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In this article, we will determine the source term of the fractional diffusion equation (FDE). Our contribution to this work is the
generalization of the common inverse diffusion equation issues and the inverse diffusion equation problems for fractional
diffusion equations with energy source and using Caputo fractional derivatives in time and space. The problem is reformulated
in a least-squares framework, which leads to a nonconvex minimization problem, which is solved using a Tikhonov
regularization. By considering the direct problem with an implicit finite difference scheme (IFDS), the numerical inversions are
performed for the source term in several approximate spaces. The inversion algorithm (IA) uniqueness is obtained.
Furthermore, the effect of fractional order and regularization parameter on the inversion algorithm is carried out and shows
that the inversion algorithm is effective. The order of fractional derivatives expresses the global property of the direct problem
and also shows the badly posed nature of the inverted problem in question.

1. Introduction

Describing and simulating the behavior and diffusion process
of contaminants in a heterogeneous porous medium are essen-
tial for environmental protection. The advection-dispersion
equation with whole-order derivatives has played an important
role in modeling the diffusion of contaminants over the past
forty years, known as the classical diffusion model. However,
some research has shown that the classical model is insufficient
to present many real problems, where a particle plume propa-
gates faster or slower than expected by the whole-order scatter-
ing equation. In the saturated zone of a very heterogeneous
aquifer, Adams and Gelhar in [1] showed that the field data
are not well simulated by the classical advection-diffusion
equation, and the results indicate slower diffusion than normal.
Slow diffusion is formulated by the long-tailed spatial density
distribution position as time passes, which has been considered
and studied in many domains of applied science. Hatano and
Hatano in [2] consider dispersive transport of ions in column
experiments. Giona et al. in [3] study the relaxation in a com-

plex viscoelastic material. Berkowitz et al. in [4] discuss the
anomalous transport heterogeneous porous media. Zhou and
Selim in [5] propose an application of the fractional
advection-dispersion equation in porous media. Xiong et al.
in [6] modeled the transport of the solute in a homogeneous
one-dimensional model. Jajarmi et al. in [7] propose a frac-
tional formulation for immunogenic tumor. Baleanu et al. in
[8] propose a new comparative study on the general fractional
model. Erturk et al. in [9] give a new fractional-order Lagrang-
ian to describe a Beam motion. The slow diffusion called
abnormal underdiffusion can be modeled in mathematics by
the following fractional temporal diffusion equation:

∂γu
∂γt

x, tð Þ = ∂
∂x

∂u
∂x

x, tð Þ
� �

+ r x, tð Þ, 0 < x < l, 0 < t < T , 0 < γ < 1:

ð1Þ

There is some theoretical and numerical research on the
direct problem for the FDEwith initial and boundary conditions.
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For the theoretical study, Gorenflo et al. in [10] treat the solv-
ability of linear fractional differential equations. Metzler et al.
in [11] consider value problems for fractional diffusion equa-
tions. Numerical approaches are proposed by Meerschaert
and Tadjeran in [12] and Liu et al. in [13]. However, inverse
problems governed by the fractional equation get less attention
in the literature. According to Podlubnv [14], let us consider an
inverse recovery boundary function problem from a data set at
an internal point of a semi-infinite one-dimensional temporal
fractional equation. A stable algorithm established and analyzed
by modification methods. Cheng et al. [15] have investigated
the inverse problem of finding the fractional order and the
space-dependent diffusion coefficient in equation (1). By addi-
tional boundary data, they prove the uniqueness of the inverse
problem in the case of null Neumann boundary conditions.
Recently, much research has focused on the theory and applica-
tions of inverse problems. Li et al. in [16] treat numerical inver-
sions in a fractional equation. Zhang and Xu in [17] consider an
inverse problem for a fractional equation. Li et al. in [18] study
the stability of the inverse acoustic problem. Jiang et al. in [19]
use an inverse source problem with a hyperbolic equation.
Maisto et al. in [20] propose resolution limits for strip currents.
Can et al. in [21] treat the inverse problem with Mittag-Leffler.
Liu et al. in [22] propose a method for solving a nonlinear wave
inverse energy problem. Smirnov et al. in [23] consider an
inverse problem for the radiative transfer equation. Slodicka
et al. in [24] study the uniqueness for an inverse source problem
of determining a space dependent source in a time-fractional
equation. Le et al. in [25] solve numerically an inverse problem
for hyperbolic equations. Bao et al. in [26] study stability for
inverse problems in elastic and electromagnetic waves. Sun
and Liu in [27] consider an inverse problem for distributed
order time-fractional equations. Yang et al. in [28] propose an
iterative method for solving the inverse problem of the time-
fractional wave equation. Qiu et al. in [29] give a novel homog-
enization function method for an inverse problem. Cheng and
Liu in [30] study a source problem with local measurements.
Hrizi et al. in [31] give a new method for a parabolic inverse
problem. Tuan et al. in [32] study an identification of inverse
source for fractional equation.

