultaneously. For bj, the establishment process
of the alliance Bj is as follows:

(a) When sensors detect the j-th target at the same time,
the sensor alliance has 2mj − 1 alliance schemes

(b) The f scheme lets the fuzzy sets corresponding to
each sensor do the intersection operation of the

fuzzy set Of
j =O∗

1∧O
∗
2∧⋯, Of

j is the final corre-

sponding coalition operator, and the sum of the cru-
cial levels of all sensors in the coalition is

Qf
j =Q∗

1 +Q∗
2 +⋯

(c) If the j-th column element Of
j satisfies ∑7

k=1ok ≥ 7,
the alliance can complete the task of identifying all
the features bj

(d) Suppose a total of e alliances meet the above require-
ments, then find min fQ1

j ,Q2
j ,⋯,Qe

jg, and the cor-

responding alliance scheme G1
j is the optimal

scheme to establish an alliance for the target bj

2.2.2. Alliance Model Based on the Target Tracking Task.
After completing the target recognition and detection tasks,
an alliance is formed based on the target tracking task.

Varying sensors have different tracking capacities (some
can only track one target while others can interpret many
targets simultaneously), complicating the problem analysis.
When ai can track Ki targets, in the dynamic alliance, the
sensor may be viewed as Ki sensors with the same perfor-
mance that can only track one target, and the sensor net-
work can be regarded as m∗ (m∗ ≥m) sensors that can
only track one target. At this point, the sensor set is fa1, a2
,⋯, ai,⋯, am∗g.

(1) Classification Method. The track calculated by the sensor
alliance in the detection and identification stage is l j. The set

of sensors intersecting within sensor networks is Gj = fa1′ ,
a2′ ,⋯, at′g, which has l j ∈ Gj.

The sensors G∗
j are classified by fuzzy cluster analysis.

Step 1. Determine the calibration method of the fuzzy simi-
larity coefficient.

If the detection field of ai′ is Vi and the detection field of
ai+1′ is Vi+1, then the similarity coefficient between ai′ and
aii+1′ is

rii+1 =
Vi ∩Vi+1
Vi ∪Vi+1

: ð12Þ

Step 2. Establish the fuzzy similarity coefficient matrix.

R =

r11 r12 ⋯ r1t

r21 r22 ⋯ r2t

⋯ ⋯ ⋯ ⋯

rt1 rt2 ⋯ rtt

2
666664

3
777775
: ð13Þ

Step 3. Given λ ∈ ½0, 1�, get the relationship between λ and Rλ,
and use Rλ to get the classification corresponding to λ.(2) Alli-
ance Establishment Steps. According to priority, the sensors
have been ranked from high to low. When the alliance G2

j is
established for bj higher priority and lower priority, the selec-

tion range of sensors becomes fa1, a2,⋯, am∗g −G2
j .
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For bj, the establishment process of the alliance G2
j is as

follows.

Step 1. Determine the sensor set Gj = fa1′ , a2′ ,⋯, at′g where
the updated sensor network intersects with the bj target
track.

Step 2. The sensors Gj = fa1′ , a2′ ,⋯, at′g are classified by
fuzzy cluster analysis, and the target tracks are also divided
into corresponding subsets. The target tracks contained in
the intersection of the two subsets are randomly assigned
to any subset.

Step 3. Reduce the sensor subset to determine the alliance
scheme that meets the tracking task and ensures the mini-
mum sensor importance levels.

The reduction principle of the T-th subset ðGjÞT of the
set Gj is as follows.

Let ðGjÞT = fai, ai+1,⋯g have mt sensors in total, which
are responsible for the tracking task of a track segment bj.
The sensors have 2mt − 1 alliance schemes, and the alliance
of the f -th strategy is ½a∗1 , a∗2 ,⋯�. If l jT ∈ ½a∗1 , a∗2 ,⋯�
½a∗1 , a∗2 ,⋯� can complete the tracking task l jT , the sum of

the elementary levels of all sensors in the alliance is Qf
j =

Q∗
1 +Q∗

2 +⋯.

Let e kinds of alliances meet the above requirements,
then find min fQ1

j ,Q2
j ,⋯,Qe

jg; the corresponding alliance

scheme GT
j is the optimal scheme for l jT tracking. Find the

optimal scheme in all subsets, and then, get the alliance
scheme G2

j driven by the tracking task.
The running pseudocodes of the two algorithms are dis-

played in Figure 1.

