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Tracking ground moving target with sensors proves to be a challenge due to the uncertainty of target motion area, the existence of
Doppler blind zone (DBZ), and the complex terrain. In this paper, a multisensor management method based on DBZ information
is presented, in which the available sensors are selected to obtain the best operational revenues for ground moving target tracking.
First, the ground target motion model is established considering the off-road/on-road state based on road topology information.
Second, the sensor measurement model is given combined with the DBZ information, and a decorrelation method of
measurement noise is proposed. Third, a target state estimation algorithm is derived using particle filter, in which the DBZ
information is regarded as prior information. Then, combined with the variable structure interacting multiple model method,
an estimation algorithm for tracking maneuvering target is proposed. Furthermore, an optimization model of nonmyopic
sensor management is constructed to obtain the best sensor management scheme. Finally, the advancement and effectiveness
of the proposed management method are verified in the simulations.

1. Introduction

With the development of sensing technology and informa-
tion fusion technology, multisensor systems have been
widely used in the military field [1–5]. How to determine a
reasonable and effective sensor management method to
obtain the best operational revenues has become a research
hotspot for many scholars.

In terms of decision-making methods in sensor manage-
ment, there are two kinds of methods, including the myopic
sensor management method [6] and the nonmyopic sensor
management method [7]. The myopic method decides the
management scheme based on predicting the one-step reve-
nue in the future. On the contrast, the nonmyopic method
decides the management scheme based on predicting the mul-
tistep revenues, which can obtain a better management perfor-
mance than the myopic method, but with a large computing
time.

At present, scholars usually focus their research on the
sensor management method based on the optimization indi-
cator, whose connotation is to set an objective function

closely related to the optimization indicator to maximize
the desired operational revenues [8, 9]. According to the
selected optimization indicator, the sensor management
methods can be divided into three main categories:
information-indicator-based management methods, risk-
indicator-based management methods, and task-indicator-
based management methods. The information-indicator-
based methods focus on managing sensors to maximize the
information gain, thus reducing the uncertainty in the obser-
vation. Commonly used information indicators are the
Shannon entropy [10, 11], the Kullback-Leibler divergence
[12], and the Rényi information divergence [13, 14]. How-
ever, the disadvantage of the methods is that the meaning
of the used information indicators is too abstract to describe
their concrete physical meaning, which may make it difficult
for commanders to understand their connotation accurately.
The risk-indicator-based management methods are mainly
used in scenarios where sensor resources are scarce. The
methods consider that the sensor management is performed
to reduce the losses due to measurement uncertainty, rather
than to maximize measurement performance. Commonly
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used risk indicators include the threat assessment risk [15],
the target loss risk [16, 17], and the sensor radiation risk
[18–20]. The task-indicator-based management methods
focus on the combat task, and the relevant indicators are
directly related to the tasks. Unlike the risk-indicator-based
method, the methods are applicable when the sensor
resources are redundant. Typical indicators are the covari-
ance matrix of target state [21, 22], the target detection prob-
ability [23], and the posterior Cramér-Rao lower bound
(PCRLB) [24, 25]. Among the three kinds of sensor manage-
ment methods mentioned above, methods for target tracking
have been most studied, and the representative work is
shown in [19, 25, 26]. In [19], a nonmyopic sensor manage-
ment method is applied to track aerial targets for the trade-
off between the tracking accuracy and the radiation risk.
Mohammadi and Asif [25] present a dynamic sensor sched-
uling for tracking problems in distributed sensor networks,
in which the PCRLB is used to quantify the tracking accu-
racy. Gostar et al. [26] present a constrained sensor manage-
ment method for the multitarget tracking based on
information divergence, and the labeled multi-Bernoulli fil-
ter was proposed for estimating the target state.

