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5G intelligent sensor network technology realizes the perception, processing, and transmission of information. It forms the three
pillars of information technology together with computer technology and communication technology and is an important part of
the Internet of Things technology. The 5G smart sensor network is a wireless communication module added to the sensor nodes,
and a wireless communication network is formed by a large number of stationary or movable sensor nodes in the form of self-
organization and multihop transmission. This paper proposes a keypoint feature extraction method based on deep learning,
which can extract keypoint local features for matching. This method uses the convolutional network structure, which is
pretrained based on the Siamese network structure and then adjusted to the ternary network structure to continue training to
improve the accuracy. This paper proposes a high-art visual communication image classification based on multifeature
extraction and classification decision fusion. In the data preprocessing stage, the correlation alignment algorithm is performed
on the datasets of different domains (source domain and target domain) to reduce the difference in spatial distribution, and
then, a multifeature extractor is designed to extract artistic visual communication images and spatial information. In the
process, the multitask learning method is introduced to jointly train the networks of multiple data sets to reduce the degree of
overfitting of the model, solve the problem of insufficient labeled samples in the target domain data set, and affect the
classification accuracy of high-art visual communication images. Finally, the classification results are obtained through the
fusion of voting decisions. The experimental results show that the advantage of this framework is that it utilizes the artistic
visual communication image and spatial structure information from the source and target scenes, which can significantly
reduce the dependence on the number of labeled samples in the target domain and improve the classification performance. In
this paper, a dual-channel deep residual convolutional neural network is designed. The multiple convolution layers of the
residual module in the network use hard parameters to share, so that the deep feature representation on the joint spatial
spectrum dimension can be automatically extracted. The features extracted by the network are transferred to maximize the
auxiliary role of the labeled samples in the source domain and avoid the negative transfer problem caused by the forced
transfer between irrelevant samples.

1. Introduction

With the rapid development of the information age, the
Internet of Things, cloud computing, and big data are
known as the three major technologies that change society
[1]. The Internet of Things realizes the complete integration
of the physical world and the information world through
information exchange and communication and forms a
complete informatization of the real environment, which is
changing the way of life of human beings step by step. 5G
smart sensor networks are widely used in many fields such

as environmental monitoring, medical care, intelligent sys-
tems, military command, traffic planning, and disaster res-
cue [2].

However, most of 5G smart sensor networks work in
areas where the environment is harsh and even unreachable
by humans and are usually deployed randomly in the mon-
itoring area by means of rocket launch, aircraft seeding, etc.
Evolutionary algorithm is a kind of intelligent algorithm,
which simulates the genetic laws of human genes, such as
genetic algorithm, genetic programming, and evolution
strategy [3]. Bionic algorithms are another type of intelligent
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algorithms, mainly imitating the way swarming animals
(such as bats, frogs, and birds) find food. The “Curse of
Dimensionality” should be avoided in feature selection,
and the computational load brought by the operation of
high-dimensional feature space will bring a nonnegligible
obstacle to subsequent processing [4–6].

Feature extraction is the process of transforming or
encoding image patches near keypoints into vectors. During
the transformation process, the abstract features of the
image are transformed into vectors that are easier for com-
puters to process, and such vectors are called local features.
This paper will introduce the image feature extraction
method based on deep convolutional network. We perform
task-specific feature transfer in the feature output layer of
the deep residual convolutional neural network, the deep
features extracted from the source and target domains are
crossed into the source domain and target domain classifiers,
respectively, and the discriminator is based on the classifier
pair. The classification results of the features and the preset
threshold determine whether the features from the source
domain play an auxiliary role in the classification of the tar-
get domain, so as to realize the sample screening of the
source domain and avoid forced migration between irrele-
vant samples, which can avoid the model to the source
domain. The fitting of the data further improves the accu-
racy of the target domain classification model.

The experimental results compared with traditional clas-
sification methods that only use art visual communication
image features or single spatial features illustrate the superi-
ority of our method based on multifeature extraction and
decision fusion on three real high art visual communication
image datasets, which proves that the combinatorial strategy
of our model is very effective. It can significantly reduce the
dependence on the number of labeled samples in the target
domain and improve the classification performance. At the
same time, experiments demonstrate that our proposed
method can show stable classification performance in differ-
ent cross-scene high-art visual communication image
datasets.

