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As an essential branch of physical layer authentication research, radio frequency identification (RFID) has advantages in achieving
lightweight and highly reliable authentication. However, in the Internet of Things (IoT) environment, where a large scale of
devices are connected to the network, there is an issue that the difference of the RF fingerprints is less distinct among the same
type of devices. To this end, in this paper, we propose an RFID scheme for IoT devices based on long-short term memory and
convolutional neural network (LSTM-CNN). This scheme combines the excellent learning ability of LSTM and CNN to
perceive the context information and extract the local feature of RF data. Specifically, RF data is first fed into LSTM to obtain
long-term dependency features containing temporal information. Then, CNN is designed for secondary feature extraction to
enlarge RF differences and further used for device classification. The experiment results on the open RF data set ORACLE
indicate that the identification accuracy of the proposed scheme can reach over 99%. Compared with other schemes, the
performance is improved by 6%-30%.

1. Introduction

With the rapid development of IoT, a large number of
devices are connected to the network through the wireless
channel. However, as shown in Figure 1, the broadcast
feature of the wireless channel makes it possible for
attackers to connect the access point (AP) by impersonating
the identity of legitimate nodes. Then, attackers can disrupt
the legitimate communication by maliciously monitoring,
tampering, or discarding transmission information [1]. The
security issues on the wireless network have attracted more
and more attention.

RFID is committed to realizing wireless security by
exploiting characteristics in the communication process.
Specifically, RFID uses the unique features caused by hard-
ware imperfections to mark the identity of devices, thus is
expected to achieve lightweight and highly reliable authenti-
cation. The source of RF fingerprint in the transmitter is
shown in Figure 2, where hardware imperfections, such as
harmonic distortion of the digital to analog converter
(DAC), direct-current (DC) bias, local oscillator (LO) leak-

age, I/Q gain imbalance, and power amplifier (PA) nonline-
arity, [2] will reflect in the RF waveform and are measurable,
so the RF fingerprint can uniquely identify the device. Nev-
ertheless, RF fingerprints are caused by accidents, and there
are top limits on the electronic tolerance standards among
the same type of devices, resulting in the limited RF feature
space and less distinction among massive IoT devices.
Therefore, an effective method of feature extraction is of
great importance.

The existing RF feature extraction methods are mainly
divided into two categories: manual selection [3, 4] and deep
learning extraction. Due to the feature space limitation of the
same type of devices and the time and labor consuming,
manual selection is not able to meet RFID requirements
among massive IoT devices. Extraction methods based on
deep learning [5–7] provide a new solution to amplify RF
feature differences based on its strong feature extraction
capability. Merchant et al. [5] conducted synchronization
and filtering on the RF baseband signal, and then, calculated
the error signal of each transmission. Based on the excellent
classification ability of CNN, the error signal is used for
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training to identify 7 commercial Zigbee devices success-
fully. Youssef et al. [6] used CNN and support vector
machine (SVM) to complete the identification of 12 OFDM
devices, respectively. Yu et al. [7] exploited multisampling
CNN to realize the identification of 54 IoT devices. How-
ever, when CNN is used in RFID, it is usually necessary to
transform the RF baseband signal to ensure authentication
accuracy, which will increase the complexity of the overall
scheme. Another drawback of the above schemes is that
CNN tends to exploit the local features but ignores the rele-
vance of RF data in the time dimension and fails to make
effective use of the temporal information contained in RF
fingerprints. When RF baseband signals are directly used
for feature extraction, CNN can only learn partial effective
features. As a result, it is difficult to accurately identify mas-
sive similar devices in IoT environment.

LSTM is an improved network employing the temporal
information of the sequential data. The RF context informa-
tion in the time dimension is memorized by applying the
previous information to calculate the current output. Then,
the long-term dependency features hidden in the RF base-
band signals are explored to further expand the feature
space. Therefore, before the RF data is input into CNN,
combining the temporal information perception ability of
LSTM is expected to achieve accurate identification of simi-
lar IoT devices.

This paper proposes an RFID scheme for massive IoT
devices based on LSTM-CNN. Concretely, we preprocess
the baseband IQ signal and leverage LSTM as a feature
extractor to automatically extract the initial features with
temporal information. Then, CNN is connected as a classi-
fier for secondary feature extraction and classification. The
simulation results show that the proposed scheme can
achieve 99.68% device identification accuracy on the open
RF data set ORACLE and has a performance improvement
of 6%-30% compared with other common network models
(LSTM, CNN, and CNN-LSTM).