2.2.3. Analysis of Algorithm Complexity. The algorithm in
the alliance model based on the task of detection and recog-
nition of the target must be performed n times, so its com-
plexity is OðnÞ, and the algorithm in the alliance model
based on the task of tracking the target must also be run n
times, so its complexity is likewise OðnÞ.

3. Simulation

3.1. Parameter Settings. Figure 2 depicts the deployment of
the sensor network in the region. Four targets enter the sen-
sor network at a specified time. Table 1 illustrates the essen-
tial level information for each sensor in the sensor network.
Table 2 displays the sensor’s detection of each target
characteristic.

Figure 2(a) depicts sensor and target deployment infor-
mation; the yellow ball represents the sensor, the red penta-
gram represents the target, and the dashed line with arrows
represents the target’s motion direction; additionally,
because the detailed position information of the target and

Target detection and recognition algorithm pseudo code

(ii) For (j=1, j<=n, j++)
(iii) List the set of sensors that can be detected;
(iv) List all alliance schemes of sensors in the set;
(v) Find the alliance scheme that can identify all features of bj;

(vii) End

(vi) Among the alliance schemes that meet the requirements, the scheme
with the smallest sum of sensor importance levels is the optimal scheme.

(i) Constructing fuzzy sets

(ii) For (j=1, j<=n, j++)
(iii) List the sensor set intersecting with the track;
(iv) �e sensors in the set are divided into several subsets by fuzzy 

cluster analysis;

(vi) Update the sensor set;
(vii) End

(v) Each subset is reduced to obtain the optimal scheme;

(i) �e objectives are sorted by priority from large to small;

Alliance establishment
under different tasks

Target tracking algorithm pseudo code

Figure 1: Pseudocode for two suggested algorithms.
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sensor is not accessible in the figure, Figure 2(b) provides the
position information of the target and sensor as supplemen-
tary images.

The essential level properties of each sensor and the
number of targets that each sensor can detect and track
can be seen in Table 1 in the simulated experiments
described in the paper. Table 2 depicts the specific features
of each target to be recognized by the sensors in the same
way. The table includes the sensor’s serial number used to
identify each target and the sensor’s serial number that
detects the target’s features.

The similarity coefficients between sensors are written in
the form of the matrix:

1 0:063 0 0 0 0 0
0:063 1 0:077 0 0 0 0
0 0:077 1 0:136 0:153 0:200 0:364
0 0 0:136 1 0:250 0:250 0:667
0 0 0:153 0:250 1 0:273 0:455
0 0 0:200 0:250 0:273 1 0:499
0 0 0:364 0:667 0:455 0:499 1

2
666666666666664

3
777777777777775

:

ð14Þ

3.2. Task Alliance Scheme Based on Target Detection and
Recognition Task

3.2.1. Multisensor Alliance Scheme Based on Fuzzy Set Theory.
First, establish the universe U = fA1,A2, A3, A4, A5, A6, A7g
and write the corresponding fuzzy sets as follows:

O1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
666666666666664

3
777777777777775

,O2 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
666666666666664

3
777777777777775

,O3 =

0 1 1 1
0 0 1 1
0 0 1 0
0 1 1 1
0 1 1 0
0 0 1 1
0 0 1 1

2
666666666666664

3
777777777777775

,O4 =

0 1 1 0
0 1 1 1
0 1 1 1
0 1 1 1
0 0 1 1
0 1 1 0
0 0 1 0

2
666666666666664

3
777777777777775

,O5 =

1 0 0 0
0 1 0 0
1 0 0 0
1 1 0 0
0 0 0 0
1 0 0 0
0 1 0 0

2
666666666666664

3
777777777777775

,O6 =

0 1 0 0
1 0 0 0
0 1 0 0
1 1 0 0
1 1 0 0
0 1 0 0
1 1 0 0

2
666666666666664

3
777777777777775

,O7 =

1 0 0 0
1 0 1 0
1 0 0 0
0 0 0 0
1 0 1 0
1 0 0 0
1 0 1 0

2
666666666666664

3
777777777777775

: ð15Þ
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Figure 2: Sensor network and target situation map. (a) Sensor and target deployment information. (b) Performance indicators of each
sensor and target.

Table 1: Sensor parameters.