Our primary contribution to this work is the generalization
of the common inverse diffusion equation issues and the inverse
diffusion equation problems for fractional diffusion equations
with energy source and using the Caputo fractional derivatives
in time and space. In recent years, a great deal of work has been
done to examine these mathematical problems, both theoreti-
cally and numerically. These mathematical problems have
become a significant tool in simulating many real-life difficul-
ties. For recent developments, one can see Hendy, and Bockstal
in [33] for reconstruction of a solely time-dependent source in a
time-fractional equation. Ansari et al. in [34] study a class of
distributed order fractional diffusion equation. Jajarmi et al. in
[7] propose a general fractional formulation and tracking con-
trol for a tumor. Erturk et al. in [9] use novel fractional-order
Lagrangian to describe the motion of beam.

In this paper, we investigated the inverse problem to
numerically determine the energy source term for Caputo
temporal FDE. In a one-dimensional space, we apply an algo-
rithm based on the least-squares method with Tikhonov regu-

larization. An IFDS is used for the direct problem. Numerical
inversions of energy source terms dependent on space are per-
formed in different approximation spaces using numeric
inversion. We show the numerical uniqueness of the IA. The
inversion results show the effectiveness of the IA for this
inverse problem.

In the first part, we consider nonlinear square problem,
which are ill-posed and have many solutions and do not give
good simulation results. In the second part, we use the Tikho-
nov regularization, which allows for successful simulations. In
Section 2, we provide preliminary results, then study the last
square problem, and discuss the existence and uniqueness of
the solution to the Tikhonov regularization problem. We
examine the solution to the final square problem. Section 3
shows an inversion algorithm that will be tested successfully
through three examples of simulations in Section 4.

2. Well-Posedness

Let consider the following system

∂γu
∂γt

x, tð Þ − ∂
∂x

k xð Þ ∂u∂x x, tð Þ
� �

= r x, tð Þ, 0 < x < l, 0 < t < T , 0 < γ < 1:

ð2Þ

u x, 0ð Þ = u0, 0 ≤ x ≤ l, ð3Þ

u 0, tð Þ = φ tð Þ, ux l, tð Þ = g tð Þ, 0 ≤ t ≤ T , ð4Þ

where l, T > 0,u0, k ∈ C1ð½0, l�Þ,φ, g ∈ Cð½0, T�Þ,k ≥ 0 in ½
0, l� and ∂γu/∂γt, is the fractional Caputo derivative
defined by

∂γu
∂γt

= CDγ
t u x, tð Þ = 1

Γ 1 − γð Þ
ðT
0

∂u x, sð Þ
∂s

ds
t − sð Þγ , ð5Þ

where (3) and the initial condition (4) are the Dirichlet-
Neumann boundary conditions, rðx, tÞ is the energy perturba-
tion term, and kðxÞ is the spatial diffusion coefficient. The frac-
tional diffusion problem (2)-(4) is a mathematical model to
describe the phenomenon of contaminant flux in a medium
heterogeneous porous, see Zhou and Selim in [5] and Xiong
et al. in [6].

Theorem 1. Let 1/2 < γ < 1, and Ω = ð0, lÞ: If r ∈ L2ðð0, TÞ ;
ΩÞ, then, for any u0 ∈ L2ðΩÞ, the problem (2) has a unique
solution u ∈ L2ðð0, TÞ ;ΩÞ: Moreover

uk kL2 0,Tð Þ;Ωð Þ ≤
K

Γ γð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T2γ−1

2γ − 1

s
u0k kX +

ffiffiffiffiffiffiffiffiffi
2T3γ

γ3

s
rk kL2 0,Tð Þ;Ωð Þ

0
@

1
A:

ð6Þ

Now, we consider rðx, tÞ =DðxÞf ðtÞ:In the case where the
sourceDðxÞis not defined, we look for it by additional observa-
tions at the right end ofx = l, we search for it by additional
observationsx = l,i.e., it is a limit.
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u l, tð Þ = ψ tð Þ, 0 < t ≤ T: ð7Þ

So, the energy problem is defined by the FDE (3), with the
condition defined by (3) - (5) and an additional condition (7).

