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Accurate target detection technology on ships can improve the comprehensive perception ability of weapon equipment. For SAR
ship target detection in complex environments, false and missing alarms are serious. We design a new real-time ship target
detection algorithm 3S-YOLO in SAR images. Firstly, reconstruct the network structure, adjust the relationship between
receptive field and multiscale fusion, and realize the lightweight processing of feature extraction network and feature fusion
network. Then, the network is pruned and compressed by the FPGM pruning algorithm to accelerate the reasoning speed.
Finally, the Varifocal-EIoU loss function is designed to balance the positive and negative samples and overlapping losses and
highlight the contribution of positive samples. To verify the effectiveness of the 3S-YOLO algorithm, verification is carried out
in public datasets SSDD and HRSID. The results show that the accuracy of the model can be improved to 99.2% and 95.6%,
respectively, after optimization. After pruning, the model volume decreased significantly and could be compressed to 190KB.
Model reasoning time can be reduced to less than 3ms. Compared with the current mainstream algorithms, 3S-YOLO has
achieved good results in all aspects to meet the real-time ship target detection in SAR images.

1. Introduction

SAR (synthetic aperture radar) is an active earth observation
system that can be installed on aircraft, satellites, and other
flight equipment. SAR is widely used in ocean supervision,
resource mapping, geographic mapping, and military obser-
vation because of its wide coverage, fast mapping speed, and
high resolution.

Accurate ship detection in SAR images is conducive to
military information acquisition and accurate deployment
of marine firepower. It can monitor relevant sea areas all
day and help the development of the modern high-tech
war. Traditional SAR ship detection algorithms, such as
CFAR [1] (constant false alarm rate), two-parameter CFAR
based on the Gaussian model [2], template matching [3],
wake detection [4], and detection methods based on wavelet
transform [5], mainly rely on artificial classifier design.
Although the calculation speed is fast, the detection effect
is poor, and the design process of the detection algorithm
is complex.

Signal feature extraction and processing is crucial in
object detection. Signal feature extraction for ships is becom-
ing more and more mature; based on VMD and slope
entropy [6] and based on wavelet packet decomposition
and energy entropy [7] have achieved good results in signal
feature extraction for ships. Dispersion entropy-based
Lempel-Ziv complexity entropy [8] provides us a new metric
for signal analysis. This all greatly promotes the develop-
ment of ship feature extraction.

With the explosive development of deep learning, more
and more target detection algorithms based on deep learning
are applied to SAR images. Target detection algorithms
based on deep learning are roughly divided into two catego-
ries: single-stage and double-stage target detection algo-
rithms. The single-stage target detection algorithm is
widely used because of its fast detection speed, high effi-
ciency, and simple edge transplantation, such as SSD [9],
YOLO9000 [10], YOLOv3 [11], YOLOv4 [12], and
YOLOv5. The two-stage target detection algorithm has the
advantages of high detection accuracy and excellent
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detection effect. However, the two-stage algorithm separates
the generation of candidate regions from target classifica-
tion, resulting in large computation and slow detection
speed, such as Fast R-CNN [13], Faster RCNN [14], and
Mask-RCNN [15]. Many scholars have studied SAR ship
target detection based on deep learning.

The difficulty of ship detection in SAR images is as
follows:

(1) Image noise is large. SAR image imaging technology
can cause a lot of speckle noise in the image, as
shown in Figure 1. On the nearshore, the coastal
background is complex, which seriously affects the
ship’s target detection. Complex reef background,
smoke, corner reflector, and other interference infor-
mation seriously affect the improvement of detection
accuracy

(2) The target scale span is large, and the small target is
numerous. Ship targets near the coast have larger
imaging, more targets, and serious overlap. The ship
targets in the far sea are small and numerous, which
are vulnerable to the complex marine environment

(3) Unbalanced dataset and poor generalization ability.
Each kind of SAR shooting angle and height is differ-
ent, resulting in different imaging effects, and the
general degree between different datasets is relatively
weak

(4) The detection algorithm based on deep learning has
a large amount of calculation. Due to the limitation
of edge computing, the conventional deep learning
algorithm is difficult to deploy on the edge

Aiming at the difficulties of ship target detection in SAR
images, the contributions of this paper are as follows:

(1) The network structure 3S-YOLO is designed for
small detection targets and large amounts of network
calculation. The network is reconstructed, and the
feature extraction network and feature fusion net-
work are lightweight processed, respectively

(2) FPGM pruning algorithm is used to prune the
reconstructed network, which greatly reduces the
calculation amount and reasoning speed of the
model

(3) For data imbalance, Varifocal loss is introduced to
train the network to make IACS regression, balance
the proportion of positive and negative samples,
and highlight the contribution of positive samples

(4) For the weak generalization ability of the model, the
Varifocal-EIoU loss function is designed to change
the border regression loss function, balance positive,
and negative samples and improve the detection
accuracy of the detection box

(5) To verify the effectiveness of the algorithm, the pro-
posed lightweight algorithm is verified on SSDD and

HRSID datasets. The detection accuracy of our
method on SSDD and HRSID datasets reached
99.2% and 95.6%, respectively

The paper is arranged as follows: Section 2 introduces
the model lightweight processing and loss function. Section
3 introduces the design of the 3S-YOLO algorithm. Section
4 verifies the algorithm by experiments. Finally, the sum-
mary is presented in Section 5.

