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Detecting defects from weld radiography images is an important topic in the field of nondestructive testing. Many intelligent
detection systems are constructed based on computer. Feature extraction is critical for constructing such system to recognize
and classify the weld defects. Deep neural networks have powerful ability to learn representative features that are more
sensitive to classification. However, a large number of samples are usually required. In this paper, a stacked autoencoder
network is used to pretrain a deep neural network with a small dataset. We can learn the hierarchical feature from the
network. In addition, two kinds of traditional manual features are extracted from the same set. These features are combined
into new fusion feature vectors for classifying different weld defects. Two evaluation methods are used to test the classification
performance of these features through several experiments. The results show that deep feature based on stacked autoencoder
network performs better than the other features. The classification performance of fusion features is better than single feature.

1. Introduction

As a basic technology, welding is widely used in many areas,
such as aerospace manufacturing, bridge engineering, and
mechanical manufacturing. Due to the complexity of the
welding process, the instability of the welding parameters,
or the influence of the welding stress and deformation in
the structure, welding defects are inevitable, such as the lack
of penetration, porosity, slag inclusion, and crack. The
appearance of welding defects directly affects the quality of
welding products, which causes the failure of welding struc-
ture and even safety accidents. Therefore, it is necessary to
detect and classify the welding defects.

Detection of welding defects is an important task of nonde-
structive testing of weldingmaterials. Among them, X-ray test-
ing is themost common preferred technique for examining the
quality of welded joints. For this, experienced workers need to
inspect the defects from the radiography film generated in X-
ray testing. This process is not only time-consuming but also
subjective [1]. Many scholars have been committed to building
an objective and intelligent detection systems for weld defects.
Such system based on digital radiography images often
involves feature extraction and pattern recognition.

Feature extraction from weld images is the core of intel-
ligent detection systems. According to the investigation, D’
Angelo and Rampone [2] pointed out that the key to the sys-
tem for recognizing the structure defects is to extract the fea-
tures that can express the defects more uniquely. The pattern
recognition is conducted for classifying different types of
defects. In the initial testing, the geometrical and the texture
features are commonly used for classifying the weld defects
[3–7]. The geometrical features which describe the shape
and orientation of defects are usually defined by experts.
Boaretto and Centeno [5] extracted several geometrical fea-
tures (area, eccentricity, solidity, ratio, etc.) from the discon-
tinuities detected in weld bead region. Then, a multilayer
perceptron (MLP) was used to classify discontinuities as
defect or no-defect through these features and achieved an
accuracy of 88.6%. In addition, they also tried to classify
the different defects, but the attempt was not successful
because of the unbalanced data. In these works, the geomet-
ric features extracted by different scholars are not the same.
Kumar et al. [7] used texture features based on the gray level
cooccurrence matrix (GLCM) as input features of back
propagation (BP) neural network, achieving a classification
accuracy of 86.1%. Furthermore, they simultaneously
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extracted both texture and geometric features, eventually
achieving an accuracy of 87.34% [8]. Wang and Guo [9]
extracted three numeral features from potential region and
used support vector machines (SVM) to distinguish real
defects from potential defects. The physical meaning of each
feature is different. In addition, the Mel-frequency cepstral
coefficients and polynomial coefficients were used as the
classification features in weld detection [10, 11]. These fea-
tures can be collectively known as manual features. How-
ever, the manual extraction of features has significant
drawback: it is task intensive [12]. The extracted features
are inconsistent, and it is difficult to find the general features
for varying task.

Recently, deep learning has been a significant break-
through in image analysis and interpretation. The popular
deep learning techniques including deep belief network
(DBN), recurrent neural network (RNN), and convolutional
neural network (CNN) have attracted increasing attention
and become the popular tools for fault diagnosis and defect
detection [13–15]. These networks can automatically extract
the features without any hand operation for detecting the
weld images. The classification performance of deep features
through deep neural network is better [16]. However, the
deep CNN got poor classification performance when the
training dataset is small [17]. This is just because of the char-
acteristic of deep learning: the good performance of deep
networks benefits from the training by lots of data. However,
it is not easy to collect big dataset of weld defects because the
resolution of radiography image for weld seam is usually
high. Stacked autoencoder (SAE) [18] is proposed as an
alternative to restricted Boltzmann machine (RBM) [19,
20] in pretraining [21, 22]. SAE is used to pretrain a deep
neural network with a small dataset. In our work, we use
SAE for pretraining and fine-turning strategies to train a
deep neural network (DNN).

In this paper, we applied information fusion technology
to combine different features for weld defect classification.
The workflow of classification is given in the following parts.
Firstly, feature extraction is discussed in Section 2. HOG fea-
tures and texture features are introduced. In addition, a SAE
network is constructed to learn multilevel features. More-
over, we investigate pretraining and fine-turning strategies
to get better features. Secondly, in Section 3, the above fea-
tures are combined with each other. Thirdly, an experiment
about weld defect classification is shown in Section 4. In this
part, we investigated the classification performance of differ-
ent kinds of features and fusion features. The experiment

results are discussed, and suggestions are given for future
research in Section 5.