To find the solution of the energy problem, the function D
must be parameterized in the following polynomial form. For
x ∈Ω, we define the family of functions fpmðxÞ: m = 1, 2,⋯g,
with the following approximate expansion:

p xð Þ = 〠
m

i=0
pix

i: ð8Þ

For any DðxÞ, a unique solution of a corresponding direct
problem, indicated by uðx, t ;DÞ, can be developed using the
finite difference scheme in [16], then uðl, t ;DÞ is obtained.
Therefore, getting a term source D amounts to finding a
vector P = ðp0, p1,⋯,pmÞT , which means that one can write
uðl, t ;DÞ = uðl, t ; PÞ:
2.1. Nonlinear Least Squares Problem. For finding the solu-
tion of the energy problem, we solve the following nonlinear
least squares problem

min
P

Φ Pð Þ, ð9Þ

where

Φ Pð Þ = u l, t ; Pð Þ − ψ tð Þk k22, 0 < t ≤ T: ð10Þ

The problem (9) is badly posed so that this problem
admits several solutions. For uniqueness, we used Tikho-
nov’s regularization.

2.2. Tikhonov Regularization. We consider the following
regularized problem

min
P

Φα Pð Þ, ð11Þ

where

Φα Pð Þ = u l, t ; Pð Þ − ψ tð Þk k22 + α Pk k22, ð12Þ

such that α ≥ 0 is the regularization parameter. Now to
get Dj =DðxjÞ, j = 0, 1, 2,⋯, we assume that

Dj+1 =Dj + δDj, j = 0, 1, 2,⋯, ð13Þ

where j is the number of iterations. δDj denotes a perturba-
tion of Dj.

From (8), we have

Dj xð Þ = 〠
m

i=0
pjix

i, ð14Þ

δDj xð Þ = 〠
m

i=0
δpjix

i, ð15Þ

with δPj denotes a perturbation for a given Pj. So, to get
Pj+1, from given Pj, it suffices to obtain a disturbance δPj:

Pj+1 = Pj + δPj, j = 0, 1, 2,⋯: ð16Þ

Therefore, we just have to find a disturbance vector.

δPj = δpj0, δp
j
1,⋯,δpjm

� �T
: ð17Þ

In the following, to make writing easier, Pj and δPj are
abbreviated as P and δP, respectively.

2.3. Linear Problem. We have the direct solution uðl, t ; P +
δPÞ is implicitly dependent on P, so with the Taylor expan-
sion to order one, we find

u l, t ; P + δPð Þ ≈ u l, t ; Pð Þ + ∇T
p u l, t ; Pð Þ:δp: ð18Þ

Using (12), we get

Φ P + δPð Þ = u l, t ; P + δPð Þ − ψ tð Þk k22: ð19Þ

Hence, in view to (18), we get

Φ P + δPð Þ = ∇T
p u l, t ; Pð Þ:δp − u l, t ; P + δPð Þ − ψ tð Þð Þ

��� ���2
2
:

ð20Þ

From (12), the objective least squares function becomes

Fα δPð Þ = ∇T
Pu l, t ; Pð Þ:δp − u l, t ; P + δPð Þ − ψ tð Þð Þ�� ��2

2 + α Pk k22:
ð21Þ

We approximate the domain ½0, T�, by tnðn = 1, 2,⋯,NÞ,
and 0 = t1 < t2 <⋯ < tN = T: Using the finite difference
method, we have

∇T
p u l, tn ; Pð Þ:δ ≈ 〠

m

i=0

u l, tn ; p0,⋯,pi + τ,⋯,pmð Þð Þ − u l, tn ; Pð Þ
τ

δPi,

ð22Þ

for n = 1, 2,⋯,N , where τ is a digital differential step.
Hence, we define the matrix

H = hnið ÞN× m+1ð Þ, ð23Þ

where

hni = u l, tn ; p0,⋯,pi + τ,⋯,pmð Þð Þ − u l, tn ; Pð Þ: ð24Þ
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Thus

H =

h10 h11 ⋯ h1m

h20 h21 ⋯ h2m

⋮ ⋮ ⋱ ⋮

hN0 hN1 ⋯ hNm

0
BBBBB@

1
CCCCCA: ð25Þ

Let

U = u l, t1 ; Pð Þ, u l, t2 ; Pð Þ,⋯,u l, tN ; Pð Þð ÞT ,
Ψ = ψ t1ð Þ, ψ t2ð Þ,⋯,ψ tNð Þð ÞT :

ð26Þ

Using (22), (25), and (26), we can write (21) in the fol-
lowing form.