The rest of this paper is organized as follows. Section 2
introduces the system model and analyzes the defects of
image classification neural networks represented by CNN
when it is directly used in RF signal classification. Section
3 elaborates the details of the RFID scheme based on
LSTM-CNN proposed in this paper. In Section 4, we explain
the source of the dataset and compare the performance of
RFID methods based on different network models. Finally,
we conclude the paper in Section 5.

2. System Model

Figure 3 shows a general systemmodel of RFID based on deep
learning represented by CNN. The baseband IQ signals are
forwarded to the AP via the wireless channel. Although the
design and manufacture of the integrated circuit are develop-
ing, there are still differences [8] in the RF features of different
devices at the moment of signal launch. To enhance the recog-
nizability of the RF feature, it is usually necessary to synchro-
nize and filter the baseband IQ signal. Then, CNN uses
different sizes of sliding windows (convolution kernels) to per-
form convolution operations on the input signal samples. In

this way, the local features in the samples are extracted.
Finally, the local features are combined into global features
through the fully connected layer to identify which device
the sample comes from.

However, in the wireless environment, the collected RF
data are commonly long-sequence samples, and hardware
imperfections such as carrier frequency offset will affect the
whole signal [9]. As we have discussed, the above CNN-
based methods will ignore the time correlation of RF signals
to a certain extent, resulting in a significant decline in CNN
identification accuracy when IQ baseband signal is directly
used for training [10]. In order to realize the low-cost and
accurate identification of IoT devices, it is necessary to
improve the capability of the neural network to perceive
the long-term features of the sequences and therefore
expand the feature space.

LSTM is a neural network that can perceive the context
information of the input data. The network structure is
shown in Figure 4, which is sequentially linked by multiple
units. LSTM retains the context information of RF data
and controls the amount of memory information through
“gating.” Each unit usually contains three “gates.” The “for-
get gate” selectively forgets the information of the previous
node. The “input gate” selectively memorizes the new input
information and selectively retains the effective RF charac-
teristics, while the “output gate” controls the response out-
put of the neural network at time t.

f t = σ wf ht−1, xt½ � + bf
� �

,
it = σ wi ht−1, xt½ � + bið Þ,
ot = σ wo ht−1, xt½ � + boð Þ:

ð1Þ
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Figure 1: The impersonation attack.
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Figure 2: The source of RF fingerprint in the transmitter.

2 Journal of Sensors



The current transmission state St with the results of the
input and forget gate applied can be expressed as

St = f t ∗ St−1 + it ∗ tanh wS ht−1, xt½ � + bSð Þ,
ht = ot tanh Stð Þ:

ð2Þ

Through the cooperation of the above three gates, LSTM
retains the time information in the RF sequence signal by its
“memory” function and optimizes the gradient disappear-
ance problem [11] relying on the “forgetting” function.
However, LSTM usually requires higher time complexity to
achieve favorable identification accuracy than CNN due to
its recurrent structure.

As discussed, we combine the advantages of the above
two network models and propose an RFID scheme for IoT
devices based on LSTM-CNN. The combination of LSTM
and CNN has two significant advantages. On the one hand,
the long-term dependence characteristics of RF data can be
effectively utilized. On the other hand, the complexity of net-
work training can be reduced.

3. RFID Scheme for Massive IoT Devices Based
on LSTM-CNN

RFID scheme for massive IoT devices based on LSTM-CNN
is shown in Figure 5, which includes two stages: offline train-
ing and online identification. The offline training stage can
be divided into two steps: data preprocessing and the estab-
lishment of LSTM-CNN authentication model. Specifically,
the IQ baseband data is preprocessed to make it suitable
for the input format of the neural network, and then it is
fed into LSTM-CNN for training. We employ the weights
of the deep neural network to map RF features and thus
build a learning-based fingerprint database. Therefore, a
complete authentication model with a feature database is
established. In the online identification stage, the RF data
of the unknown node is input into the well-trained LSTM-
CNN authentication model. Then, the model detects the
similarity between the unknown data and the features stored
in the database. The LSTM-CNN model will make the final
classification decision according to the similarity detection
result, thereby realizing the RFID of the massive IoT devices.
The details of the two stages are as follows.
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3.1. Offline Training

3.1.1. Data Preprocessing. First, we divide the long-baseband
IQ signal into subsequences with an equal length of 128. To
improve the learning efficiency and accelerate the conver-
gence speed, we conduct the maximum-minimum normali-
zation to linearly transform the original data and limit the
data to [0, 1] interval. Then identity labels are added to the

data to distinguish the RF information from different IoT
devices. Finally, the subsequence set with labelled informa-
tion is obtained to adapt to the input format of the neural
network.