2. Feature Extraction

Different defects in radiography image exhibit various visual
properties in shapes, sizes, textures, and positions. In order
to recognize various defects, the important features of the
specific type of defects should be artificially selected. The
characteristics based on intensity contrast are very useful
to classify weld defects because of different gray value distri-
butions of different defect types. In this section, two tradi-
tional manual features based on gray level distribution are
introduced. In addition, a feature learning technology based
on DNN is elaborated.

2.1. HOG Feature Vector. Histograms of oriented gradient
(HOG) descriptors based on a statistical evaluation of a
series of normalized local gradient direction histograms of
the image window are first proposed by Dalal and Triggs
for human detection [23]. They capture the gradient or edge
direction characterizing the appearance and shape of the
local objects. They are robust to small changes in image con-
tour locations and directions and significant change in image
illumination. The features of descriptors are extracted as
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Figure 1: The flowchart of extracting HOG feature.
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Figure 2: The structure of SAE.
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discriminative and separable as possible. In this paper, the
HOG features are used for presenting the local weld defect
in radiography images. The flowchart of algorithm is shown
in Figure 1.

2.2. Texture Feature Vector Based on GLCM. Gray level
cooccurrence matrix (GLCM) theory is an important
second-order statistical method for texture analysis [24,
25]. It reflects the spatial complexity, pixel distribution,
and roughness of the image through the joint probability
density of two pixels in different positions. The element
of matrix is expressed as Pði,j,d,θÞ, which is the probability
of the occurrence pixel pairs ði, jÞ. d is the distance
between i and j. θ is the position relation of pixel pairs
ði, jÞ, which is usually 0∘, 45∘, 90∘, and 135∘. Haralick
et al. [26] defined 14 statistical parameters as texture fea-
tures. In this paper, we used these features for describing
the weld defect. 5 pivotal parameters are listed here.

SE = 〠
L−1

i=0
〠
L−1

j−0
P i, j ∣ d, θð Þf g2, ð1Þ

where L is the number of gray level. SE is the energy fea-
ture, which is a second-moment measuring homogeneity
of the image.
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n=0
n2 〠

L−1

i=1
〠
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j=1
P i, j ∣ d, θð Þ, ð2Þ

where SCon is the contrast feature, which is the differ-
ence moment of the matrix measuring the contrast or the
amount of local variations in the image.
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Figure 3: Workflow of weld classification.

(a) Original radiography image (b) Segmented weld defect

Figure 4: The example of weld defect segmentation.
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where μx, μy , σx, andσy are average value and stan-
dard deviation, respectively. SCor is the correlation feature
measuring the similarity in one direction.

SS = −〠
L−1

i=1
〠
L−1

j=1
P i, j ∣ d, θð Þ log P i, j ∣ d, θð Þ½ �, ð4Þ

where SS is the entropy feature measuring the com-
plexity of image.

D = 〠
L−1

i=1
〠
L‐1

j=1
P i, j ∣ d, θð Þ 1

1 + i − jð Þ2 , ð5Þ

where D is the inverse difference moment reflecting
the homogeneity of the image texture and measuring
the local amount of variations of the texture.

2.3. Feature Based on Learning through SAE. Autoencoder
(AE) is a simple neural network containing input, hidden,
and output layers. It trains the network in an unsupervised
manner by reconstructing the input in output layer. The
process is divided into two parts: encoding and decoding.
The encoding is a connection from the input layer to hidden
layer. It can be expressed as h = f ðWð1Þx + bð1ÞÞ, where h is
the activation value of hidden layer, Wð1Þ and bð1Þ are weight
matrix and bias of encoding, and f is the encoding function.
Similarly, from the hidden layer to output layer, decoding is

expressed as x∧ = gðWð1Þ′x + bð1Þ′Þ, where x∧ is the recon-

struction of input, Wð1Þ′ and bð1Þ′ are the corresponding
parameters of decoding, and g is the encoding function.
The back propagation algorithm is used to obtain the opti-
mal parameters of the network for minimizing the cost func-
tion. For better feature, some restrictive constraints are
imposed on the hidden layer. The cost function of network
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Figure 5: The samples of different weld defects.
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is described as Equation (6).

J W, bð Þ = 1
2m〠

i

x
∧
− x
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∧

���
� �
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where m is the number of samples, β∑jKLðρk ρj
∧Þ is the

sparse penalty term, and β is the weight of this term.
As is shown in Figure 2, we construct a deep neural net-

work (100-50-5) by stacking two AEs and a softmax layer for
supervised learning. The network initializes the parameters
by training each AE layer by layer. Once the pretraining of
AE is finished, the decoder is discarded. The activation of
previous AE in hidden layer is the input of the next AE.
For best parameter, the fine-tuning step is implemented by
supervised learning through training set.