2. Related Work

In order to make the information obtained by the decoder
not completely represent the entire sequence due to the
length of the output vector of the encoder, it can also have
a certain degree of transparency and interpretability. Instead
of inputting data to the neural network to operate like a
black box, the attention mechanism helps us perceive by
observing the internal processes of how their environment
behaves, ignoring other irrelevant information [7, 8]. It
derives various variants and can be used in various applica-
tion scenarios. It is based on emotion recognition based on
the fusion of text and audio. The combination of text and
audio adopts a multijump attention mechanism, which is
like reading comprehension. The researchers assumed atten-
tion as a latent variable with a lower bound on the prior and
posterior was not forgotten to learn, thereby improving the
performance of the model without increasing the model

parameters [9]. It can get good results in combination with
other networks in various scenarios.

The most common method of transfer learning in the
image classification of cross-high art visual communication
is to directly add source domain samples to the training set
and expand the available training set; it can manually
increase the training set or use a different data set as the data
source before training to fulfill. It is often used in conjunc-
tion with fine-tuning techniques that use training samples
from two domains, assuming they have the same features,
first pretrain the network on the first domain with rich train-
ing samples. Through the partial transfer and adaptation of
the model, the training is updated with the second domain,
and the weights are updated to suit the actual problem.

Even in different high art visual communication image
scenes, art visual communication images with the same
ground cover category may have different distributions,
and this method is affected by art visual communication
image drift, baseline drift, and high-frequency noise [10].
In practical scenarios, it is rare to directly borrow relevant
datasets and provide training samples. In recent years, trans-
fer learning has been combined with deep learning, and deep
neural networks (DNNs) exploit the high-level features of
data, which can help minimize the semantic gap between
different domains [11]. In the high-level feature space, the
data differences and biases from the two domains are
smaller.

Related scholars proposed to build an autoencoder
(SAE) and correlate the source and target domains in the
deep network layer by layer through canonical correlation
analysis (CCA), so as to connect the higher-level features
of the source and target domain data [12]. Unlike most exist-
ing methods, the proposed classification framework does not
require prior knowledge of the target domain, and the pro-
posed classification framework is suitable for both homoge-
neous high-art visual communication image data and
heterogeneous high-level image data [13].

Relevant scholars quantify the transferability of each
layer of the neural network by migrating the bottom, middle,
and top feature layers of the deep neural network and
observing the impact of different transfer features on the
classification accuracy of the target domain network, reveal-
ing the universality or particularity [14]. At the same time, it
is proved that the transferability of features decreases with
the increase of the distance between the base task and the
target task, and initializing the target domain network with
almost arbitrary layer parameters of the source domain net-
work can produce generalization effects, even when the tar-
get dataset is processed. After fine-tuning, generalization
persists [15, 16]. The current mainstream domain adapta-
tion algorithms focus on subspace-based learning methods,
which aim to align data from two domains well with each
other through spatial projection mapping [17].

Related scholars proposed a subspace alignment (SA)
algorithm based on principal component analysis, which
uses matrix transformation to align the source subspace with
the target subspace as much as possible [18]. The researchers
process the features of the convolutional neural network as
tensors and obtain their invariant subspace through Tucker
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decomposition [19]. There are currently some studies
assuming that the data from these two fields lie on the Grass-
mann manifold, and related scholars have introduced the
SGF manifold method, which follows the geodesic path con-
necting the source subspace and the target subspace to a lim-
ited intermediate subspace. It is believed that the subspaces
of both datasets can be reconstructed or clustered with low
rank. Related scholars have proposed a robust domain-
adaptive low-rank reconstruction (RDALRR) method, which
uses target samples to linearly reconstruct the transformed
intermediate representation in the source domain [20–22].