Sensor Important level
Number of
detectable

Number of
traceable

S1 0.17 ≥8 4

S2 0.15 ≥8 4

S3 0.19 ≥8 3

S4 0.26 ≥8 5

S5 0.08 ≥8 3

S6 0.11 ≥8 5

S7 0.04 ≥8 2

Table 2: The number of target features detected by sensors.

Parameter T1 T2 T3 T4

Detecting sensor number 4, 5, 6 2, 3, 5, 6, 7 1, 2, 6 1, 7
Attribute 4, 5 2, 5, 7 2, 3 2
Type 6, 7 3, 6 1, 5 5
Speed 3, 4 1, 4 2, 6 3
Angle 2, 5 2, 4 4, 5 6
Height 4, 6 2, 3 6, 7 1
Distance 3, 7 4, 7 3, 6 2
Situation 5, 6 5, 6 2, 7 4
Priority 0:3 0:5 0:2 0:4
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According to the fuzzy sets obtained above, the optimal
solution to the multisensor alliance scheme is shown in
Table 3.

Table 3 demonstrates that the sensors detect all four tar-
gets, but the number of detected sensors differs per target:
targets 1 and 2 correspond to four sensors, while targets 3
and 4 belong to five sensors. This is owing to the preceding
section’s discussion of the multisensor detection model
based on fuzzy sets, and the table also reveals that sensors
1, 2, 3, and 5 are committed to detection.

The detection impact change curve of each target is
depicted in Figure 3, assuming that the relevance of each tar-
get feature in the overall target feature is 1/7.

Figure 3 depicts the degree of detection of several sensors
corresponding to each target, with sensors 1, 2, and 5 having
the lowest degree of detection and sensors 3 and 4 having the
highest degree of detection. When paired with Table 4, it is
clear that, while sensors 1, 2, and 5 participate in target
detection the most frequently, their actual contribution is
less when compared to sensors 3 and 4. The relevance of
the sensors in the early conditions is the primary reason
for this circumstance.

3.2.2. Multisensor Alliance Schemes under Different
Algorithms. To verify the effectiveness of the proposed algo-
rithm, we compared the centralized intelligent algorithm
(particle swarm optimization algorithm (PSO) [17], bee col-
ony optimization algorithm (BCO) [18]) and distributed
intelligent algorithm (auction algorithm (AA) [19]) as the
comparison algorithm.

The auction algorithm is highlighted here. The auction
algorithm belongs to the search tree algorithm and is a fast
and efficient multiagent coordination mechanism with
strong operational features. There are two agents in the auc-
tion algorithm: auction agent A and bidding agent B. Auc-
tion agent A performs as an agent for the auctioned task,
whereas bidding agent B bids depending on its resources
and task characteristics. Through the auction, Auction agent
A chooses all the successful bids based on the concept of the
highest price, and the winners could collaborate to complete
task T , therefore fulfilling the mapping between agents and
tasks, i.e., completing the multiple agents. Thus, task alloca-
tion across several agents is accomplished.

The sensor alliance schemes under different algorithms
are given in Table 5.

Table 5 demonstrates the advantages of the algorithm
based on the fuzzy set theory described in this paper for
solving the multisensor alliance scheme. The utilization of
sensors in the detection and recognition process of each tar-
get is relatively balanced in the scheme generated by the
algorithm based on fuzzy set theory, and each target has 4-
5 sensors for detection and recognition; nevertheless, it is

also noted that the utilization rate of sensors in the schedul-
ing schemes generated by other comparison algorithms is
unbalanced. For instance, in the centralized swarm intelli-
gence algorithm (PSO, BCO), the utilization rate of sensor
resources is poor during the detection and tracking of a tar-
get. In contrast, the distributed intelligence algorithm (AA)
consists of sensor resources at a higher rate than the central-
ized intelligence algorithm. However, the solvent impact is
lesser than that of the fuzzy set theory algorithm.

The basic reason for this situation is the difference in
how centralized and distributed algorithms perform.
Although the centralized algorithm attains the best result
by employing global information, which is computationally
precise, the solution time is sluggish, putting a significant
strain on the sensor network’s connection. The distributed
algorithm utilizes parallel computing to obtain a faster con-
vergence rate and reduces the communication load on the
system. Although the sensors in the sensor network are
involved in the detection frequency, the real sensor utiliza-
tion rate is low due to the centralized algorithm’s time-
consuming and onerous operational mechanism, demon-
strating a high sensor use rate.