Fα δPð Þ = Hδp − Ψ −Uð Þk k22 + α Pk k22: ð27Þ

Lemma 2. The δPα is a minimum of Fα, if and only if δPα

solves the following normal equation

αδPα +HTHδPα =HT Ψ −Uð Þ: ð28Þ

Proof.

Fα δPð Þ − Fα δPαð Þ = HδP − Ψ −Uð Þk k22 + α δPk k22
� 	
− HδPα − Ψ −Uð Þk k22 + α δPαk k22
� �

− HδP − Ψ −Uð Þk k22 − 2 <HδP,Ψ
�

−U > +α δPk k22Þ = H δP − δPαð Þk k22
− 2 HδPαÞk k22 + 2 <HδP,HδPα

> −2 <HδP,Ψ −U > +2 <HδPα,Ψ −U

> +α δP − δPαk k22 − 2α δPαk k22 + 2α < δP, δPα >
= 2 <HδPα − Ψ −Uð Þ,H δP − δPαð Þ
> +2 < δPα, δP − δPα > = H δP − δPαð Þk k22

+ α δP − δPαÞk k22
= 2 <HT HδPα − Ψ −Uð Þð Þ + αδPα, δP − δPα

> + H δP − δPαð Þk k22 + α δP − δPαk k22:
ð29Þ

For all δP, δPα ∈ℝm+1: If δPα satisfies (27), then, FαðδPÞ
− FαðδPαÞ ≥ 0, thus, δPα minimizes (28). On the other hand,
if δPα minimizes (27), choose δP = δPα + tZ, for all t > 0, and
Z ∈ℝm+1, we have

Fα δPð Þ − Fα δPαð Þ ≥ 0: ð30Þ

Hence

2t <HT HδPα − Ψ −Uð Þð Þ + αδPα, Z > +t2 HZk k22 + α2 Zk k22 ≥ 0:
ð31Þ

Divide by t > 0, and when t⟶ 0, we get

<HT HδPα − Ψ −Uð Þð Þ + αδPα, Z > ≥0, for all Z ∈ℝm+1:

ð32Þ

4
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Numerical solution
Exact solution

0.9 1
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–3

Figure 1: Test without regularization for γ = 0:65.
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Figure 2: Variation of the error function Err for γ = 0:65.

Table 1: Effects of fractional order on D.

γ Dinv Err

0.55 (1.00000, 1.00000) 1:2972e − 7
0.6 (1.00000, 1.00000) 1:292844e − 7
0.65 (1.00000, 1.00000) 5:54255e − 8
0.7 (1.00000, 1.00000) 6:28358e − 5
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If we choose Z = −ðHTðHδPα − ðΨ −UÞÞ + αδPαÞ, we get

<HT HδPα − Ψ −Uð Þð Þ + αδPα,− HT HδPα − Ψ −Uð Þð Þ + αδPα� 	
> ≥0,

ð33Þ

this implies that

HT HδPα − Ψ −Uð Þð Þ + αδPα = 0, ð34Þ

which means that δPα solves the normal equation (28).

2.4. Existence Result

Theorem 3. There exists at least δPα ∈ℝm+1, minimum point
of the function Fα.

Proof. Let ðδPnÞ ∈ℝm+1 be a minimizing sequence, i.e.,

Fα δPnð Þ⟶ I = inf
δP∈ℝm+1

Fα δPð Þ: ð35Þ

when n tends to infinity. We show that ðδPnÞ is a Cauchy
sequence

Fα δPnð Þ + Fα δPmð Þ = HδPn − Ψ −Uð Þk k22 + α δPnk k22
� 	

+ HδPm − Ψ −Uð Þk k22 + α δPmk k22
� 	

= HδPnk k22
+ Ψ −Uk k22 − 2 <HδPn,Ψ −U > +α δPnk k22
+ HδPmk k22 + Ψ −Uk k22 − 2 <HδPm,Ψ −U >
+α δPmk k22 = HδPnk k22 + 2 Ψ −Uk k22 − 2
<H δPn + δPm,Ψ −U >ð + α δPnk k22 + HδPmk k22
+ α δPmk k22:

ð36Þ

However, we have

HδPnk k22 + HδPmk k22 =
1
2 H δPn + δPmðk k22
�

+ H δPn − δPmk kð Þk k22,
ð37Þ

α δPmk k22 + δPmk k22
� 	

= α

2 δPn + δPmk k22 + δPn − δPmk k22:
ð38Þ

Therefore, we may write

0
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Numerical solution
Exact solution

(a) γ = 0:6

0
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Numerical solution
Exact solution

(b) γ = 0:7

Figure 3: Reconstruction result of Dtrue and Dinv .
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Figure 4: Variation of the error function Err for γ = 0:65.