3. Methods

3.1. System of 5G Smart Sensor Network. 5G smart sensor
networks usually include sensor nodes (information collec-
tion), sink nodes (transmission medium), and task manage-
ment terminals (task assignment and data aggregation
processing). The network is composed of nodes with envi-
ronmental awareness through ad hoc mode [23, 24].
Through the division of labor and cooperation among
nodes, real-time perception and collection of the monitoring
area are realized, and the collected data is transmitted to the
task management terminal through the wireless network
[25–27].

The sensor is powered by its own microbattery, so it can-
not support high computing power, communication power,
and storage capacity. The data acquisition module is respon-
sible for collecting the data information of the monitoring
area and converts the analog signal into a digital signal
through the A/D circuit. The data processing module pro-
cesses the collected data according to the user’s needs. The
wireless communication module transmits and receives
information between nodes. The energy supply module pro-
vides electrical energy for each module of the sensor [28].

3.2. Bionic Computation Mechanism of Intelligent
Optimization Algorithm. The bionic computing mechanism
of the intelligent optimization algorithm is usually com-
pleted by three steps: initializing the population, updating
the individual, and updating the population. Among them,
determining the solution form of the problem refers to using
coding operations on the problem solution space before the
intelligent algorithm solves the problem, expressing the spe-
cific problem in a certain form. The evaluation function
refers to evaluating the solution of the obtained problem,
selecting excellent individuals, and eliminating poor individ-
uals to search for the optimal solution of the problem; local
search by itself means that individuals search near the orig-
inal solution. Relying on the group solution to update itself
refers to constantly updating its own position by communi-
cating with other individuals in the population. Individual
update to achieve group update means that the group update
mainly relies on individual update to complete. Update
means that some intelligent algorithms divide the group into
multiple subgroups, each subgroup searches independently,
communicates with each other, and uses the mixed update
between the subgroups to achieve the overall evolution of
the population; the selection mechanism to achieve group

update means that when the population is updated. Individ-
uals are used to ensure that the population evolves in a better
direction, and poor individuals are retained to maintain the
diversity of the gene pool.

The intelligent optimization algorithm is a probabilistic
search algorithm, which is very different from the traditional
optimization algorithm. When solving problems, the biggest
feature of intelligent algorithms is that they do not depend
on the strict mathematical nature of the problem, do not
need to establish an accurate mathematical model of the
problem, and hardly need any prior knowledge of the prob-
lem to inspire. It is suitable for solving problems that are dif-
ficult to establish mathematical models or using traditional
methods. Compared with traditional algorithms, intelligent
optimization algorithms have the following advantages.

(1) Incremental optimization

The intelligent optimization algorithm starts from a ran-
domly generated feasible solution, and after iterative calcula-
tion, the results of the new generation are better than the
previous generation, and the optimal solution can be
obtained in a very short time.

(2) Guided search

The intelligent optimization algorithm is a guided ran-
dom search, which guides the search process to move in a
more optimal direction according to the fitness function.

(3) Global optimal solution

The intelligent optimization algorithm uses the group
search method, multipoint parallel search, to increase the
search range of feasible solutions, and the group has the abil-
ity to memorize the optimal individual, which can focus on
searching for high-performance intervals, and it is easy to
jump out of the local extremum solution to search for the
global optimal solution.

(4) Intelligent

Intelligent optimization algorithms can actively adapt to
different environments and problems, solve complex prob-
lems with unknown structures, and obtain effective solutions.

(5) Strong robustness

The intelligent optimization algorithm can eliminate
poor individuals by selection and has strong fault tolerance.
The solution of the entire problem will not be affected by
individual failures and will not be constrained by centralized
control, making the system highly robust.

3.3. Local Image Feature Extraction Method. Image local fea-
tures are vectors of floating-point numbers or binary num-
bers that can describe a local area of an image and are also
commonly referred to as feature descriptors and feature
descriptors. Local features are usually encoding vectors of
local images centered on feature points, which can be used
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in various computer vision tasks such as 3D reconstruction,
visual positioning, and image stitching instead of raw pixels.
The distance of the feature vector in the feature space repre-
sents the similarity of the local image, and according to this
similarity, the key points can be identified. Since feature
descriptors are usually used for keypoint matching, features
need to have the ability to distinguish whether pixels in the
image belong to the same 3D world point, while being
invariant to scale, orientation, observation point, illumina-
tion, and other changes.