However, most of the existing studies about sensor man-
agement methods mainly focus on aerial targets and neglect
ground targets. In the actual battlefield, there is inevitably a
need for tracking ground targets, whose motions are uncer-
tain and often subject to the terrain information [27–29]. In-
ground target tracking, the most widely used terrain infor-
mation, is the road information, and the representative work
is shown in [30–35]. In [30], an on-road target tracking is
proposed, in which the linear roads are mapped to the
ground coordinate system and the road network is estab-
lished as a one-dimensional linear mode. Koch et al. [31]
propose a road map extraction method to reduce the error
of the road map. In [32], the road network is modeled as
constant curvature segments, and the nonlinear road-
constrained Kalman filtering is used in target state estima-
tion. In [33], the widths of road segments are considered
in the state model of road target which influences the transi-
tion of the target state. Zheng and Gao [34] introduce the
Gaussian mixture probability hypothesis density filter in
the ground target tracking and proposed a multitarget track-
ing method in clutter combined with the road constraints. In
[35], a ground moving target indication (GMTI) tracking
problem is presented, and a variable structure interacting
multiple model (VSIMM) particle filter was applied in the
switching problem of road segments.

Meanwhile, the ground target detection sensors, such as
the GMTI radar, mostly used the pulsed Doppler techniques
to reduce the effect of clutters [36]. However, the Doppler
blind zone (DBZ) problem has become a great challenge in
target tracking. The low-Doppler targets, whose Doppler
magnitude falls (i.e., the radial velocity of the target) below
the minimum detectable velocity (MDV), cannot be detected
by the sensor [37]. This results in a significant decrease in
tracking accuracy. For the target tracking in the presence
of the DBZ, most previous works focus on improving the fil-
ter and data fusion algorithms [38–40], but few works utilize
sensor management to solve it.

To solve the problem mentioned above, we propose a
multisensor management method for ground moving target
tracking based on the DBZ information. The study focuses
on the following points.

First, a more realistic ground moving target tracking sce-
nario is considered in which the target can move in different
motion areas and its movement is constrained by road
topology information. That is to say, the target motion state
is divided into two categories: off-road and on-road.

Second, a sensor measurement model under measure-
ment uncertainty is presented considering the DBZ informa-
tion. Meanwhile, Lei and Han in [41] indicate that the
measurement noise of the range and the radial velocity are
statistically correlated. To solve this problem, we propose a
decorrelation method of measurement noise.

Third, combined with the particle filter (PF) algorithm, a
target state estimation algorithm based on the DBZ informa-
tion is proposed, in which the DBZ is regarded as prior
information. Then, a VSIMM-PF-DBZ algorithm is pro-
posed for tracking the maneuvering target combining the
VSIMM method.

Finally, we introduce the PCRLB to quantify the tracking
accuracy in the future and establish a nonmyopic sensor
management optimization model to obtain the optimal
management scheme.

The research framework of this paper is as follows. Sec-
tion 2 describes the sensor management problem. The
ground target motion model and the sensor measurement
model are established in Section 3 and Section 4, respec-
tively. In Section 5, the target state estimation algorithm
based on the DBZ information is proposed. In Section 6,
the VSIMM-PF-DBZ algorithm is presented. The sensor
management optimization model is given in Section 7. Sec-
tion 8 makes some simulations to illustrate the effectiveness
and advancement of the proposed management method.
Finally, conclusions are given in Section 9.

2. Problem Description

Sensors are Doppler radars in this paper. The target tracking
scene is shown in Figure 1. Assume that there areNsensors
to track a ground moving target, which can move on the
road or off-road. The data processing center unifies the mea-
surements obtained by the sensors, searches the sensor man-
agement scheme with the best revenues, and sends the
corresponding commands to control the working of the sen-
sor system. Note that we use the nonmyopic sensor manage-
ment method in which the management scheme is decided
based on the cumulative revenues over a time horizon in
the future [7, 42].

At time k, the sensor management scheme is denoted as
Ak = ðankÞN×1, where a

n
k indicates the working state of sensor

n. If sensor n is activated to track the target at time k, then
ank = 1; otherwise, ank = 0. Then, the management scheme
sequence over the H − step time horizon is denoted as
Ak:k+H−1 = ½Ak, Ak+1,⋯, Ak+H−1�.

For the convenience of presentation, we set the following
two constraints related to Ak:k+H−1:
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(1) One target must be tracked by only one sensor at
each time

(2) Due to the sensors cannot be switched frequently in
practice, we consider the minimum dwell time tmin
in sensor selecting. Before the working sensor can
be switched, its continuous working time must
exceed tmin

The above constraints can be written as

〠
N

n=1
ank+h−1 = 1, 1 ≤ h ≤H

t Ak+h−1ð Þ ≥ tmin

8><
>: , ð1Þ

where tðAk+h−1Þ represents the continuous working time of
the switched sensor at time k + h − 1.