3. Feature Fusion

It is critical to select appropriate features to classification of
weld defects. Silva et al. [27] pointed out that the mass of fea-
tures used for classification is more important. The weld
defects are usually distributed in the local space of the radi-
ography images with linear, circular, and other irregular
shapes. The HOG feature is sensitive to gradient and direc-
tion; thus, it focuses on describing the structure and contour
of objects. The HOG description has strong ability on iden-
tifying local regions. The Haralick feature based on GLCM
describes the texture of the image by counting the frequency
of pixel pairs with a particular relationship. The two kinds of
features with specific physical significance are useful for clas-
sifying the defects. However, it is not sufficient to describe
the image comprehensively by using each single feature. In
addition, the DNN can learn hierarchical features
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Table 1: The sample numbers of different defect types.

Defect types Number in training set Number in test set

CR 868 372

IP 839 360

ND 868 372

PO 868 372

SI 869 372

Total 4312 1848
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automatically; however, physical significance of these fea-
tures is undefined. For a more comprehensive description
of the objects, we tried to fuse these features.

The workflow of weld classification in this paper is
shown in Figure 3. Firstly, the weld defects are segmented.
Secondly, the samples with defects are formed. Thirdly,
two manual features are extracted. Meanwhile, the SAE net-
works are trained and fine-tuned for learning feature.
Finally, the fusion features are imported into the SVM for
classification. Our work mainly focused on the steps which

are encircled by the green rectangular box (feature extraction
and fusion).

As is shown in Figure 3, there are two ideas of fusion:
one is the fusion of two different manual features, and the
other one is the fusion of manual features and learning-
based features. Characteristic-level fusion is adopted, which
involves various feature extractions of images and then inte-
grates the different feature vectors. In the extraction for
HOG feature vector f1, the cell size is 4 × 4. Thus, the dimen-
sion of the vector is 1 × 5184. For the texture feature based
on GLCM f2, the mean and standard deviation of 14 features
are calculated in 3 different distances. Thus, the dimension
of the vector is 1 × 84. We obtain the vector (1 × 5) in the
softmax layer for learning-based feature based on SAE f3.
The parameters used in network are: λ = 4e − 3 and β = 3.
The fusion feature is noted asf fusion = ½ f i, f j�, i ≠ j.

4. Experimental Results and Discussion

In this section, several experiments are implemented based
on MATLAB for investigating the classification performance
of different features. Datasets, evaluation methods, and
results of experiments are introduced.

4.1. Experimental Database. The database for subsequent
learning is from the “welds” group in a public database
called GDXray [28]. An example of radiography images is
shown in Figure 4(a). Morphological analysis is used in this
paper for segmented weld defects. The processed result is
shown in Figure 4(b). Based on the results, we cropped the
patches with defects to form a Dataset _RUS [16]. In our
previous work, we used CNN for defect classification on this
dataset; however, the result is not good. Dataset _RUS
includes 6,160 cropped image patches with different weld
defects, including lack of penetration (LOP), porosity (PO),
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Figure 9: The t-SNE distribution map of texture feature based on
GLCM.
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slag inclusion (SI), and crack (CR). The patches without
defect are noted as ND. Some samples with different defects
are shown in Figure 5. The dataset is divided into the train-
ing set and testing set on a scale of 7 : 3 for later experiments.
The sample numbers of each defect patches are shown in
Table 1.

4.2. Results of Visualization. We extract the HOG feature
vector, texture feature vector based on GLCM, and
learning-based feature from 4312 patches (training set). In
order to show the performance of the abovementioned fea-
tures and fusion features more intuitively, the t-SNE method
is used for visualizing the features through 2D maps. The t-
SNE distribution maps of features are shown below.

The t-SNE method shows the high-dimensional data in
low-dimensional maps. Thus, the dimension of data should
be considered in fusion. The dimension of HOG feature is
too high, and PCA algorithm is adopted beforehand to
reduce the dimension to 5. Then, it is fused with a SAE fea-
ture, namely HOG-SAE feature. Figures 6 and 7 show the
distribution of single HOG feature and SAE feature.
Figure 8 shows the distribution map of the fusion feature.
In terms of the color distribution, the separability of fusion
feature is better.