Since there are not many related works, there are still
many unsolved problems, such as the difficulty of network
training and the dependence of the extracted features on
the metric network. Despite many problems, the experimen-
tal results of the above works show that image feature
descriptions learned by deep convolutional networks have
better matching ability and still have great potential.

This paper proposes a training method that uses the Sia-
mese network for pretraining and then adjusts to the ternary
network to continue training. This method can avoid the dif-
ficulty of training the ternary network and can get better
results than the Siamese network. This paper also constructs
a sample set for training the feature extraction network,
which is used to compose positive and negative samples at
training time.

3.4. Siamese Network and Relative Loss Function. The biggest
feature of the Siamese network is that it contains two net-
works with the same structure and shared parameters. Its
idea is to measure the similarity of two feature vectors
extracted from two identical networks and optimize the
parameters of the two networks according to the measure-
ment results. Different from the ordinary single-sample net-
work, the Siamese network does not require the specific
category label of the input data during training, but only

needs to provide information on whether the two input sam-
ples belong to the same class. The output of each network is
a vector encoded by the input data in the feature space, and
the resulting vector usually has a lower dimension than the
input data. Therefore, the Siamese network not only realizes
the feature learning without specific categories but also real-
izes the dimensionality reduction operation.

In Figure 1, after passing through two networks with
shared weights, the input samples of the two networks are
encoded into feature vectors of the two images. The similar-
ity measure is then performed in the feature space, and the
similarity is calculated for the two feature vectors. The sim-
ilarity of the feature vector represents the similarity of the
two input samples, and the network parameters are updated
according to the measurement results and whether the two
samples are of the same type.

In order to achieve the purpose of measuring similarity,
the network should make the two output features of positive
samples as close as possible in the feature space, and the dis-
tance between the two features of negative samples in the
feature space should be as large as possible. To achieve this,
a loss function needs to be constructed so that the network
can reasonably encode the input samples.

When selecting the loss function of the Siamese network,
the softmax function can be selected for training the Siamese
network according to the general practice of classification
networks. The softmax function can effectively classify inter-
class samples, but its disadvantage is that it cannot constrain
enough intraclass samples. Therefore, the contrastive loss
function is usually selected as the loss function for training
the Siamese network, and its function expression is

Lc =
YN−1

i=0
1 − Yið ÞMax α − di,−1ð Þ½ �• 1 − Yidið Þ: ð1Þ

Classification output

Input layer Output layer

Hidden layer 1 Hidden layer n

Upper profile 
hidden 

representation

Lower profile 
hidden 

representation

Contrastive 
loss

Figure 1: Siamese network structure diagram.
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By minimizing the ternary loss function, the description
vectors of samples of the same class can be made closer, and
the description vectors of samples of different classes are far-
ther apart.

f xi,αð Þ − f xi,nð Þ�� ���� ��2
2 − 2β > f xi,p

� �
− f xi,nð Þ�� ���� ��2

2: ð2Þ

After adjusting the above formula, the training objective
function is

Lc =
YN−1

i=0
f xi,αð Þ − f xi,nð Þ�� ���� ��2

2 + 1 − βð Þ• f xi,p
� �
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2

n o
:
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The contrastive loss function not only pays attention to
whether the interclass samples have sufficient distance but
also makes the distance of the intraclass samples closer.

Therefore, a model trained with a contrastive loss can get
more discriminative features.

However, the threshold of the contrastive loss function is
fixed throughout the process, which means that it statisti-
cally defaults that the distribution of each class of samples
is the same, which is a strong assumption and may therefore
bring noise.