3. Ground Target Motion Model

The ground target state at time k is Xk = ½xk, _xk, yk, _yk�T,
where xk and yk are the position coordinates in the real-
world coordinate system and _xk and _yk are the correspond-
ing velocities. When a target moves on the road, its motion
state is mainly affected by the road topology [43]. For the
off-road target, its motion is relatively free. Therefore, differ-
ent state models are required to describe the characteristics
of the target motion in different areas.

3.1. Off-Road State Model. The off-road state model can be
described as [19]

Xk = Foff ‐road
i Xk−1 +Goff‐road

i εoff‐roadk , ð2Þ

where Foff ‐road
i is the state transition matrix of motion model

i, Goff ‐road
i is the corresponding process noise gain matrix,

εoff‐roadk is the zero means Gaussian process noise with
covariance matrix Qoff ‐road

k = diag ðσx, σyÞ, and τ is the sam-
pling interval. In this paper, two typical motion models are
considered, including the constant velocity (CV) model
and the constant turn (CT) model. Thus, the corresponding
state transition matrixes and process noise gain matrices are

as follows [24].

Foff ‐road
CV =

1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1

2
666664

3
777775, ð3Þ

Fof f−road
CT =

1 sin φπ/φ 0 − 1 − cos φπð Þ/φ
0 cos φπ 0 −sin φπ

0 1 − cos φπð Þ/φ 1 sin φπ/φ

0 sin φπ 0 cos φπ

2
666664

3
777775,

ð4Þ

Goff‐road
CV = Goff ‐road

CT =

τ2/2 0

τ 0

0 τ2/2

0 τ

2
666664

3
777775, ð5Þ

where φ is the turn rate of the target.

3.2. On-Road State Model. The information of road seg-
ments can be collected from geographic information systems
(GIS) [43]. Then, the mathematical model of the road net-
work is established by using relevant information to repre-
sent the road network as a connection of many road
segments, as shown in Figure 2. When the target is moving
continuously on the road, it can be considered as moving
along the road centerline without deviating largely normal
to it.

When the target is moving along the centerline of road
segment l whose start point is ðxstartl , ystartl Þ and end point is
ðxendl , yendl Þ, its state constraint can be described as

alxk + blyk + cl = 0,

_xk, _yk½ �T, ς!
D E

= 0,

8<
: ð6Þ

with

al = ystartl − yendl ,

bl = xendl − xstartl ,

cl = yendl − ystartl

� �
xstartl − xendl − xstartl

� �
ystartl ,

8>>><
>>>: ð7Þ

where h½ _xk, _yk�T, ς!i represents the angle between two vec-

tors, ς! is the direction vector of the road segment direction,
al, bl, and cl are the coefficients of the centerline equation.

Equation (6) considers the state constraint when the tar-
get moves along the centerline, but the target may slightly
deviate to the centerline because of the presence of the pro-
cess noise. Combined with equation (6), the target state

Multi-sensor system

Measurement

Data processing center
Command

Target

Figure 1: Target tracking scene.
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constraint can be expressed as

d xk, ykð Þ alx + bly + cl = 0j½ � ≤ Δd

_xk, _yk½ �T, ς!
D E

≤ Δv

8<
: , ð8Þ

where d½ðxk, ykÞjalx + bly + cl = 0� represents the distance
from point ðxk, ykÞ to line alx + bly + cl = 0 and Δd and Δv
are the deviation threshold of the distance and velocity
angle, respectively.

While satisfying the above state constraint, the on-road
state model can be described as

Xk = Fon‐road
i Xk−1 + Gon‐road

i εon‐roadk : ð9Þ

In this paper, we consider that the on-road target men-
tioned only moves in CV model. Therefore, Fon‐road

i =
Foff‐road
CV , and Gon‐road

i =Goff‐road
CV .

We denote the variances of the process noise along the
road and orthogonal to the road as σ2

∥ and σ2⊥ (σ2
⊥ ≪ σ2∥),

respectively. The covariance matrix Qon‐road
k after projecting

it to the X-Y coordinate system can be written as [33]

Qon‐road
k =

cos θl −sin θl

sin θl cos θl

" #
σ2∥ 0

0 σ2⊥

" #
cos θl −sin θl

sin θl cos θl

" #T

,

ð10Þ

where θl represents the orientation angle of road segment l.
Note that the state transition of the on-road target is also

determined by the road segment on which they are located,
while the state transition of the off-road target is mainly
determined by its motion model (CV or CT).