2. Related Work

2.1. Lightweight Model Processing. The lightweight network
model can be divided into three types, namely, model width,
model depth, and model length. The comparison of various
lightweight technologies is shown in Table 1. The redundant
information is removed from the network structure, gradi-
ent, and module based on length, depth, and width, respec-
tively, so as to realize the lightweight processing of the
network.

The depth and width of the model will affect the detec-
tion effect in different aspects. The performance of multiple
versions of YOLOv5 is shown in Table 2. The increase of
depth and width can improve the detection accuracy, but
the model volume and calculation amount will increase.
Therefore, the design of a lightweight model and small size,
fast calculation speed has become a hot issue.

2.2. Loss Function. The multitask loss function formula is as
follows:

L = μboxLbox + μclsLcls + μobjLobj: ð1Þ

2.2.1. Lbox Boundary Loss Function. The boundary loss
function is used to calculate the boundary regression loss
between the predicted boundary and the real boundary of
each layer. Location in the network model provides gradient
changes. Common border losses are IoU, GIoU, DIoU, and
CIoU. The formula is as follows:

Lbox = 〠
L

l=1
1 −mean f xIoU boxl,1pre, box

l,1
gt

� �
,⋯, f xIoU boxl,Mpre , box

l,M
gt

� �� �� �
,

ð2Þ

IoU =
boxl,mpre ∩ boxl,mgt
boxn,mpre ∪ boxn,mgt

, ð3Þ

LGIoU = 1 − IoU +
C − boxn,mpre ∪ boxn,mgt

� ���� ���
Cj j , ð4Þ

LDIoU = 1 − IoU −
ρ2 boxl,mpre, box

l,m
gt

� �
c2

, ð5Þ

LCIoU = 1 − IoU −
ρ2 boxl,mpre, box

l,m
gt

� �
c2

+ αϑ, ð6Þ
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ϑ =
4
π2 argsin

ωgt

hgt
− argsin

ω

h

� �2
, ð7Þ

α =
ϑ

1 − IoUð Þ + ϑ
: ð8Þ

The characteristics of each type of loss function are ana-
lyzed as shown in Table 3, which presents the advantages
and disadvantages of the current mainstream loss functions,
respectively.

2.2.2. Lobj Confidence Loss Function. The confidence loss
function is used to calculate the probability of objects in
the prediction box. The confidence between the preselected
box and the real box is calculated using the sigmoid cross-
entropy loss function. The Lobj formula is as follows:

lossl,1obj = − objl,mgt × log δ objl,mpre
� �� �

+ 1 − objl,mgt
� �

× 1 − log δ objl,mpre
� �� �� �� �

,

ð9Þ

Lobj = 〠
L

l=1
mean lossl,1obj, loss

l,2
obj,⋯, lossl,Mobj

� �� �
: ð10Þ

3. 3S-YOLO

YOLOv5 has been widely used because of its low power con-
sumption and fast detection speed. It shows remarkable per-
formance in COCO dataset detection tasks. However, under
the background of high resolution and wide field of view of
SAR images, the original YOLOv5 algorithm is not suitable.
Therefore, this paper designs 3S-YOLO (simplified SAR
image ship detector).

The core idea of 3S-YOLO is to reconstruct the network
structure and lightweight the network model according to
the characteristics of small targets in SAR images. Starting
from the length and width of the network structure, the net-
work redundancy module and parameters are reduced, so
that the network structure is more suitable for ship detection
in SAR images. 3S-YOLO is composed of a reconstructed
lightweight network structure, FPGM pruning, and
Varifocal-EIoU loss function. Firstly, the feature extraction
network is pruned by adjusting the weight of the small target
receptive field. Adjust feature fusion network architecture,
and eliminate redundant feature modules. Then, the width
of the network model is adjusted by using FPGM pruning
to remove redundant parameters. Finally, Varifocal-EIoU
is designed to highlight the contribution of positive samples
while balancing positive and negative samples and overlap-
ping losses so that IACS regression accelerates the conver-
gence speed of model training and improves the accuracy
of the model. 3S-YOLO network architecture as shown in
Figure 2, through the lightweight processing of feature
extraction network and feature fusion network to improve
the detection ability of model SAR ship target, reduces the
amount of calculation and facilitates the deployment of edge.

Figure 1: SAR noise display.

Table 1: Statistical table of model lightweight processing characteristics.

Model Feature Adaptive environment

Length-based
Removing redundant modules based on

network structure
Redesign of network structure based on actual datasets

Depth-based
Removal of redundant feature
information based on gradient

Adjust the feature extraction method of the receptive field
to reduce gradient disappearance

Based on width
(channel)

Removing redundant parameter
based on network module

Wide range of applications, all networks available.
A variety of implementations are implemented by specifying

widths or using pruning techniques. Common pruning techniques include
structured and unstructured pruning

Table 2: YOLOv5 version introduction tables (COCO dataset for
example).

Model Width Depth
mAP/
%

Speed/
ms

params/
M

FLOPs

YOLOv5n 0.25 0.33 36.7 3.5 1.9 4.5

YOLOv5s 0.5 0.33 45.1 4.8 7.2 16.5

YOLOv5m 0.75 0.67 51.7 7.4 21.2 49.0

YOLOv5l 1.0 1.0 53.2 11.9 46.5 109.1

YOLOv5x 1.25 1.33 54.9 20.5 86.7 205.7
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After the above method adjustment, the network struc-
ture of 3S-YOLO reduces the redundant modules and
parameters, making the calculation amount, model volume,
and detection speed greatly improved.