Observing the form of the objective function, it can be
seen that when a triplet satisfies the description between
positive samples is closer than the description between neg-
ative samples, and the closeness is greater than a certain
threshold, the triplet will not generate a loss value. The ter-
nary loss function can well solve the problem of describing
the similarity measurement of vectors between classes and
has good derivation. Its gradient is calculated as follows:

∂L
∂f xi,að Þ = f xi,að Þ − 2f xi,p

� �� �
• f xi,að Þ + f xi,nð Þ½ �, ð4Þ

∂L
∂f xi,p

� � = f xi,að Þ + 2f xi,p
� �� �

• 2f xi,að Þ − f xi,p
� �� �

, ð5Þ

∂L
∂f xi,nð Þ = 2f xi,að Þ + f xi,nð Þ½ �• f xi,að Þ − 2f xi,nð Þ½ �: ð6Þ

The advantage of ternary loss is to make the calculated
features more accurate. And because it makes the distance
between the positive and negative samples as close as possi-
ble, it does not need to care about the distribution of the
data, which makes up for the disadvantage of the contrast
loss. However, the ternary loss converges more slowly than
the relative loss, so this paper proposes to use the relative
loss to pretrain the network first and then use the ternary
loss function to improve the accuracy after the network con-
verges to a smaller range.

The feature extraction network trained with ternary net-
work is usually more accurate than the Siamese network, but
the disadvantage of ternary network is that for a fixed num-
ber of sample sets, there may be too many combinations of
triples. The contribution of training is not large, so the train-
ing speed is relatively slow.

In order to improve the effect of training, a dataset with
rich samples and an effective sampling method are needed,
and more meaningful samples are selected for training, so
that the network can converge more effectively.

3.5. Feature Extraction Network Model and Training Process.
Siamese network is easy to converge, and ternary network
has higher accuracy, but it is difficult to converge. This paper
proposes a method of first using the Siamese network struc-
ture for pretraining and then adjusting to the ternary net-
work structure to continue training, so that the model can
converge faster and achieve higher accuracy. The structure
of the feature extraction model proposed in this paper is
shown in Figure 2.

When the error of the Siamese network training almost
no longer decreases, the adjustment is continued for the

Input 1

Input 2

Similarity

Positive sample

Negative sample

Contractive loss

Readjust network 
samples

Anchor sample

Positive sample

Negative sample Ternary loss

Shared weight

Shared weight

Shared weight

Figure 2: Feature extraction model structure diagram.
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ternary network structure shown on the right side of the fig-
ure. It consists of two or three convolutional networks with
shared weights. Each convolutional network transforms an
input image into a feature vector, also known as a feature
network. After the feature vector is obtained, the error is cal-
culated according to the loss function, and the convolutional
network weights are updated by backpropagation.

The activation functions of both convolutional and fully
connected layers are ReLU. When selecting the output fea-
ture dimension of the model, it involves the choice of the
number of output feature bits and the encoding method. It
is generally believed that the higher the output feature
dimension of the model, the stronger the expressive ability;
the feature vector encoded in the Euclidean space is more
expressive than the feature vector encoded by Hamming.

This is because the feature encoded in Euclidean space is
a floating-point vector, and the feature encoded in Ham-
ming space is a binary vector. The binary vector of Ham-
ming encoding is actually a nonlinear lossy compression
transformation of floating-point vector in Euclidean space.
The amount of information is reduced, and it is generally
used to extract more compact features.

Usually, in order to exclude the influence of the encod-
ing method, most methods will choose a relatively uniform
length and encoding format to compare the encoding ability
of the model itself, such as the common 128-dimensional
floating point vector and 256-dimensional binary vector. In
this paper, 128-dimensional floating-point feature vector is
selected as the output feature.

In addition, before starting training, the network param-
eters need to be initialized. Proper initialization allows the
network to converge faster and avoid converging to local
minima. This paper initializes the network parameters with
random numbers that satisfy the Gaussian distribution.
The parameters of the Gaussian distribution need to be
selected through multiple tests. In the model of this paper,
the variance of the Gaussian distribution is set too small,
which may make the distance measure between features rel-
atively small and cause the gradient of the contrast loss func-
tion to disappear. In this case, even with a high learning rate,
the learning process will be slow. To avoid this problem, the
standard deviation of the Gaussian distribution can be
adjusted in advance, so that the norm of the output of the
feature layer is close to the threshold of the relative loss to
prevent the gradient from disappearing.