Table 2: Effects of fractional order on D.

γ Dinv Err

0.55 1:00000, 1:00000,−3:874254e − 9ð Þ 5:874788e − 7
0.6 1:00000, 1:00000,−5:875477e − 9ð Þ 1:02157e − 9
0.65 1:00000, 1:00000,−7:700214e − 8ð Þ 5:14785e − 8
0.7 1:00000, 1:00000,−6:375155e − 6ð Þ 1:008547e − 5
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On the other hand, we have

0
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3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

Numerical solution
Exact solution

(a) γ = 0:6

0
1.8
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3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

Numerical solution
Exact solution

(b) γ = 0:7

Figure 5: Reconstruction result of Dtrue and Dinv .

Table 3: Effects of fractional order on the algorithm.

γ α Dinv Err

0.55 3:212157e − 9 1:00000, 1:00000, 1:50000ð Þ 1:20025e − 7
0.6 6:4757e − 10 1:00000, 1:00000, 1:50000ð Þ 12:30215e − 7
0.65 7:0002e − 8 1:00000, 1:00000, 1:50000ð Þ 1:385470e − 6
0.7 6:15477e − 11 1:00000, 1:00000, 1:50000ð Þ 8:00145e − 9

Fα δPnð Þ + Fα δPmð Þ = 1
2 H δPn + δPmð Þk k22 + 2 Ψ −Uk k22 − 2

<H δPn + δPmð Þ,Ψ −U > + α

2 δPn + δPmk k22
+ 1
2 H δPn + δPmðk k22 +

α

2 δPn − δPmk k22:

ð39Þ

2Fα

1
2 δPn + δPmð Þ


 �
= H

1
2 δPn + δPmð Þ


 �
− Ψ −Uð Þ

����
����2
2
+ 2α 1

2 δPn + δPmð Þ
����

����2
2

= 1
2 H δPn + δPmð Þ − 2 Ψ −Uð Þk k22 +

α

2 δPn + δPmk k22
= 1
2 H δPn + δPmð Þk k22 + 4 Ψ −Uk k22 − 4 <H δPn + δPmð Þ,Ψ −U >
� 	

+ α

2 δPn + δPmk k22
= 1
2 H δPn + δPmð Þk k22 + 2 Ψ −Uk k22 − 2<H δPn + δPmð Þ,Ψ −U > Þ + α

2 δPn + δPmk k22:s

ð40Þ
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By replacing (39) in (40), we get

Fα δPnð Þ + Fα δPmð Þ = 2Fα

1
2 δPn + δPmð Þ


 �

+ 1
2 H δPn − δPmðk k22 +

α

2 δPn − δPmk k22
≥ 2I + α

2 δPn − δPmk k22:

ð41Þ

By taking the limit as n and m to infinity, we get Fα
ðδPnÞ + FαðδPmÞ⟶ 2I, thus

δPn − δPmk k22 ⟶ 0asn,m⟶∞: ð42Þ

This shows that ðδPnÞ is a Cauchy sequence and there-
fore convergent since the Euclidean space is a Hilbert
space. Let δPα = limn⟶∞δPn, we have δPα ∈ℝm+1, by tak-
ing into account that Fα is continuous, we conclude that
FαðδPnÞ⟶ FαðδPαÞ, then, δPα = I: That proves the exis-
tence of a minimum of Fα:

2.5. Uniqueness Result

Lemma 4. Fα admits a unique minimum δPα ∈ℝm+1: This
minimum δPα is the unique solution of the normal equation

αδPα +HTHδPα =HT ψ −Uð Þ: ð43Þ

Proof. The question is to prove the uniqueness of the solution
for the normal equation, because we have an equivalence
between (27) and (28).We observe that the normal will be writ-
ten as

αI +HTH
� 	

δPα =HT ψ −Uð Þ: ð44Þ

In order to show that this equation admits a unique solu-
tion, we must prove that the matrix αI +HTH is positive defi-

nite. Indeed, ∀δP ≠ 0,

< αI +HTH
� 	

δP, δP > = <αδP, δP > + <HTHδP, δP
> +α δPk k22 + HδPk k22:

ð45Þ

Hence

< αI +HTH
� 	

δP, δP > >0: ð46Þ

This proves that the matrix is positive definite, and so
invertible, we deduce that equation (28) admits a unique solu-
tion, and therefore, Fα admits a unique minimum. Thus, a per-
turbation can be determined by (28)

δPα = αI +HTH
� 	−1

HT Ψ −Uð Þ: ð47Þ

Therefore, the solution can be characterized by (12) with a
sufficiently large iteration numbers, or when the perturbation
verified the convergence condition

δPαk k2 ≤ ε, ð48Þ

for a given convergence precision ε.