3.1. System Algorithm Details. 3S-YOLO is mainly composed
of reconfigured post-network, FPGM pruning and Varifocal
-EIoU. As shown in Algorithm 1, the training pruning pro-
cess pseudocode is as follows.

3.2. Network Structure Reconstruction. The original YOLOv5
uses 80 × 80, 40 × 40, and 20 × 20 feature maps, and 3S-
YOLO adjusts the receptive field and feature map to adapt
to the feature information of ship targets in SAR images.
The large receptive field size 20 × 20 is eliminated, and 40
× 40 and 80 × 80 feature maps are retained, so that it is more
suitable for ship small target detection in SAR images.

In SAR images, the ship’s target area only occupies a
small part of the image. After convolution layer-by-layer
iteration and downsampling information fusion, the ship
feature information will be lost. Therefore, 3S-YOLO
reduces the loss of underlying feature information by reduc-
ing the number of downsampling and convolution. The
main network structure is shown in Table 4. The improved
feature extraction network has experienced four downsam-
pling and three convolution operations, which reduces the
amount of calculation and parameter while reducing the loss
of small target feature information.

3S-YOLO feature map size is 40 × 40 and 80 × 80; the
original feature fusion network is no longer suitable for the
new feature extraction network, so it is improved.

The improved feature fusion network structure is shown
in Figure 3, and the fusion position of the receptive field is
adjusted. Firstly, the feature fusion of shallow semantic and
deep semantics is carried out, followed by 80 × 80 and 40
× 40 feature maps. Then, the feature fusion of deep seman-
tics and shallow semantics is carried out, and the feature
maps of 40 × 40 and 80 × 80 are fused in turn. The weight
of shallow semantic features is added on the original basis
to reduce the loss of target feature information caused by
convolution.

The 3S-YOLO algorithm structure is shown in Figure 4.
The 3S-YOLO network structure reconstructs the feature
extraction network and the feature fusion network, respec-
tively. Firstly, the feature extraction network CSPDarkNet
is reconstructed to remove the 20 × 20 feature map extrac-
tion module, improve the weight of the small receptive field
of the network, and reduce the calculation amount and vol-
ume of the model. Then, a modified version of CSPDarkNet
feature fusion is performed to achieve the fusion of feature
information of deep and shallow semantics.

3.3. FPGM Pruning. The conventional channel pruning algo-
rithm uses the principle of “small norm less important,”
which uses norm to measure the importance of each filter.
The conventional channel pruning algorithm is limited by
the filter contribution with a large norm standard deviation
range and small norm. FPGM [20] (convolution neural net-
work filtering pruning based on geometric median) prunes
the network according to the substitutability of the filter.
The schematic diagram of the FPGM algorithm is shown

Table 3: Characteristic analysis of loss function.

Loss Merit Defect

IoU [16]
Scale invariance, nonnegative, identity, symmetry,

triangular inequality

If the anchor frames do not intersect, the distance between the
two frames cannot be reflected. Cannot accurately reflect

the coincidence of the two boxes

GIoU [17]
A minimum bounding box with

zero loss without overlap
When the two boxes intersect, the horizontal and vertical

convergence is slow

DIoU [18]
Direct regression of the Euclidean distance between the
center points of two frames to accelerate convergence

The aspect ratio is not considered in the regression process

CIoU [19] Increase detection frame size loss and width loss
The aspect ratio is described as a relative value

Unconsidering difficult sample equilibrium problem

Feature extraction network Feature fusion network

Prediction

Figure 2: 3S-YOLO system architecture.

4 Journal of Sensors



in Figure 5. Break through the limitation of norm-based prun-
ing and realize the transformation from “relatively insignifi-
cant” to “replaceable.” FPGM can retain more abundant
information features and cut more redundant information.

The central idea of the geometric median pruning algo-
rithm is to select the lowest elimination by calculating the
sum of Euclidean distances of each point. First, calculate
the Euclidean distance of each point a (i) compared to other
points:

f xð Þ = 〠
i∈ 1,n½ �

x − a ið Þ
��� ���

2
: ð11Þ

Select a relatively small sum of Euclidean distance filter:

x∗ = argmin f xð Þ: ð12Þ

Based on the robustness of the geometric median in the
convolution space, the common distance of all filters in the
first layer is calculated by using the geometric median

Preliminary work : data set input, training parameter setting, training period epoch
Pruning rate : R
While(FPGM pruning model does not converge or T<epoch)
1.Backbone

Feature information was extracted using Focus, C3 and CBL structures.
x1 = CBLðFocusÞ
x2 = C3ðCBLÞ

2.Neck
Scale change using up-sampling and down-sampling, feature fusion using Concat.
Computational fusion features :

x3 = Concatðx2Þ
3. Prediction layer

Use Varifocal loss to highlight positive sample weights. EIoU anchor frame positioning.
EIoU loss:

LEIoU =L IoU +Ldis +Lasp

Varifocal-EIoU:
LVarifocal−EIoU = Varifocal lossðEIoUÞ

End While
Network compression, redundant parameter elimination after pruning.
Output : pruning and model training convergence network model and weight

Algorithm 1: 3S-YOLO detection algorithm.

Table 4: Reconstructing CSPDarkNet structure.