4. Results and Analysis

4.1. Analysis of Feature Extraction Results of Art Visual
Communication Image. The learning speed of the network
is one of the factors that determines the convergence of the
model, and the convergence speed directly affects the final
training result. The residual network in this paper sets the
learning rate to 0.01 according to the Adam optimization
strategy. During the experiment, different training samples
and test samples were randomly selected each time, and each
experiment was repeated 10 times to calculate the mean and
standard deviation of the classification indicators under dif-
ferent algorithms.

The number of training samples in the source domain is
set to 10 per class, while the number of training samples in
the target domain is set to 1 per class, and the remaining
labeled samples in the target scene are used as test samples
to evaluate the classification performance.

Considering that the input size of the deep residual net-
work will affect the classification accuracy, we fixed the spa-
tial size of the input pixel high art visual communication
image data and uniformly selected the input space to be 7
× 7, so as to make a fair comparison of different classifica-
tion methods.

The evaluation criteria of the experimental results will be
evaluated using the overall classification accuracy (OA) and
Kappa coefficient. The specific classification accuracy and
classification standard deviation of these algorithms in each
category are listed separately.

(1) Experimental data results of data set 1

TD-SVM and TD-SLR are used as benchmark compari-
son algorithms. These two algorithms only use the target
domain samples to train the classification model. As can be
seen from the different classification situations in Figure 3,
the classification results are significantly worse than our pro-
posed method. In the case of limited domain samples, it is
not enough to use only artistic visual communication image
features. It is extremely important to extract more represen-
tative deep features from high art visual communication
images. It also shows that even if the deep learning residual
network is used, the sample size is also difficult to play the
role of high-level feature extraction of the network, which
affects the final classification result. Compared with the algo-
rithm proposed in this paper, MTSLR greatly improves the
ability of residual network to extract features by introducing
training samples from the source domain, and the classifica-
tion accuracy is significantly improved. The method we pro-
pose adds a cross-scene feature migration algorithm on this
basis, which can extract the common features of different
scene data and reduce the spatial distribution difference, so
the classification accuracy is improved again.
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Figure 3: Classification accuracy of each class of training samples
in the target domain based on dataset 1.

6 Journal of Sensors



When the training samples all come from the target
domain, compared with the traditional TD-SVM algorithm
that only uses art visuals to convey image information, the
residual network TD-SLR we designed is less effective
because the target domain has only 6 samples, and our
designed deep learning network is insufficient to extract
high-level feature representations, resulting in overfitting of
the classification model.

After adding the source domain data, combined with
multitask learning different domain classification (MTSLR),
the target domain classification accuracy has been signifi-
cantly improved. This shows that the source domain data
plays an auxiliary role, which is beneficial to the residual net-
work in the target domain to extract high-level features, and
makes full use of the high-art vision to convey the spatial
spectrum information of the image data.

At the same time, we can clearly see that TD-SLR is
much better than Merge-SLR, that is, when the source
domain samples are directly transferred to the training sam-
ples of the target domain, the transferred samples play a neg-
ative role, resulting in a negative transfer phenomenon and
affecting the target domain. This again shows that when
there is an artistic visual communication image offset
between cross-scene data, the classifier directly learning the
source domain or learning both source and target domain
data is ineffective for target domain classification.

Compared with other evaluation algorithms, our pro-
posed method (MTSLR-S) considers the distribution differ-
ence of residual network after feature extraction, avoids the
phenomenon of negative transfer, and achieves higher classi-
fication accuracy, which shows that our proposed algorithm
can greatly reduce the art visual conveys image drift and
improves cross-scene classification performance.

It should be pointed out that due to the complex rela-
tionship between classes in the distribution of images in art
visual communication, the adaptation effects of different
classes to the domain are different.

At the beginning of model training, the target domain
model selects few samples, indicating that the features from
the source domain samples are classified by the target
domain classification model below the threshold of the dis-
criminator. With the continuous reduction of the loss func-
tion, the classification accuracy of the model is getting better
and better. At the same time, under the action of the dis-
criminator regularization, the samples selected by each other
between the domains gradually increase and reach a stability
when the number of iterations reaches 100. Furthermore, we
find that as the iterative learning process progresses, when
the number of positive samples in the involved source
domain suddenly increases, the objective function value also
increases accordingly, resulting in small fluctuations in the
change of the loss function. Figure 4 shows the source
domain sample mobility based on the MTSLR-S algorithm.