3. Inversion Algorithm

Step 1. Given the initial iteration P, the digital differential
step τ, and the convergence precision ε, it is the additional
condition ψðtÞ:

Step 2. Solve the direct problem using an implicit finite dif-
ference scheme featured in [16], get uðl, tn ; PÞ, and uðl, tn ;
ðp0,⋯,pi + τ,⋯,pmÞÞ, for n = 1, 2,⋯, and i = 0, 1,⋯,m, then
obtain the vector U , and the matrix H, by the formula (25).

Step 3. Choose an appropriate regularization parameter α
≥ 0, and obtain a perturbation vector δPα, using formula
(47), then obtain δDα.
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Figure 6: Reconstruction result of Dtrue and Dinv .
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Step 4. If there is kδPαk2 ≤ ε, then the IA is finished, and D
+ δDα is considered the solution we just want to determine;
otherwise, go to Step 2, replacing P with P + δP:

4. Numerical Simulations

In this section, we get T = 1, l = 1, the initial condition u0ðxÞ
= x, the number of spatial grids M = 20, and the number of
time gridsN = 20, and we propose the following two examples
of simulations.

4.1. The First Case. For example, we choose DðxÞ = 2 + x, 0
≤ x ≤ 1, as the exact source term. We performed the IA using
the formula (47). By taking the initial data P0 = ð0,0:65Þ, the
digital differential step τ = 0:4, in the first case, we will do
the simulation without the regularization term i.e., α = 0, the
computational results are listed in Table 1, where denotes
fractional order, Dinv denotes inversion.

Where Err given by Err=kDtrue −Dinvk defines the abso-
lute error in the solutions. The source term and their inver-
sion are shown in Figure 1.

Figure 2 gives the graph of the error during iterations.
Now, we put α = 1e−6, and thus, we get Figure 3.

Figure 4 gives the graph of the error during iterations.

4.2. The Second Case. In the following, we use explicit regu-
larization in algorithm execution due to the shortcomings of
the problems being considered. Use this in.

D xð Þ = 1 + x2, 0 ≤ x ≤ 1, ð49Þ

as the exact source term. We performed the IA using the for-
mula (47). Considering the regularization parameter α = 1
e−9, the initial data P0 = ð3:4,0, 1:12Þ, the digital differential
step τ = 0:5, and the convergent precision ε = 1e−9, hence,
we get the Table 2.

Figure 4 gives the graph of the error during iterations.
The source term and their inversion are shown in

Figures 5(a) and 5(b).

4.3. The Third Case. This part considers the algorithm and
we want to reconstruct the trigonometric

D xð Þ = 1 + sin 4πxð Þ, 0 ≤ x ≤ 1, ð50Þ

Table 3 shows that the fractional order has a significant
effect on the problem and the resulting algorithm. Solution
errors reach theirminimum in optimal regularization of param-
eters which correspond to each fractional order while regulating
solutions. The regularization parameter is larger when the frac-
tional order is approaching 1. The true source term and the
inversion solution are presented by the Figures 6(a) and 6(b).

The simulation is concerned by proposing a numerical
solution of a one-dimensional fractional system with Caputo
derivative. We use an extension of the well-known in litera-
ture by inverse problem method. The comparison between
the exact solution and the numerical one of the considered
system show the effectiveness of our proposed algorithm.

The three cases that have been suggested demonstrate the
veracity of our findings.

5. Conclusion

Inverse source problem for one dimensional time-space frac-
tional diffusion equations (FDE) are considered. We use
numerical approach determine the source term for a Caputo
temporal. According to Hadamard sense, these inverse prob-
lem is ill-posed. In order to recreate a stable solution for the
inverse issue, a new fractional Tikhonov regularization tech-
nique is applied. We conclude that the regularization coeffi-
cient and digital differential step show major effects on the
algorithm, but for the first iteration with convergent precision,
the influence on the algorithm is less. It also results from the
conclusion that the first iteration with convergent precision
has a small effect on the algorithm. Further research in the
future can envisaged, and we cite the extension of the pro-
posedmethod to higher dimensional space, also its application
to solve optimal control problems governed by FDE.