Module Parameter Filters Size Output

Focus 3520 32 (1, 1) 320 × 320

Conv 18560 64 (3, 3) 160 × 160

C3 18816 64 160 × 160

Conv 73984 128 (3, 3) 80 × 80

C3 146928 128 80 × 80

Conv 295424 256 (3, 3) 40 × 40

SPP 164608 256 (1, 1) (5, 5), (9, 9), (13, 13) 40 × 40

C3 296448 256 40 × 40

CONV Upsampling

C3CONVC3

40×40

80×80

40×40 80×80

Improved
CSPDarknet

Figure 3: Feature fusion network structure diagram.
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calculation method, where each convolution kernel parame-
ter dimension can be expressed as Fi ∈ RNi+1,Ni ,K ,K .

xGM = argmin
x∈RNi∗K∗K

〠
j

′=1Ni+1 x − Fi,j′
�� ��

2: ð13Þ

The pruning of FPGM is based on the fact that the filter
from the geometric center is easily replaced, so it can be
pruned according to the distance from the geometric center
to find the filter closer to the geometric center:

Fi,j∗ = argmin
Fi, j′

Fi,j′ − xGM
�� ��2: ð14Þ

The calculation of geometric center is large and cumber-
some, and the distance between filters is relatively simple, so
only the filter with the smallest sum of distances is
calculated:

Fi,x∗′ = argmin
x

g′ xð Þ, ð15Þ

g′ = 〠
j′∈ 1,Ni+1½ �,Fi, j′≠x

x − Fi,j′
�� ��

2: ð16Þ

Among them, x ∈ fFi,1,⋯Fi,Ni+1
g.

The FPGM algorithm is described as Algorithm 2, where
YOLOv5 is fused with FPGM. First, complete the prepara-
tion before training, and set the pruning rate R; then, the fil-
ter gradient with a small sum of Euclidean distances is
iteratively set to zero during training; finally, after the model
converges, the zero removal operation is carried out in the
reasoning process, and the full zero convolution kernel,
redundant channels, and BN redundant parameters are
removed. Get the final pruning model.

3.4. Varifocal-EIoU. In target detection, sample imbalance
seriously affects the detection effect. High-quality samples
are crucial to the training process of network models. Recent
research designs Focal-EIoU [21] to solve these problems,
but it ignores the contribution of high quality samples in bal-
anced positive and negative samples. Therefore, Varifocal-
EIoU is designed in this section to increase the contribution
of high-quality samples while improving the accuracy of the
model test box.

Pruning

Norm
pruning

Pruning
based on
FPGM

Before
pruning

Feature space
Bottom norm

Medium norm
Higher norm

Figure 5: FPGM pruning schematic.

Focus

CBL

C3

CBL

C3

CBL

SPP

C3

Concat

Upsample

CBL

Backbone

Input

CBL

Concat

C3

Neck Prediction

80×80

40×40

C3

Figure 4: 3S-YOLO network structure.
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Focal loss is commonly used to solve the problem of pos-
itive and negative sample imbalance. The focal loss function
is as follows:

FL p, yð Þ =
−α 1 − pð Þβ log pð Þ if y = 1,

− 1 − αð Þpβ log 1 − pð Þ otherwise,

(
ð17Þ

where p is the prediction probability of the target class, and
the range is [−1, 1]; y is the real positive and negative sample
category, with the value of 1 or −1; α is an adjustable propor-
tional factor; ð1 − pÞβ is the target modulation factor; and pβ

is the background modulation factor. The two types of mod-
ulation factors can reduce the contribution of simple sam-
ples, increase the importance of false samples, and
effectively increase the attention to difficult samples. This
allows focal loss to use weighted methods to solve the class
imbalance problem in IACS regression training. Focal loss
uses an equal way to deal with positive and negative samples,
and in the actual detection, the contribution of positive sam-
ples is more important. Therefore, the focal loss is improved.
Varifocal loss is based on binary cross entropy loss, and the
focal loss weighting method is used to deal with the category
mismatch problem in the IACS training regression process.

VFL p, qð Þ =
−q q log pð Þ + 1 − qð Þ log 1 − qð Þð Þβ q > 0,

−αpβ log 1 − pð Þ q = 0,

(

ð18Þ

where p is the predicted value of IACS, representing the tar-
get score, and q is the classification condition. For the target
class, the q value of the positive sample class is set to the IoU
value between the check box and ground truth (gt_IoU);
otherwise, it is set to 0. For the background category, the tar-
get q values of all categories are 0. As shown in the formula,
Varifocal loss uses the pβ scaling factor to process the nega-
tive sample, rather than the positive sample. This highlights
the contribution of positive samples.

YOLOv5 uses CIoU as the loss calculation. CIoU takes
into account the overlapping area, center distance, and

aspect ratio of the border, but there is a vague description
of aspect ratio, not considering the difficult sample balance
problem, and ignoring the loss caused by height and width.
So 3S-YOLO uses EIoU to calculate the loss. EIoU loss func-
tion is as follows:

LEIoU =L IoU +Ldis +Lasp: ð19Þ

EIoU divides the loss into three parts based on CIoU:
overlapping loss, center distance loss, and width-height loss.

LEIoU = 1 − IoU +
ρ2 b, bgt
� 	
c2

+
ρ2 w,wgtð Þ

c2w
+
ρ2 h, hgt
� 	
c2h

:

ð20Þ

Among them, cw and ch are the minimum box width
between the target box and the real box. In the frame loss,
the width-height loss of EIoU converges faster, which makes
the frame accuracy higher.

By integrating EIoU loss and Varifocal loss, we obtain
the final Varifocal-EIoU loss, which highlights the contribu-
tion of positive samples while balancing positive and nega-
tive samples with overlapping losses.