3.1.2. Establishment of LSTM-CNN Authentication Model.
As shown in Figure 6, the LSTM-CNN authentication model
consists of a pre-LSTM and a post-CNN structure. The
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Figure 5: RFID scheme for massive IoT devices based on LSTM-CNN.
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establishment of LSTM-CNN authentication model includes
three stages: initial feature extraction stage, secondary fea-
ture extraction stage, and classification decision stage. The
preprocessed IQ subsequence is fed into the pre-LSTM for
initial feature extraction. Then, the secondary feature extrac-
tion is carried out through the convolution layer, pooling
layer, and full connection layer in the post-CNN structure.
Finally, the classification decision is made through the soft-
max function. The specific process is as follows.

(1) Initial Feature Extraction. The preprocessed subsequence
set X = fx1, x2,⋯, xng is fed into the LSTM network and
processed by multiple sequentially linked storage units.
The information of the previous data remaining in the stor-
age memory is controlled by the “forget gate,” while the
“input gate” controls new information added at the next
moment. The initial feature vector H = fh1, h2,⋯, hng with
time attributes is finally extracted through the “output gate.”

(2) Secondary Feature Extraction. The long-term depen-
dency feature H with time information obtained via LSTM
is input into CNN for convolution operation. The local fea-
ture information is extracted through multiple convolutions
to further amplify the difference of RF fingerprints. In order

to reduce the complexity of the network and minimize the
computation, downsampling is implemented in the pooling
layer by max pooling. That is, the maximum feature value
in the pooling window is used to replace the network output
in this area to achieve dimensionality reduction. After that,
all features are combined in the fully connected layer, and
the local features are merged into global features.

(3) Classification Decision. The global features are input into
the softmax classifier to realize the final decision on device
identity. The output of the softmax function is the classifica-
tion probability, expressed in the form of a vector. Each ele-
ment value in the vector is in the interval of [0, 1], and the
sum of all elements is 1. The softmax function [12] is
expressed as follows:

P Y = kjX = xið Þ = exi

∑kⅇxk
, ð3Þ

where k is the device classification type, k ∈ ½0,N�, and N is
the number of devices. The cross-entropy loss function is
used to judge the quality of the model output so as to further
optimize the model parameters. The loss function Li is
related to the proportion of correct classification results,
and the small value indicates better model performance.

Li = − log esyi

∑kⅇsk

� �
: ð4Þ

In the training process of LSTM-CNN model, it is neces-
sary to select the appropriate size and number of hidden
layers to check whether the model can gradually converge.
If the loss function decreases unsteadily or cannot converge
to a reasonable interval, the size and number of hidden
layers should be increased appropriately to improve the fit-
ting ability of the model. The size of the learning rate will
also impact the model convergence process. If the value of

Input: RF data set ω:
Offline training stage:
1. Slice ω to obtain RF signal subsequences set ω′, dimω′=[2, 128]
2. Normalize ω′ to get X for the input of the LSTM-CNN model
3. Add label i to the data set, i ∈ ½0,N�
4. Training process:
(1) Input X and labels into the LSTM units for eigenvectors set H with temporal information
(2) Input H into the CNN network to obtain the classification result on the training set
(3) Adjust the network model parameters according to loss function to obtain a fully trained LSTM-CNN model
Online identification stage:
for new RF data do:
Get the predictive probability set P with trained authentication model, P = fP1, P2,⋯, PNg
if max fP1, P2,⋯, PNg ≥ α then
Py =max fP1, P2,⋯, PNg, the label type corresponding to Py is the classification result
else
Judging that the identity of the unknown node is illegal
Output: identity type of the unknown node.