The time diagrams of sensor detection and recognition
targets in the multisensor alliance are solved by different
algorithms in Figure 4 to highlight further the efficacy and
rationality of the multisensor alliance scheme solved based
on the fuzzy set theory algorithm paper.

Figure 4 illustrates that the temporal graphs of multisen-
sor detection and recognition targets solved by different
algorithms have some discrepancies. Figure 4(a) exhibits a
fuzzy set theory-based multisensor detection and recogni-
tion of the target sequence diagram. Its effect is superior to
that of other comparison algorithms. Through simultaneous
interpretation, each target may accomplish continuous
detection among different sensors. There is no blank detec-
tion stage, and the sensor network’s burden is minimal.
Figures 4(b) and 4(c) demonstrate the time charts of multi-
sensor detection and identification of targets acquired by the
centralized algorithm; each sensor conducts detection and
tracking tasks, the number of targets is generally balanced,
and there is no frequent switching of sensors.

In comparison to the algorithm conducted in this paper,
the PSO algorithm can complete the detection of each target,
but there is a blank section of detection and tracking in the
latter stages of detection, which enhances the risk of missing
targets. The BCO algorithm employs a single sensor to
detect and identify targets; this puts significant strain on
the sensor, and we can see from the diagram that the sensors
in the alliance can identify targets compared to the central-
ized approach’s sensor alliance results. Although the impact
is superior to that of the centralized algorithm, the sensor
alliance’s solution quality is still inferior to the algorithm
suggested in this paper.

Figure 5 shows the running time and utilization rate of
sensor resources under different algorithms in the mission
of target detecting.

Figure 5(a) reveals that the proposed algorithm in this
paper has a lower running time than other algorithms. Fur-
thermore, we may conclude that the proposed algorithm has

Table 3: Multisensor alliance scheme.

Target 1 Target 2 Target 3 Target 4

Sensor number 2, 3, 5, 7 1, 3, 5, 6 1, 2, 3 , 5, 7 1, 2, 3, 4, 5
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better convergence than the other three algorithms. At the
same time, it demonstrates that the centralized method has
a longer running time than the distributed algorithm. The
fundamental issue is that the centralized algorithm sends
all data to the fusion center, which takes more time and
energy to determine the ideal solution. Each sensor may be
seen as an agent with computing power in the distributed
algorithm, sharing information with nearby sensors at high
computation speed and low energy usage.

Figure 5(b) indicates that the efficiency of sensor
resources varies between alliance patterns generated by dif-
ferent algorithms. The algorithm in this paper produces

the maximum utilization rate of sensor resources in the alli-
ance, and there is minimal variation in the utilization rate of
sensor resources in the alliance formed for each target. The
resource utilization rates of the other two algorithms, on
the other hand, are low, with a minimum of 14.29%.

3.3. Alliance Scheme Based on the Target Tracking Task

3.3.1. Multisensor Alliance Scheme Based on Fuzzy Set
Theory. Due to the different tracking capabilities of each sen-
sor, in the alliance, the sensor network can be equivalent to
18 sensor combinations that can only participate in one
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Figure 3: Detectability curve of the sensor to target.

Table 4: Addition of sensor and target tracks.

Sensor Target 1 Target 2 Target 3 Target 4

Sensor number 2, 3, 4, 5 , 6, 7 1, 2, 3, 4, 5, 6, 7 1, 3, 5 , 6, 7 4, 5, 6, 7

Table 5: Multisensor alliance schemes under different algorithms.

Target

Different algorithm
Proposed algorithm
(fuzzy set theory)

Particle swarm
optimization (PSO)

Bee colony
optimization (BCO)

Auction algorithm (AA)

Sensor number

T1 2, 3, 5, 7 1, 2 , 5 2, 3 1, 4, 6
T2 1, 3, 5, 6 2, 4 3, 6, 7 2, 3, 5
T3 1, 2, 3, 5, 7 1, 4, 6 4 1, 4, 7
T4 1, 2, 3 , 4, 5 2, 7 1, 5 2, 5, 6
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alliance fa11,⋯, a14, a21,⋯, a24, a31,⋯, a35, a4, a51, a52, a53,
a61, a62, a63, a7g, which is fa1, a2,⋯, a18g.