Data Availability

Data sharing not applicable to this paper as no data sets were
generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This work was funded by the Deanship of Scientific Research
at Jouf University under grant no. (DSR-2021-03-0342).

References

[1] E. E. Adams and L. W. Gelhar, “Field study of dispersion in a
heterogeneous aquifer: 2. Spatial moments analysis,” Water
Resources Research, vol. 28, no. 12, pp. 3293–3307, 1992.

[2] Y. Hatano and N. Hatano, “Dispersive transport of ions in col-
umn experiments: an explanation of long-tailed profiles,”
Water Resources Research, vol. 34, no. 5, pp. 1027–1033, 1998.

[3] M. Giona, S. Cerbelli, and H. E. Roman, “Fractional diffusion
equation and relaxation in complex viscoelastic materials,”
Physica A: Statistical Mechanics and its Applications, vol. 191,
no. 1-4, pp. 449–453, 1992.

[4] B. Berkowitz, H. Scher, and S. E. Silliman, “Anomalous trans-
port in laboratory-scale, heterogeneous porous media,” Water
Resources Research, vol. 36, no. 1, pp. 149–158, 2000.

[5] L. Zhou and H. M. Selim, “Application of the fractional
advection-dispersion equation in porous media,” Soil Science
Society of America Journal, vol. 67, no. 4, pp. 1079–1084, 2003.

[6] Y. Xiong, G. Huang, and Q. Huang, “Modeling solute trans-
port in one-dimensional homogeneous and heterogeneous soil
columns with continuous time random walk,” Journal of Con-
taminant Hydrology, vol. 86, no. 3-4, pp. 163–175, 2006.

[7] A. Jajarmi, D. Baleanu, K. Zarghami Vahid, and S. Mobayen,
“A general fractional formulation and tracking control for
immunogenic tumor dynamics,” Mathematical Methods in
the Applied Sciences, vol. 45, no. 2, pp. 667–680, 2022.

8 Journal of Sensors



[8] D. Baleanu, M. H. Abadi, A. Jajarmi, K. Z. Vahid, and J. J.
Nieto, “A new comparative study on the general fractional
model of COVID-19 with isolation and quarantine effects,”
Alexandria Engineering Journal, vol. 61, no. 6, pp. 4779–
4791, 2022.

[9] V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, and
A. Jajarmi, “Novel fractional-order Lagrangian to describe
motion of beam on nanowire,” Acta Physica Polonica, A,
vol. 140, no. 3, pp. 265–272, 2021.

[10] R. Gorenflo, Y. Luchko, and P. P. Zabrejko, “On solvability of
linear fractional differential equations in Banach spaces,” Frac-
tional Calculus and Applied Analysis, vol. 2, no. 2, pp. 163–176,
1999.

[11] R. Metzler and J. Klafter, “Boundary value problems for frac-
tional diffusion equations,” Physica A: Statistical Mechanics
and its Applications, vol. 278, no. 1-2, pp. 107–125, 2000.

[12] M. M.Meerschaert and C. Tadjeran, “Finite difference approx-
imations for fractional advection-dispersion flow equations,”
Journal of Computational and Applied Mathematics, vol. 172,
no. 1, pp. 65–77, 2004.

[13] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability
and convergence of the difference methods for the space-time
fractional advection-diffusion equation,” Applied Mathematics
and Computation, vol. 191, no. 1, pp. 12–20, 2007.

[14] I. Podlubnv, Fractional Differential Equations, Academic
Press, San Diego, Boston, 1999.

[15] J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki,
“Uniqueness in an inverse problem for a one-dimensional
fractional diffusion equation,” Inverse Problems, vol. 25,
no. 11, article 115002, 2009.

[16] G. Li, W. Gu, and X. Jia, “Numerical inversions for space-
dependent diffusion coefficient in the time fractional diffusion
equation,” Journal of Inverse and Ill-Posed Problems, vol. 20,
no. 3, pp. 339–366, 2012.

[17] Y. Zhang and X. Xu, “Inverse source problem for a fractional
diffusion equation,” Inverse Problems, vol. 27, no. 3, article
035010, 2011.

[18] P. Li, J. Zhai, and Y. Zhao, “Stability for the acoustic inverse
source problem in inhomogeneous media,” SIAM Journal on
Applied Mathematics, vol. 80, no. 6, pp. 2547–2559, 2020.