Algorithm 1: RFID algorithm based on LSTM-CNN.
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Figure 7: Open RF data source.
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loss function fluctuates violently in the convergence process,
the learning rate is supposed to be reduced. Inversely, the
learning rate should be moderately increased if the model
converges too slowly. Furthermore, in this paper, the drop-
out mechanism is introduced to prevent the model from
overfitting.

3.2. Online Identification. Once the LSTM-CNN authentica-
tion model is established, a probabilistic method is devel-
oped to predict the identity of IoT devices based on the
fingerprint database and new RF data. The softmax proba-

bility vector indicates the similarity between the unknown
RF node and the database. When the unknown node con-
nects to the network, the RF baseband signal collected on
the AP side is input into the well-trained LSTM-CNN
authentication model to detect the similarity with the feature
database. The output of the model is expressed as a probabil-
ity set P = fP1, P2,⋯, PNg, where Pi means the similarity
between the unknown node and the i-th device in the
database.

If max fP1, P2,⋯, PNg < α, that is, the RF characteristics
of the unknown node are less similar to the stored devices.
Therefore, the unknown node is judged to be an illegitimate
device, where α represents the decision threshold of the net-
work model.
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Figure 9: LSTM-CNN performance.
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Table 1: Comparison with other popular classification methods.

Schemes RF data source Model Accuracy

Hossein et al. [13]
6 Zigbee devices

(MICAz)

DNN 93.9%

CNN 94%

LSTM 73%

Wang et al. [14]
8 RF devices

embedded in the
NRF24LE1E chip

TL-LSTM 81%

Our scheme
16 USRP X310

devices (ORACLE)
LSTM-CNN 99.68%
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Otherwise, Py =max fP1, P2,⋯, PNg, and the corre-
sponding device type in the database is determined to be
the identity of the unknown node.

Finally, according to the classification result obtained by
the authentication model, the AP decides whether to allow
unknown nodes to access the network, thereby ensuring
wireless security.

3.3. Overall Procedure. The overall procedure of the RFID
scheme for IoT devices based on LSTM-CNN is shown in
Algorithm 1.

4. Simulation Implementation

In this section, we conduct experiments on the open RF
dataset ORACLE to verify the proposed scheme. Then we
analyze the performance of RFID schemes based on CNN,
LSTM, and CNN-LSTM to compare with the proposed
LSTM-CNN schemes. The source of the dataset, network
parameters, and the comparison and analysis of experimen-
tal results are introduced in detail below.

4.1. Source of the Dataset. The dataset we use in this paper
comes from the open RF data source ORACLE collected by
Sankhe et al. [10]. As shown in Figure 7, the scene of the sig-
nal acquisition is an indoor environment with less reflection.
At the same time, there are channel fading and multipath
effects. The framework for IEEE 802.11a compliant datasets
is generated by the MATLAB WLAN toolbox. 16 USRP
X310 transmitters and a USRP B210 radio receiver are used
for data acquisition. The signal is transmitted at the radio
frequency of 2.45GHz and the sampling rate is 5ms/s. This
paper uses the baseband IQ samples obtained when the dis-
tance between communication parties is 2 ft.

4.2. Network Parameters and Results. The LSTM-CNN
model parameters are shown in Figure 8: including 1 LSTM
layer, 3 convolutional layers, 3 pooling layers, 3 dropout
layers, and 2 fully connected layers. The total number of
datasets is 80,000, and the input size of a single sample is 2
× 128. The training set, validation set, and test set are
divided in a ratio of 7 : 1 : 2. The RF dataset is fed into the
LSTM network with a hidden layer size of 128, while the
batch size is 32, then LSTM outputs a feature matrix of 32
× 128 × 128. The convolution kernel size of each convolu-
tional layer is shown in Figure 8. After each convolutional
layer, the ReLU activation function is connected to perform
the nonlinear transformation, and the transformation result
is input to the pooling layer for downsampling. In order to
prevent overfitting, the dropout rate of the model is set to
0.3, and the training result is shown in Figure 9. It can be
seen that with the increase of epoch, the loss gradually
decreases to convergence, and the final test accuracy of the
model is 99.68%, which means this scheme can well identify
the fingerprint difference from the baseband IQ samples and
implement classification of massive similar IoT devices.

Figure 10 shows LSTM-CNN’s classification accuracy for
different length of input subsequences size, where the
amount of information increases as the increasing subse-
quence length.