(1) The sensor sets intersecting four target tracks are cal-
culated, which a11, a12 have the same tracking effect
on all sensors. The sensor sets intersecting with four
target tracks are represented in Table 4

(2) Given λ = 0:1, the sensors intersecting each target
track are grouped. The sensor groups of each target
track intersection are indicated in Table 6

(3) According to the reduction rules, each alliance is
reduced. The sensor groups of each target track
intersection are indicated in Table 7

3.3.2. Multisensor Alliance Scheme under Different
Algorithms. To verify the effectiveness of the algorithm pro-
posed in this paper, we compare the centralized intelligent
algorithm (PSO [17], BCO [18]) and distributed algorithm
(AA [19]) as the comparison algorithm. Further, it analyzes
the effectiveness of the alliance scheme based on target
tracking tasks obtained by using the fuzzy set theory in this
paper.

The sensor alliance schemes under different algorithms
are given in Table 8.

The suggested algorithm based on fuzzy set theory offers
advantages in solving the multisensor alliance scheme, as
shown in Table 8. The sensors in the tracking process of
each target are uniformly distributed in the scheme devel-
oped by the algorithm based on fuzzy set theory, and each
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Figure 4: Timing diagrams of sensor detection and recognition targets in the multisensor alliance under different algorithms: (a) fuzzy set
theory; (b) PSO; (c) BCO; (d) AA.
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target includes 3-4 sensors for tracking. At the same time, we
can see that the sensor dispersion in the centralized swarm
intelligence algorithm (PSO, BCO) target tracking process
is not uniform. The distributed intelligence algorithm (AA)
is superior to the centralized intelligence algorithm, but its
solution impact is inferior to that based on fuzzy set theory.
The uniform sensor distribution of the centralized algorithm
is due to the two algorithms’ profoundly different operation
mechanisms, which have been analyzed in the simulation

experiment findings in Section 3.2.2 for the significant dis-
parities in the two algorithms’ operation mechanisms.

In centralized sensor networks, the centralized algorithm
is usually utilized sensor scheduling. The sensor nodes pro-
vide observation data to the information fusion center,
which analyzes it using relevant data, completes the target
state estimate, and outputs the sensor scheduling scheme
for the next observation moment. The information fusion
center delivers control instructions to the sensor nodes,
which they use to monitor the goal condition. Distributed
algorithms are generally utilized in sensor scheduling in dis-
tributed sensor networks, and they are based on the notions
of distributed computing and multiagent theory. Each sen-
sor is viewed as an agent with autonomous decision-
making capabilities to achieve distributed dynamic sensor
action adjustment. Each agent determines the response pro-
tocol under the sensor management mechanism and then
performs the calculation, reasoning, and decision-making
on its own in the sensor management process.

Based on the preceding theory and the simulation exper-
iments described in this section, we may infer that the multi-
sensor multitarget allocation scheme of the distributed
algorithm is more uniform than the scheme of the central-
ized algorithm. Similarly, we may conclude that the distrib-
uted algorithm’s sensor usage rate is higher than that of
the centralized algorithm.

Figure 6 depicts the sequence diagrams of sensor track-
ing targets in the multisensor alliance solved by different
algorithms to highlight further the efficacy and rationality
of the multisensor alliance scheme in solving target tracking
based on the fuzzy set theory algorithm.

Figure 6 indicates discrepancies in the temporal graphs
of multisensor tracking targets addressed by different
methods. Figure 6(a) depicts the multisensor tracking tar-
get’s time sequence diagram, translated utilizing the fuzzy
set theory algorithm described in this paper. The graph dem-
onstrates that each sensor may achieve steady target moni-
toring during the target tracking process via the handover
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Figure 5: Running time and utilization rate of sensor resources under different algorithms in target detecting mission. (a) Running time
under different algorithms. (b) Utilization rate of sensor resources under different algorithms.

Table 6: Classification results of sensors.

Sensor Target 1 Target 2 Target 3 Target 4

Sensor number

Group 1 2, 3, 4 1, 2, 3 1, 3, 5 4
Group 2 5, 6 4, 5 6 5, 6
Group 3 7 6, 7 7 7

Table 7: Classification results of sensors.

Sensor Target 1 Target 2 Target 3 Target 4

Sensor number

Group 1 2, 3 1, 2 1, 5 4
Group 2 5 4 6 5
Group 3 7 6 7 7

Table 8: The sensor alliance schemes under different algorithms.