(2) Experimental data results of data set 2

Figure 5 shows the classification accuracy of the classifi-
cation metrics obtained under various evaluation methods.

We can see that when the target domain scene has
only a small number of training samples, compared with
the traditional TD-SVM algorithm, our proposed method
can bring more than 10% increase in the evaluation index
(OA) and Kappa.

The results of Pavia data also show that our proposed
multitask-based residual network achieves better classifica-
tion results through cross-scene feature level domain adap-
tation, which proves that multitask learning can effectively
reduce the impact of cross-scene data spatial distribution
shift on classifiers.

As the number of training increases and the loss func-
tion continues to decrease, the number of samples useful to
the model for the target domain selection fluctuates.
Figure 6 shows the source domain sample transfer based
on the MTSLR-S algorithm.

4.2. Analysis of the Classification Results of Art Visual
Communication Images. During the experiment, each exper-
iment was repeated 10 times, and different training samples
and test samples were randomly selected each time. The
evaluation criteria of the experimental results will be evalu-
ated by the overall classification accuracy (OA) and the
Kappa coefficient. Finally, the classification results of differ-
ent evaluation algorithms are given, respectively.

(1) Data set-experimental results

We experimented with all the evaluation algorithms by
changing the number of training samples per class in the tar-
get domain. The classification accuracy of our proposed
method is better than other methods, which proves that
the MTSLR-Fusion method can fully mine the feature infor-
mation of source and target domains in small-sample classi-
fication. At the same time, it can be seen from the size of the
standard deviation of OA that our proposed method pro-
vides more robust results, the change curve of OA is flat,
and the fluctuation is small. Figure 7 shows the trend of
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Figure 5: Classification accuracy of each class of training samples in the target domain based on dataset 2.
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the Kappa coefficient as the number of training samples
increases gradually.

(2) Experimental results of dataset 2

The classification accuracy of our proposed method is
better than other methods, which proves that the MTSLR-
Fusion method can fully mine the feature information of
source and target domains in small-sample classification.
At the same time, it can be seen from the standard deviation
of OA that with the gradual increase of the number of sam-
ples, the overall classification accuracy is correspondingly
improved. Compared with other evaluation algorithms, our
proposed method provides more robust results, the OA
change curve is flat, and the fluctuation is small. Figure 8
shows the trend of the Kappa coefficient as the number of
training samples increases gradually.

5. Conclusion

According to the related work in the field of feature extrac-
tion and matching, this paper proposes a method to extract
feature descriptions in the neighborhood of key points. Aim-
ing at the problem that there are few labeled samples in the
target domain, it is not enough to use art to convey image
information only to extract distinguishable feature represen-
tations. This paper proposes an image classification algo-
rithm for high-art visual communication images based on
multifeature extraction and classification decision fusion.
This method aligns the high art visual communication image
datasets in different domains (source domain and target
domain) by correlation, reducing the spatial distribution dif-
ference of the datasets, which is beneficial to the subsequent
extraction of common features, and then designs multiple
feature extractors to extract art visuals separately. It conveys
image spatial features and texture features, then effectively
combines the extracted features through a multitask sparse
logistic regression classifier and finally obtains the target
domain classification results through a voting decision
fusion mechanism. The algorithm makes full use of the aux-
iliary information of the source domain dataset. It avoids the
troubles brought by traditional feature extractors and further
effectively utilizes the transferable features of the source
domain, while preventing the negative transfer phenomenon
that often occurs in the feature transfer process. In this
paper, a dual-channel deep residual convolutional neural
network is designed. The multiple convolutional layers of
the residual module in the network use hard parameters to
share, so that the deep feature representation on the joint
spatial spectrum dimension can be automatically extracted.
Finally, the features extracted by the network are screened
to maximize the auxiliary role of the labeled samples in the
source domain and avoid the negative transfer problem
caused by the forced transfer between irrelevant samples.
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