3.3. Motion Area Transitions. Obviously, the motion areas of
the target can be switched between on-road and off-road. In
this paper, parametermkis used to indicate the area in which
the target is moving at timek, wheremk = 0represents the tar-
get moving on the off-road area andmk = 1represents the tar-
get moving on the road. The transition process of motion
area can be approximated as a Markov process, and the cor-

responding transition matrix can be stated as

Tk =
p00 p01

p10 p11

" #
=

p mk = 0 mk−1 = 0jð Þ p mk = 1 mk−1 = 0jð Þ
p mk = 0 mk−1 = 1jð Þ p mk = 1 mk−1 = 1jð Þ

" #
,

ð11Þ

with

p mk = 0 mk−1 = 0jð Þ = 1 − exp −ϑ ⋅ dentryk

� �
,

p mk = 1 mk−1 = 0jð Þ = exp −ϑ ⋅ dentryk

� �
,

p mk = 0 mk−1 = 1jð Þ = exp −ϑ ⋅ dexitk

� �
,

p mk = 1 mk−1 = 1jð Þ = 1 − exp −ϑ ⋅ dexitk

� �
:

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Here, dentryk and dexitk represent the distance to the nearest
entry point and nearest exit point of the road network,
respectively. ϑ is a probability parameter (in this paper, ϑ =
0:04).

4. Sensor Measurement Model

4.1. Sensor Measurement Equation. The Doppler sensor can
obtain the distance, azimuth, and radial velocity information
of the target, and the corresponding measurement equation
can be expressed as [19]

Zn
k =Hn Xkð Þ + υn =

rnk

φn
k

_rnk

2
664

3
775 +

υnr

υnφ

υn_r

2
664

3
775, ð13Þ

with

rnk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk − xnsð Þ2 + yk − ynsð Þ2,

q
φn
k = arctan yk − yns

xk − xns

� �
,

_rnk =
_xk xk − xnsð Þ + _yk yk − ynsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xk − xnsð Þ2 + yk − ynsð Þ2
q ,

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

where the measurement information ½rnk φn
k _rnk �T repre-

sent the range, azimuth, and radial velocity of the target at
time k and the noise υn = ½υnr υnφ υn_r �T represent the
Gaussian measurement noise with zero means. xns and yns
are the position coordinates of sensor n.

If the target is not detected successfully, the sensor can-
not obtain the measurement information. When the DBZ
is not considered, the detection probability of sensor n can

Figure 2: Road network modeling schematic.
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be written as [44]

~pnd Xkð Þ = pnf
� �1/ 1+SNRð Þ

, if the target is inside line‐of‐sight region

0, otherwise

8<
: ,

ð15Þ

with

SNR = SNRn
min

Rn
max
rnk

� �4
, ð16Þ

where SNR is the signal to noise ratio and pnf , SNRn
min, and

Rn
max represent the false probability, the minimum detectable

SNR, and the maximum detection distance of sensor n,
respectively.

When the DBZ is considered, the target with radial
velocity below than MDV will not be detected, which is an
important priori information for sensor management. The
corresponding detection probability can be calculated by
[37]

pnd Xkð Þ =
~pnd Xkð Þ 1 − exp −log 2

nc Xkð Þ
Vn

MDV

� �2
" #( )

,
if target is inside line‐of ‐sight region
and _rkj j > Vn

MDV

0, otherwise

8>><
>>:

ð17Þ

where Vn
MDV is the MDV of sensor n and ncðXkÞ is called the

clutter notch function (see [37] for details).
Combined with the detection probability, the measure-

ment equation can be written as

Zn
k = ηHn Xkð Þ + υn, ð18Þ

where η represents a random number, which is taken as 0 or
1 according to the detection probability pndðXkÞ, that is

p ηð Þ =
pnd Xkð Þ, η = 1

1 − pnd Xkð Þ, η = 0

(
: ð19Þ

4.2. Decorrelation Method of the Measurement Noise.
According to [41], the range measurement noise υnr and
the radial velocity measurement noise υn_r are statistically cor-
related, which cannot be ignored in the process of target
tracking. Hence, we propose a decorrelation method of mea-
surement noise to improve the accuracy of target tracking in
this paper.