Target

Different algorithm
Proposed
algorithm
(fuzzy sets)

Particle swarm
optimization

(PSO)

Bee colony
optimization

(BCO)

Auction
algorithm
(AA)

Sensor number

T1 2, 3, 5, 7 1, 3, 4 4, 6 2, 3, 4
T2 1, 2 , 4, 6 3, 6 2, 5, 6 1, 4, 5
T3 1, 5, 6, 7 2, 4, 5 2, 3 3, 5
T4 4, 5, 7 1, 5 4 4, 6
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task window. Furthermore, employing sensor resources
minimizes the likelihood of target loss throughout the track-
ing process; Figures 6(b) and 6(c) reveal time charts of mul-
tisensor tracking targets acquired by the centralized method
(PSO and BCO).

The PSO algorithm can perform the target tracking pro-
cedure compared to this paper’s algorithm. The BCO algo-
rithm employs a single sensor to track the target, resulting
in sensor resource redundancy. At the same time, there are
blank parts in the sensor working range, increasing the
chance of losing the target; Figure 6(d) depicts the distrib-
uted algorithm’s target tracking sequence diagram (AA).
The figure illustrates that, compared to the tracking effect
of the centralized algorithm, the sensors in the alliance can
monitor the target throughout the process, but the tracking

impact is still poor compared to the method proposed in this
paper.

Figure 7 depicts the running duration and utilization
rate of sensor resources under various algorithms in the tar-
get tracking mission.

As illustrated in Figure 7(a), the algorithm in this paper
has a shorter running time than other algorithms. At the
same time, we can conclude that the centralized algorithm’s
running time is longer than that of the distributed algorithm,
which is determined by the operation mode of the central-
ized algorithm and the distributed algorithm; we can also
conclude that the proposed algorithm’s convergence is better
than those three algorithms. Figure 7(b) demonstrates that
different methods’ efficiency rate of sensor resources in the
alliance system varies.
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Figure 6: Timing diagrams of sensor tracking targets in the multisensor alliance under different algorithms: (a) fuzzy set theory; (b) PSO; (c)
BCO; (d) AA.
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The algorithm in this paper has the highest utilization
rate of sensor resources in the alliance, whereas the other
two algorithms have poor resource utilization. Furthermore,
it minimizes sensor resource utilization in target tracking
than in target detection and recognition. The fundamental
reason for this is that target detection and monitoring are
ongoing processes. The algorithm in this paper has accom-
plished the continual detection of targets in the early phase
of target detection and recognition; in the follow-up tracking
process, we can acquire the sensor alliance scheme by
employing the reduction principle to avoid the waste of sen-
sor resources.

4. Conclusions

This paper investigates and utilizes multisensor dynamic
alliance control based on fuzzy set theory to target detection
and tracking assignments. This paper evaluates the fuzzy
relationship in multisensor dynamic alliance for multitarget
and stimulates a task-driven dynamic alliance model utiliz-
ing a fuzzy set calculation algorithm. The simulation results
suggest that the model and algorithm implemented in this
paper have certain advantages over other models and algo-
rithms, and we may reach several conclusions concurrently.

In the beginning, by incorporating the fuzzy set calcula-
tion methodology into establishing a dynamic alliance, the
ideal alliance scheme can be brought, effectively decreasing
information redundancy. The sensor network’s monitoring
capability can be enhanced. Moreover, dynamic alliance
models driven by target detection, recognition, and tracking
tasks are investigated, which is valuable in optimizing sensor
resource utilization and avoiding sensor waste and redun-
dancy. Meanwhile, when comparing the multisensor sched-
uling scheme designed by this algorithm to other clever
algorithms, this algorithm’s solution scheme outperforms
the others. Simultaneously, the comparison experiment
reveals that the multisensor alliance scheme solved by the
distributed algorithm outperforms the centralized algorithm.

The simulation results further demonstrate that the pro-
posed method can monitor and track different sensors
simultaneously for each target, with a low strain on sensor
networks.

Further in-depth research on multisensor alliances could
be conducted in the following research.

(1) Design optimization algorithms that focus on solv-
ing the current problems that the utilization of sen-
sor resources is insufficient, and the tracking effect
is insufficient in the process of alliance formation
and updating

(2) The algorithm design may also consider further opti-
mization of the alliance formation and updating
methodology based on the fuzzy set theory provided
in this research. As a new multisensor coalition con-
trol technique, the fuzzy set theory can perform tar-
get recognition and tracking tasks by strengthening
its fuzzy clustering mechanism

(3) During the simulation tests, attention can also be
devoted to the selection of comparison algorithms
in order to validate the efficacy of the design algo-
rithm by comparing current research hot algorithms
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