4.3. Comparison with Other Popular Classification Methods.
As mentioned earlier, with the development of deep learn-
ing, the mainstream classification models used in RFID
schemes include DNN, CNN, and LSTM. Table 1 shows
the comparison between our scheme and other popular
schemes, where Hossein et al. [13] considered three different
deep learning models, DNN, CNN, and LSTM, to identify 6
similar Zigbee devices. Wang et al. [14] used LSTM to iden-
tify 8 RF devices and combined LSTM with transfer learning
(TL) to solve the problem of small sample training.

In order to further verify the gain brought by the LSTM-
CNN model to RFID, this paper compares the performance
of three other network models (CNN, LSTM, and CNN-
LSTM) based on the same RF dataset. The parameter set-
tings are shown in Table 2. The dimension of the hidden
layer in each model is related to the input dimension. In
order to increase the comparability of the experiment, we
maximally unify the network parameters of the models. So
the dimension of the LSTM is adjusted to 256 to adapt to
changes of the network structure in the CNN-LSTM model.

Table 2: Comparison of different network models.

Model Architecture Learning rate Accuracy

CNN

Conv1 (1 × 7, 1 × 5)

0.001 85.41%

Maxpooling (2, 2)

Conv2 (1 × 7, 1 × 5)
Maxpooling (2, 2)

Conv3 (1 × 7, 1 × 5)
Maxpooling (2, 2)

FC1 (256, 128)

FC2 (128, 16)

LSTM
LSTM(128)

0.0001 64.89%
FC(128, 16)

CNN-LSTM

Conv1 (1 × 7, 1 × 5)

0.001 93.36%

Maxpooling (2, 2)

Conv2 (1 × 7, 1 × 5)
Maxpooling (2, 2)

Conv3 (1 × 7, 1 × 5)
Maxpooling (2, 2)

LSTM(256)

FC1 (256, 128)

FC2 (128, 16)

LSTM-CNN

LSTM(128)

0.001 99.68%

Conv1 (1 × 7, 1 × 5)
Maxpooling (2, 2)

Conv2 (1 × 7, 1 × 5)
Maxpooling (2, 2)

Conv3 (1 × 7, 1 × 5)
Maxpooling (2, 2)

FC1 (256, 128)

FC2 (128, 16)
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The calculation method of the final authentication accu-
racy is shown in Formula (5), where Y is the actual device
category, Ypred is the predicted device category, and numtest
is the total number of test data.

Accuracy =
sum Ypred = Y

� �
numtest

: ð5Þ

The authentication accuracy of different network models
is shown in Table 1. Compared with others, the performance
of the LSTM-CNN authentication model is improved by
6%-30%.

When different networks are used as authentication
models, the performance on the same RF dataset is shown
in Figure 11, where (a), (b), (c), and (d) show the confusion
matrix of the authentication results based on LSTM, CNN,
CNN-LSTM, and LSTM-CNN, respectively. The confusion
matrix is a standard format for accuracy evaluation, in which

the rows and columns, respectively, represent the actual and
prediction categories. The performance is proportional to
the concentration of the value on the diagonal.

It can be seen that when LSTM or CNN works alone, the
distribution of the confusion matrix is relatively scattered.
Compared with CNN, the distribution of the confusion
matrix based on CNN-LSTM is more concentrated and the
authentication accuracy is improved. However, the way of
prepending CNN may lose some time information, thus fails
to achieve the best authentication accuracy. The confusion
matrix of LSTM-CNN shows that the authentication results
are highly concentrated on the diagonal, which verifies the
model we proposed can make good use of the temporal cor-
relation of RF data to expand the feature space.

5. Conclusions

Aiming at the inconspicuous discrimination issue of RF fin-
gerprints among massive devices in IoT environment, this
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Figure 11: Authentication results.
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paper proposes an RFID scheme based on LSTM-CNN.
Combining the capacity of LSTM on perceiving the context
information and the excellent classification advantages of
CNN, this scheme makes better use of the long-term depen-
dency of RF signals in the time dimension to achieve the
accurate identification of massive IoT devices. Furthermore,
this paper compares the performance of RFID schemes
based on LSTM, CNN, and CNN-LSTM. The simulation
results show that the performance of the LSTM-CNN model
is improved by 6%-30% compared with other networks,
which means the scheme we proposed can better explore
the characteristics of RF signals and achieve high-precision
identity authentication.
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