LVarifocal−EIoU = Varifocal loss EIoUð Þ: ð21Þ

Figure 6 shows the prediction architecture of EIoU-
Varifocal network. In the head structure, EIoU-Varifocal
mainly realizes the regression and optimization of boundary
frames. By changing the loss function and adjusting the dis-
tance vector, the precise positioning of the boundary frame
is realized.

4. Experiment

The configuration of this experiment is as follows: operating
system: Ubuntu 16.04 and CUDA10.2; GPU configuration:
NVIDIA RTX1660ti, 6GB memory, and call GPU training;
and framework: PyTorch.

Preparations: input training data:X
given pruning rate R.

1: Initialize:model parameter W=1
2: for epoch =1; epoch ≤ epoch_max; epoch ++ do
3: Update the model parameter W based on X
4: for i =1; i ≤ L; i ++ do
5: Calculate: the sum of N Euclidean distances
6: end for
7: Find the relatively small number of N ∗ R filters
8: Zeroize the selected filter gradient
9: end for
10: Obtain the pruning model with zeroing model W# from W
11: Remove zero parameters from the model W∗
Output: The pruning model and its parameters W∗

Algorithm 2: FPGM description.

7Journal of Sensors



4.1. SAR Ship Dataset. In order to verify the detection effect
of the SAR ship target, the dataset used in this paper is SSDD
(SAR ship detection dataset) and HRSID. A total of 1160
SSDD datasets marked 2456 ships. The dataset contains a
variety of resolution images, and the marine environment
is diverse. It has rich characteristic information on offshore
and large scale. It is widely used in ship target detection of
multiresolution imaging. HRSID dataset constructed 5604
images based on Sentinel-1B, TerraSAR-X, and TanDEM-
X images, marking 16951 ships. Since the original dataset
only contains one category of ships and the generalization
ability is relatively weak, it is expanded, and 356 background
SAR images are added. In this experiment, SSDD and
HRSID datasets were randomly divided into a training set,
verification set, and test set according to the ratio of 3 : 1 : 1.

4.2. Evaluating Indicator. The main indicators used to eval-
uate the algorithm by computer vision are mAP (mean
average precision), P (precision), and R (recall). Among
them, the accuracy rate is the proportion of samples pre-
dicted to be positive and actually positive; the recall rate
is the proportion of correct detection in positive samples.
The calculation formulas of accuracy, recall, and average
accuracy are as follows:

Recall = TP
TP + FN

, ð22Þ

Precision =
TP

TP + FP
, ð23Þ

AP =
ð1
0
P Rð Þ, ð24Þ

mAP =
∑c

j=1APj

c
, ð25Þ

F1 = 2 ×
Precision × Recall
Precision + Recall

, ð26Þ

where TP (true positive) is the positive sample with true
test results, FN (false negative) is a positive sample whose
result is not true, FP (false positive) is a true negative sam-
ple, and AP is the accuracy of a single category. The mAP
is the average accuracy for all categories; c is the number
of categories.

4.3. Parameter Optimization of Anchor Frame. The size of
the preselection box is controlled by human factors. This
algorithm reconstructs the network structure, so the original
anchor frame size is not suitable for the reconstructed net-
work. In order to improve the training accuracy and regres-
sion speed, K-means clustering and genetic algorithm are
used to analyze and cluster the size of the preselection box,
and the most suitable size is obtained.

The allocation of anchor frames is shown in Table 5. The
20 × 20 feature map is deleted on the original basis, and the
40 × 40 and 80 × 80 feature maps are retained to realize the
adjustment of the receptive field. Make it more suitable for
ship detection in SAR images.

4.4. Model Pruning Comparison. The comparison of the cal-
culation amount of model pruning is shown in Table 6.
From the data point of view, with the increase in pruning
rate, the network calculation amount, the number of param-
eters, the model volume, and the reasoning time all decrease.
The amount of calculation, parameters, and model volume
decrease along the line; when the pruning rate is less than
50%, the reasoning time decreases significantly; when more
than 50%, reasoning time changes slowly. Compared with

Head

Head

H×W×256

Boundary frame
feature 

prediction

Boundary frame 
feature 

prediction

H×W×256 H×W×256

H×W×256 H×W×256 H×W×4

EIOU loss EIOU loss

Varifocal loss

H×W×256 H×W×C

H×W×4

H×W×256 H×W×4

Backbone Feature pyramid

×3

×3

EIOU-VarifocalNET head

ΔBbox_Pred

(Δl, Δt, Δr, Δb)

Bbox_Pred_Refine
(l, t, r, b)

Bbox_Pred

(l
′
, t
′
, r
′
, b
′
)

IOU-aware
Cls_score

Figure 6: The network architecture of EIoU-Varifocal.

Table 5: Setting anchor boxes on different datasets.

Dataset
40 × 40 80 × 80

Medium receptive field Little receptive field

SSDD

(29, 70) (18, 14)

(125, 49) (16, 38)

(58, 144) (39, 21)

HRSID

(49, 16) (9, 13)

(37, 33) (18, 11)

(146, 149) (18, 36)
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YOLOv5s, 3S-YOLO has lower resource consumption and
faster reasoning speed under the same pruning rate. The
minimum volume of the 3S-YOLO model can be com-
pressed to 0.2MB, the minimum amount of calculation
can be reduced to 0.5 GFLOPs, and the minimum reasoning
speed can be reduced to 2.732ms.

The comparison of model pruning performance is
shown in Table 7. As the pruning rate increases, the detec-
tion performance of the model decreases. The detection
results on SSDD and HRSID datasets show that the detec-
tion accuracy AP of the model decreases with the increase
of the pruning rate. When the pruning rate is 90%, the per-
formance of the model decreases most.