For texture features, we select 5 listed in Section 2 show-
ing the t-SNE distribution map in Figure 9. The distribution
of texture feature is rambling. From the visual effects, the
conclusion is that the deep features perform better than
manual features for classification (this is consistent with
our previous result). Then, the feature vector is fused with
HOG feature and SAE feature, namely HOG-GLCM feature
and SAE-GLCM feature. The t-SNE distribution maps are
shown in Figures 10 and 11. Compared to the single GLCM
feature, the performance of fusion feature improved. How-
ever, it is not noticeable when comparing with HOG feature
or SAE feature from the visual effect. To evaluate the perfor-
mance of each feature more objectively, a quantitative evalu-
ation method is needed.

4.3. Results of SVM Classification. Support vector machine
(SVM) is developed based on the statistical learning theory,
which is suitable for use in solving high-dimensional classi-
fication problems with small samples. Thus, it is popular in
the classification and diagnosis of weld defects in recent
years [29, 30]. In this paper, SVM is used to build the rela-
tion model concerning features and weld defects. To reduce
the training time, the kernel function of the SVM adopted is
linear. The classification performance of the features is eval-

uated through accuracy rates and their mean of various
types. The classification rates are shown in Table 2.

The classification ability of deep features is stronger than
the manual features. However, the DCNN networks perform
poorly when the sample set is small [17]. In this paper, the
accuracies of different single features in the table demon-
strate that the learning feature based on SAE network per-
forms better than the manual features. This is consistent
with the above analysis.

The classification performance of fusion feature with two
different features is better than that of single features.
Among them, the fusion feature of texture feature based on
GLCM and learning feature based on SAE (SAE-GLCM fea-
ture) perform best. The average accuracy achieves 92.9%.

The table shows the separability of three single features
clearly. Based on this, we try to apply different weights on
each feature during fusion, namely f fusion = ½k1 f i, k2 f j�, i ≠ j

Table 2: The classification accuracies of different features.

Feature types CR LOP ND PO SI Mean

GLCM feature 75.2% 63.2% 74.3% 75.2% 61.7% 73.2%

HOG feature 69.1% 84.7% 86.6% 74.7% 69.1% 76.8%

SAE feature 79.8% 91.1% 94.6% 78.8% 74.2% 83.7%

HOG-GLCM feature 80.9% 95.6% 79.3% 87.6% 96.0% 87.8%

HOG-SAE 83.3% 93.9% 89.5% 84.9% 86.8% 87.7%

SAE-GLCM 92.7% 88.3% 91.9% 92.5% 98.9% 92.9%

Table 3: The classification accuracies of HOG-GLCM feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 80.6% 95.3% 92.7% 89.8% 93.0% 90.3%

0.7 89.0% 94.7% 92.5% 89.0% 91.9% 91.4%

0.8 87.1% 93.6% 92.5% 88.4% 91.4% 90.6%

0.9 84.7% 92.5% 90.6% 87.9% 89.5% 89.0%

Table 4: The classification accuracies of HOG-SAE feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 83.6% 95.0% 93.8% 85.8% 83.9% 88.4%

0.7 84.7% 93.6% 93.3% 85.8% 80.4% 87.5%

0.8 83.9% 92.5% 93.0% 84.4% 75.8% 85.9%

0.9 82.3% 91.7% 93.0% 84.1% 73.1% 84.8%

Table 5: The classification accuracies of SAE-GLCM feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 94.4% 94.2% 97.0% 93.5% 98.1% 95.5%

0.7 94.9% 95.0% 97.0% 93.3% 97.6% 95.6%

0.8 93.3% 94.7% 97.3% 93.3% 96.0% 94.9%

0.9 92.5% 94.4% 95.7% 92.2% 94.9% 93.9%

7Journal of Sensors



, k1 + k2 = 1. Several experiments are set to test the classifica-
tion performance of three fusion feature vectors with differ-
ent weights. The results are shown in Tables 3–5.

From the tables, it is obvious that the classification accu-
racies of fusion features with weights improved, especially
the fusion of SAE feature and GLCM feature (SAE-GLCM
feature). The best accuracy achieves 95.6%.

5. Conclusion and Future Work

Considering that deep convolutional neural networks are
not suitable for the classification of small sample sets, a
SAE network is used to learn feature from the patches of
radiography images for classifying the weld defects in this
paper. Meanwhile, two kinds of different manual features
are extracted. In order to express the objectives more com-
prehensively, we fuse the features for combining different
information. The t-SNE distribution of these features and
their fusion feature is shown in figures for intuitive display.
We use SVM to classify the weld defects for evaluating the
performance of the different features objectively. The results
demonstrate that the fusion features perform better than the
single features on the classification ability. The fusion of tex-
ture feature based on GLCM and learning feature based on
SAE network has the best performance. The classification
power of the feature vectors becomes stronger when the
fusion is weighted. However, the performance promotion
of fusion of HOG feature and SAE feature is limited. This
may result from the large difference in the dimensionality
of the two features.

In the future, we will consider optimizing the weight
adopted in fusion. The fusion model will be used to the
entire X-ray image for detection of defects.
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