We define σ2ðυnr Þ, σ2ðυnφÞ, and σ2ðυn_r Þ as the variances of
υnφ, υ

n
φ, and υn_r , respectively. The correlation coefficient of

σ2ðυnr Þ and σ2ðυn_r Þ is denoted as ϖ. Then, the covariance
matrix of measurement noise can be written as

Rn =

σ2 υnrð Þ 0 ϖσ υnrð Þσ υn_rð Þ
0 σ2 υnφ

� �
0

ϖσ υnrð Þσ υn_rð Þ 0 σ2 υn_rð Þ

2
6664

3
7775: ð20Þ

Rewrite equation (20) as

Rn =
Rn
r,φ Rn

r,_r
� �T

Rn
r,_r Rn

_r,_r

" #
, ð21Þ

with

Rn
r,φ = diag σ2 υnrð Þ, σ2 υnφ

� �h i
,

Rn
r,_r = ϖσ υnrð Þσ υn_rð Þ, 0½ �,

Rn
_r,_r = σ2 υn_rð Þ:

8>>><
>>>: ð22Þ

To eliminate the correlation of the elements in Rn, we
use the Cholesky decomposition method and construct the
decomposition matrix

Bn =
I2×2 0

Ln 1

" #
, ð23Þ

with

Ln = −Rn
r,_r Rn

r,φ

� �−1
= −ϖσ υn_rð Þ/σ υnrð Þ, 0½ �, ð24Þ

where I2×2 is an identity matrix.
Multiplying both sides of equation (18) simultaneously

left by Bn, the decorrelated measurement equation is
obtained as follows

~Z
n
k = η

rnk

φn
k

" #
+

υnr

υnφ

" #
,

~ψn
k = ηψn

k + υnψ,

8>><
>>: ð25Þ

where ~ψn
k represents the pseudomeasurement of the radial

velocity and ψk and υnψ are the measurement value and noise
of ~ψn

k , respectively, which can be calculated by

ψn
k =

−ϖσ υn_rð Þ
σ υnrð Þ rk + _rk, ð26Þ

υnψ =
−ϖσ υn_rð Þ
σ υnrð Þ υnr + υn_r : ð27Þ

Obviously, υnψ is the Gaussian noise with zero means,
whose variance can be expressed as

σ2 υnψ

� �
= cov υnψ, υ

n
ψ

� �
= 1 − ϖ2� �

σ2 υn_rð Þ: ð28Þ

Therefore, the new measurement equation can be

5Journal of Sensors



written as

Z
_n

k = ηH
_n

Xkð Þ + υ_n = η

rnk

φn
k

ψn
k

2
664

3
775 +

υnr

υnφ

υnψ

2
664

3
775: ð29Þ

The corresponding covariance matrix of the measure-
ment noise is

R
_n

=

σ2 υnrð Þ 0 0

0 σ2 υnφ

� �
0

0 0 1 − ϖ2� �
σ2 υn_rð Þ

2
6664

3
7775: ð30Þ

5. Target State Estimation Algorithm Based on
the DBZ Information

In the process of sensor management, estimating the target
state at each moment is a prerequisite for system decision-
making. When the DBZ is considered, the sensors will lose
the measurements in some cases, and the target state only
can be obtained by prediction based on the recurrence of
the target motion models. At this time, the tracking accuracy
will be greatly reduced, which is not conducive to the stable
tracking of the target.

It is known that the target state in the DBZ satisfies a cer-
tain constraint relationship, that is, the radial velocity of the
target is below than the MDV of the sensor, which can be
used to improve the tracking performance as prior informa-
tion when the sensor cannot obtain the measurements.
Therefore, we propose a particle filter algorithm based on
the DBZ information (PF-DBZ) for target state estimation
in this paper.

For the convenience of expression, the multimodel and
motion area transitions of the target are not considered in
this section.

5.1. Process of the PF-DBZ. The generated particles are
divided into two categories: one is the particles outside the
blind zone called unconstrained particles with a number of
MUN, denoted as fXi

UN,k : i = 1, 2,⋯,MUNg; another is the
particles in the DBZ with a number of MDBZ, called DBZ
particles, denoted as fXi

DBZ,k−1 : i = 1, 2,⋯,MDBZg, which
are constrained by the DBZ information. At time k, the
occurrence probability of the two kinds of particles is pUN,k
and pDBZ,k, respectively. Then, the processes of PF-DBZ are
as follows.