As the pruning rate increases, the detection performance
decreases. We propose to design Varifocal-EIoU for fine-
tuning after pruning the model. As shown in Table 8, the
performance indicators of the model are partially recovered
after fine-tuning. Among them, when the pruning rate is
90%, the performance recovery is the most. Among them,
the average detection accuracy is increased by 3.1% in the
SSDD dataset and 3% in the HRSID dataset. This also ver-
ifies the effectiveness of our Varifocal-EIoU algorithm.

4.5. Experimental Results and Analysis. To verify the effec-
tiveness of each improvement point in 3S-YOLO in SAR
image ship detection, ablation experiments are conducted

Table 6: Statistical table of model pruning calculation.

Model
Based on YOLOv5s Based on 3S-YOLO

FLOPs (GFLOPs) Parameters Volume/MB Runtime/ms FLOPs (GFLOPs) Parameters Volume/MB Runtime/ms

0.1 prune 13.9 5861553 11.6 6.510 9.1 1335541 2.8 4.486

0.2 prune 11.6 4740130 9.22 5.626 7.6 1081299 2.2 3.967

0.3 prune 9.4 3752608 7.53 5.141 6.1 851234 1.8 3.648

0.4 prune 7.5 2863963 5.63 4.618 4.9 650480 1.3 3.265

0.5 prune 5.6 2085510 4.27 4.375 3.7 471860 1.0 2.982

0.7 prune 2.8 916402 1.98 4.303 1.9 210467 0.5 2.922

0.8 prune 1.7 499328 1.16 4.273 1.1 113218 0.3 2.881

0.9 prune 0.8 193115 0.56 4.249 0.5 44848 0.2 2.732

Table 7: Comparison of performance indexes of datasets with different pruning rates (pruning model is network reconstructed model).

Model
SSDD HRSID

Precision (%) Recall (%) AP (%) F1 (%) Precision (%) Recall (%) AP (%) F1 (%)

0.1 prune 96.7 95.6 98.8 96.1 93.8 88.0 94.1 90.8

0.2 prune 96.5 95.2 98.7 95.8 93.2 87.6 94.0 90.3

0.3 prune 96.6 94.9 98.6 95.7 92.6 87.8 93.8 90.1

0.4 prune 96.3 95.2 98.1 95.7 92.9 87.2 93.3 90.0

0.5 prune 96.1 94.0 97.5 95.0 91.7 85.9 92.7 88.7

0.6 prune 95.1 92.9 97.1 94.0 91.1 85.1 92.1 88.0

0.7 prune 91.9 95.5 96.9 93.7 91.2 83.5 90.7 87.2

0.8 prune 94.7 89.0 96.7 91.8 88.9 79.3 88.0 83.8

0.9 prune 92.8 82.4 92.4 87.3 86.0 72.9 82.1 78.9

Table 8: Comparison of performance indexes of different pruning rates after Varifocal-EIoU fine-tuning.

Model
SSDD HRSID

Precision (%) Recall (%) AP (%) F1 (%) Precision (%) Recall (%) AP (%) F1 (%)

0.1 prune 97.9 97.0 99.0 97.4 93.9 90.1 95.0 92.0

0.2 prune 97.7 97.0 98.8 97.3 93.3 88.9 94.6 91.0

0.3 prune 95.4 94.7 98.7 95.0 93.0 88.9 94.3 91.0

0.4 prune 95.3 94.7 98.4 95.0 93.3 86.6 93.8 89.8

0.5 prune 95.9 94.1 97.9 95.0 92.9 86.4 93.3 89.5

0.6 prune 95.5 92.8 97.6 94.1 92.3 86.4 92.9 89.3

0.7 prune 93.6 93.8 97.5 93.7 92.1 85.1 92.4 88.5

0.8 prune 94.7 92.0 97.1 93.3 89.0 82.7 89.3 85.7

0.9 prune 93.3 87.7 95.5 90.4 89.4 76.0 85.1 82.2
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Table 9: Ablation experiment.

Algorithm Network reconfiguration Varifocal-EIoU Prune
SSDD HRSID

P/% R/% mAP/% P/% R/% mAP/%

YOLOv5s 93.9 92.8 97.2 91.5 85.0 92.8

A √ 97.2 95.7 98.9 94.4 88.9 94.5

B √ 96.7 96.9 98.9 93.8 89.7 94.1

C √ √ 98.1 97.1 99.2 94.2 91.5 95.67

D √ 50% 96.1 94.0 97.5 91.7 85.9 92.7

E √ √ 50% 95.9 94.1 97.9 92.9 86.4 93.3

F √ 90% 92.8 82.4 92.4 86.0 72.9 82.1

G √ √ 90% 93.3 87.7 95.5 89.4 76.0 85.1

Table 11: Performance comparison of different algorithms for HRSID.