[19] D. Jiang, Y. Liu, and M. Yamamoto, “Inverse source problem
for the hyperbolic equation with a time-dependent principal
part,” Journal of Differential Equations, vol. 262, no. 1,
pp. 653–681, 2017.

[20] M. A. Maisto, R. Solimene, and R. Pierri, “Resolution limits in
inverse source problem for strip currents not in Fresnel zone,”
Journal of the Optical Society of America A, vol. 36, no. 5,
pp. 826–833, 2019.

[21] N. H. Can, N. H. Luc, D. Baleanu, Y. Zhou, and L. D. Long,
“Inverse source problem for time fractional diffusion equation
with Mittag-Leffler kernel,” Advances in Difference Equations,
vol. 2020, no. 1, 2020.

[22] C. S. Liu, L. Qiu, and F. Wang, “Nonlinear wave inverse source
problem solved by a method of m-order homogenization func-
tions,” Applied Mathematics Letters, vol. 91, pp. 90–96, 2019.

[23] A. V. Smirnov, M. V. Klibanov, and L. H. Nguyen, “On an
inverse source problem for the full radiative transfer equation
with incomplete data,” SIAM Journal on Scientific Computing,
vol. 41, no. 5, pp. B929–B952, 2019.

[24] M. Slodicka, K. Šišková, and K. Van Bockstal, “Uniqueness for
an inverse source problem of determining a space dependent
source in a time-fractional diffusion equation,” Applied Math-
ematics Letters, vol. 91, pp. 15–21, 2019.

[25] T. T. Le, L. H. Nguyen, T. P. Nguyen, and W. Powell, “The
quasi-reversibility method to numerically solve an inverse
source problem for hyperbolic equations,” Journal of Scientific
Computing, vol. 87, no. 3, pp. 1–23, 2021.

[26] G. Bao, P. Li, and Y. Zhao, “Stability for the inverse source
problems in elastic and electromagnetic waves,” Journal de
Mathématiques Pures et Appliquées, vol. 134, pp. 122–178,
2020.

[27] C. Sun and J. Liu, “An inverse source problem for distributed
order time-fractional diffusion equation,” Inverse Problems,
vol. 36, no. 5, article 055008, 2020.

[28] F. Yang, N. Wang, X. X. Li, and School of Science, Lan Zhou
University of Technology, Langongping, 730050 Lanzhou,
China, “Landweber iterative method for an inverse source
problem of time-fractional diffusion-wave equation on spher-
ically symmetric domain,” Journal of Applied Analysis & Com-
putation, vol. 10, no. 2, pp. 514–529, 2020.

[29] L. Qiu, C. Hu, and Q. H. Qin, “A novel homogenization func-
tion method for inverse source problem of nonlinear time-
fractional wave equation,” Applied Mathematics Letters,
vol. 109, article 106554, 2020.

[30] J. Cheng and J. Liu, “An inverse source problem for parabolic
equations with local measurements,” Applied Mathematics
Letters, vol. 103, article 106213, 2020.

[31] M. Hrizi, M. Hassine, and R. Malek, “A new reconstruction
method for a parabolic inverse source problem,” Applicable
Analysis, vol. 98, no. 15, pp. 2723–2750, 2019.

[32] N. H. Tuan, Y. Zhou, L. D. Long, and N. H. Can, “Identifying
inverse source for fractional diffusion equation with Riemann–
Liouville derivative,” Computational and Applied Mathemat-
ics, vol. 39, no. 2, pp. 1–16, 2020.

[33] A. S. Hendy and K. Van Bockstal, “On a reconstruction of a
solely time-dependent source in a time-fractional diffusion
equation with non-smooth solutions,” Journal of Scientific
Computing, vol. 90, no. 1, pp. 1–33, 2022.

[34] A. Ansari, M. H. Derakhshan, and H. Askari, “Distributed
order fractional diffusion equation with fractional Laplacian
in axisymmetric cylindrical configuration,” Communications
in Nonlinear Science and Numerical Simulation, vol. 113,
p. 106590, 2022.

9Journal of Sensors


	Determination of an Energy Source Term for Fractional Diffusion Equation
	1. Introduction
	2. Well-Posedness
	2.1. Nonlinear Least Squares Problem
	2.2. Tikhonov Regularization
	2.3. Linear Problem
	2.4. Existence Result
	2.5. Uniqueness Result

	3. Inversion Algorithm
	4. Numerical Simulations
	4.1. The First Case
	4.2. The Second Case
	4.3. The Third Case

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