Method Backbone Precision (%) Recall (%) AP (%) FLOPs (GFLOs) params Runtimes (ms)

Libra R-CNN [23] ResNet 101-FPN 83.1 77.9 77.5 182.6 60.4 57.6

Cascade R-CNN [24] ResNet 101-FPN 89.9 79.3 79.2 209.7 87.9 64.7

Faster R-CNN ResNet 101-FPN 88.8 77.5 78.2 181.9 60.1 56.1

CR2A-Net [25] ResNet 101-FPN 88.5 78.9 80.9 212.5 88.6 77.3

DAPN [26] ResNet 101-FPN 88.9 77.6 79.8 266.1 63.8 74.9

RetinaNet [27] ResNet-101-FPN 69.8 83.8 82.5 175.4 55.1 55.0

SSD512 SSD-VGG 87.4 85.3 88.8 87.7 24.4 44.8

YOLOv3 Darknet-53 90.6 78.2 87.2 121.0 61.5 26.0

YOLOv4 CSPDarknet-53 90.6 84.0 90.1 110.5 64.3 22.4

YOLOv5 CSPDarknet-53 91.5 85.0 92.8 16.4 7.1 9.8

[22] Darknet-53 92.7 88.1 90.3 123.5 65.8 37.3

FCOS [28] ResNet 101-FPN 91.9 79.5 86.6 170.6 50.8 50.9

CenterNet [29] DAL-34 81.8 87.4 86.3 63.3 20.2 55.0

CenterNet++ [30] DAL-34 82.2 87.3 86.3 64.9 20.3 54.5

Our CSPDarknet-53 94.2 91.5 95.7 11.3 1.9 5.1

Our (0.7 prune) CSPDarknet-53 92.1 85.1 92.4 1.9 0.2 2.9

Table 10: Performance comparison of SSDD with different algorithms.

Method Backbone Precision (%) Recall (%) AP (%) FLOPs (GFLOs) params Runtimes(ms)

Libra R-CNN [23] ResNet 101-FPN 88.6 88.6 89.9 83.0 60.4 30.2

Cascade R-CNN [24] ResNet 101-FPN 94.3 89.9 89.5 110.4 87.9 38.8

Faster R-CNN ResNet 101-FPN 90.9 87.6 88.3 82.7 60.1 30.2

CR2A-Net [25] ResNet 101-FPN 94.0 87.8 89.8 112.0 88.6 67.2

DAPN [26] ResNet 101-FPN 87.6 91.4 90.1 117.2 63.8 34.5

RetinaNet [27] ResNet-101-FPN 81.6 92.3 89.6 71.8 55.1 30.2

SSD SSD-VGG 92.9 88.0 94.0 87.7 24.4 30.2

YOLOv3 Darknet-53 90.7 94.7 95.0 49.6 61.5 10.4

YOLOv4 CSPDarknet-53 93.6 94.0 96.1 45.3 64.3 12.9

YOLOv5 CSPDarknet-53 93.9 92.8 97.2 16.4 7.1 8.8

[22] Darknet-53 95.1 94.5 94.8 50.6 65.8 16.4

FCOS [28] ResNet 101-FPN 94.4 85.6 88.7 69.8 50.8 25.9

CenterNet [29] DAL-34 93.3 94.5 93.5 25.9 20.2 21.5

CenterNet++ [30] DAL-34 92.6 94.5 92.7 26.6 20.3 21.5

Our CSPDarknet-53 98.1 97.1 99.2 11.3 1.9 5.1

Our(0.8 prune) CSPDarknet-53 94.7 92.0 97.1 0.5 0.1 2.9
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on SSDD and HRSID datasets. The ablation experiments are
shown in Table 9, and the results show that 3S-YOLO
improves the detection accuracy of the model after both net-
work reconstruction and Varifocal-EIoU optimization, and
at the same time, the accuracy and recall rate are also
improved.

On the SSDD dataset, model reconstruction can improve
the accuracy of the model by 3.3%, and the average detection

accuracy can be improved to 98.9%. Varifocal-EIoU can
greatly improve the recall rate by about 4.1%, and the aver-
age accuracy can be increased to 98.9%. After 3S-YOLO net-
work reconstruction and Varifocal-EIoU, the average
accuracy of the model can be improved to 99.2%, and the
recall and accuracy are increased by 2.8% and 4.1%, respec-
tively. After 50% pruning, the average detection accuracy of
the model decreased by about 1.5%. At a 90% pruning rate,

(a)

(b)

(c)

Figure 7: Detection effect under different models.

Figure 8: Detection effect of different pruning rates on offshore single vessel (the pruning rates (a–e) were 10%, 30%, 50%, 70%, and 90%).
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the average accuracy of the model decreases by 6.5%, and the
detection accuracy can be restored by 3.1% through Varifo-
cal-EIoU.

On the HRSID dataset, model reconstruction can
improve the accuracy of the model by 2.9%, and the average
detection accuracy can be improved to 94.5%. Varifocal-
EIoU can greatly improve the recall rate by 4.7%, and the
average accuracy can be improved to 94.1%. After 3S-

YOLO network reconstruction and Varifocal-EIoU, the
average accuracy of the model can be improved to 95.67%,
and the recall and accuracy are increased by 2.7% and
6.5%, respectively. When the pruning rate was 50%, the
average detection accuracy of the model decreased by about
3.0%. At a 90% pruning rate, the average accuracy of the
model decreased by 10.5%, and it could be restored to
85.1% by Varifocal-EIoU.

Figure 9: Detection effect of different pruning rates on offshore small target ships.

Figure 10: Effect of different pruning rates on detection of offshore dense ships.

Figure 11: The detection effect of different pruning rates on offshore sparse ships.
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4.6. Comparison with Advanced Algorithms. In order to ver-
ify the advancement of the 3S-YOLO algorithm, a compara-
tive experiment is carried out on the algorithm, and it is
compared with the mainstream algorithm.

In the SSDD dataset, the algorithm comparison is shown
in Table 10. When only the average accuracy (without prun-

ing) is considered, the average accuracy of 3S-YOLO can be
improved to 99.2%, which is better than all methods. Com-
pared with classical algorithms based on R-CNN, namely,
Libra R-CNN, Cascade R-CNN, and Faster R-CNN, our
method improves by about 9.3%-10.9%. Compared with
classical single-stage algorithms, namely, RetinaNet, SSD,

Figure 12: Detection effect of 3S-YOLO algorithm in complex background (detection model is reconstructed network +0.1prune +
Varifocal-EIoU, model only 2.8MB).
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YOLOv3, YOLOv4, and YOLOv5, our method improves by
about 2%-9.6%. Compared with FCOS and CenterNet with-
out anchor frames, it increased by 10.5% and 5.7%. It is
improved by 4.4%-9.1% compared to other improved ship
detection algorithms.

In the HRSID dataset, the algorithm comparison is
shown in Table 11. When only the average accuracy (no
pruning) is considered, the average accuracy of 3S-YOLO
can be improved to 95.7%, which is better than all methods.
Compared with the classical algorithm based on R-CNN,
namely, Libra R-CNN, Cascade R-CNN, and Faster R-
CNN, our method increases by about 16.5%–18.2%. Com-
pared with single-stage classical algorithms, namely, Retina-
Net, SSD, YOLOv3, YOLOv4, and YOLOv5, our method
improves about 2.9%-13.2%. Compared with FCOS and
CenterNet without anchor frames, it is increased by 9.1
and 9.4. It is improved by 5.4%-15.9% compared to other
improved ship detection algorithms [22]. Our method is
competitive. In addition, for different use environments,
we can reduce the amount of calculation by adjusting the
pruning rate to meet the requirements of different environ-
ments and various real-time detection requirements.

Overall, the 3S-YOLO algorithm has great advantages in
model volume, average accuracy, and reasoning time, which
can meet the basic needs of real-time ship monitoring in
SAR images.

4.7. Experimental Effect and Analysis. In order to verify the
actual detection effect of the algorithm, images are randomly
selected in the verification set for verification. These images
include far-sea and near-sea, multiple ships and single ships,
small targets and large targets, and overlapping and non-
overlapping categories. Figure 6 shows the comparison and
visualization results with the baseline model. Figures 7–11
show the single ship the offshore, small target the offshore,
dense ship the offshore, and sparse ship the offshore with
different pruning rates. Figure 11 shows the visual result of
the detection effect in complex background.

Figure 7(a) is the real test result, Figure 7(b) is the
YOLOv5s baseline test result, and Figure 7(c) is the 3S-
YOLO test result. 3S-YOLO has higher detection confidence
than YOLOv5s and a lower missed detection and false detec-
tion rate.

Figures 8–11(a)–(e) are pruning rates 10%, 30%, 50%,
70%, and 90%, respectively. The detection results of a single
ship and a small target ship in the sea are excellent; with the
increase of pruning rate, the miss detection rate of offshore
ship target detection will not increase, and the confidence
is high. In offshore detection, the detection effect of sparse
targets is excellent, but there is a problem of increasing
missed detection rate in offshore dense target detection.
When the pruning rate is less than 50%, there is no missing
detection problem for offshore dense targets. When the
pruning rate is 70% and 90%, a ship’s missing detection
occurs in the model.

In order to increase the display of the model detection
effect, the detection effect diagram under complex back-
ground is shown in Figure 12. The detection model is the
reconstructed network +0.1prune + Varifocal-EIoU, and

the model is only 2.8MB. The test results show that the
model can maintain high detection ability in complex back-
grounds, and the missed detection rate and false detection
rate of the model are low.

To sum up, 3S-YOLO has excellent detection effect in
different complex environments at sea. When the pruning
rate is high, the calculation amount and volume of the model
are significantly reduced, and the detection effect will not be
reduced in the detection of sparse targets in the offshore and
offshore areas. However, in the face of dense targets in the
offshore area, the missed detection rate will increase.

5. Conclusions

The ship attack effect of weapon equipment is greatly
affected by the target detection effect. Accurate detection of
ships can help strengthen science and technology and
improve maritime combat and security capabilities. In order
to better detect ship targets, this paper designs a 3S-YOLO
algorithm, which takes into account the detection effect,
and the model is more lightweight. Meet real-time detection
in different scenarios. 3S-YOLO firstly designs the network
structure according to the ship target characteristics of the
SAR image; then, the redundant information is pruned by
a pruning algorithm; finally, the Varifocal-EIoU loss func-
tion is designed to change the border regression loss func-
tion, balance positive, and negative samples and improve
the detection accuracy of the detection box. The algorithm
verification was carried out on SSDD and HRSID datasets,
respectively, and the indicators of the 3S-YOLO algorithm
were better than those of the original model. Compared with
the current mainstream SAR image ship inspection algo-
rithm, it has achieved excellent results. The accuracy of the
3S-YOLO algorithm can reach 99.2% and 95.67%, respec-
tively. The minimum model volume can be reduced to
190.3KB, and the minimum reasoning speed can reach
2.732ms. Detection speed and model volume have great
advancements.

Data Availability

The publicly available datasets used in this paper are SSDD
(SAR ship detection dataset) and HRSID. 1160 data are
available in SSDD, tagging 2456 ships. The dataset contains
images of various resolutions, and the ocean environment
is diverse. The HRSID dataset is constructed based on Senti-
nel-1B, TerraSAR-X, and TanDEM-X images with 5604
images, tagging 16951 ships.
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