Step 1. State prediction.

For the unconstrained particles, the prediction state
~X
i
UN,kði = 1, 2,⋯,MUNÞ can be calculated based on the state

model mentioned in Section 3:

~X
i
UN,k = FXi

UN,k−1 +GkQk Gkð ÞT: ð31Þ

For the DBZ particles, if pDBZ,k−1 > 0, the prediction state
~X
i
DBZ,kði = 1, 2,⋯,MDBZÞ can also be obtained by equation

(31), but the state must meet the following DBZ information
constraint.

_~x
i
DBZ,k − _xns

� �
~xiDBZ,k − xns
� �

+ _~y
i
DBZ,k − _yns

� �
~yiDBZ,k − yns
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xiDBZ,k − xns
� �2 + ~yiDBZ,k − yns

� �2q ≤ Vn
MDV:

ð32Þ

Step 2. Measurement update.

At time k, whether sensor n can obtain the measurement
is an uncertain event. Therefore, different cases will be dis-
cussed as follows.

(1) Calculate the weight of the particles. The weights of

the unconstrained particles ~X
i
UN,k can be obtained

according to the likelihood function corresponding

to the sensor measurement equation, that is, ωi
UN,k

~ pðZ_
n

k j~X
i
UN,kÞ. In this paper, the likelihood function

is

p Z
_n

k
~X
i
UN,k

			� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π ~Rn		 		q exp −

1
2

Z
_n

k −H
_

~X
i
UN,k

� �h iT
R
_n� �−1

Z
_n

k −H
_

~X
i
UN,k

� �h i
 �

ð33Þ

(2) Normalize the weights:

ωi
UN,k =

ωi
UN,k

∑MUN
i=1 ωi

UN,k

ð34Þ

(3) Update the occurrence probability of two kinds of
particles. Set pUN,k = 1 and pDBZ,k = 0

(1) Calculate the weight of the particles. Set ωi
UN,k =

ωi
UN,k−1 and ωi

DBZ,k = 1/MDBZ

(2) Update the occurrence probability of two kinds of
particles. Set pUN,k = 1 − ~pndðXkÞ andpDBZ,k = ~pndðXkÞ

(1) Calculate the weight of the particles. Set ωi
UN,k =

ωi
UN,k−1 and ωi

DBZ,k = 1/MDBZ

(2) Update the occurrence probability of two kinds of
particles. Set pUN,k = ½1 − ~pndðXkÞ�pUN,k−1 and pDBZ,k
= 1 − pUN,k

6 Journal of Sensors



Case 1. Measurement Zn
k is existing.

Case 2. Zn
k is not existing and pDBZ,k−1 = 0.

Case 3. Zn
k is not existing and pDBZ,k−1 > 0 (continuous miss-

ing detection).

Step 3. State estimation.

The state estimation and covariance matrix after
weighted average are given by

with

X̂UN,k = 〠
MUN

i=1
ωi
UN,k

~X
i
UN,k,

X̂DBZ,k = 〠
MDBZ

i=1
ωi
DBZ,k

~X
i
DBZ,k:

8>>>>><
>>>>>:

ð36Þ

5.2. Correction Method of Target State. According to Section
5.1, the prediction state of the DBZ particles must meet the
Doppler information constraint in the process of state pre-
diction. For the particles that do not meet the constraint,
the DBZ information can be used to correct their state to
improve the accuracy of target state prediction.

For the prediction state ~X
i
DBZ,k = ½~xiDBZ,k, _~x

i
DBZ,k, ~y

i
DBZ,k,

_~y
i
DBZ,k� of DBZ particles, when its radial velocity _~r

n
k >Vn

MDV
, the correction method is expressed as

_~x
i
DBZ,k = _~x

i
DBZ,k − _~r

n
k − Vn

MDV

� �
sin ~φn

kð Þ,

_~y
i
DBZ,k = _~y

i
DBZ,k − _~r

n
k − Vn

MDV

� �
cos ~φn

kð Þ,

8><
>: ð37Þ

where ~φn
k is the prediction value of the azimuth.

When _~r
n
k < −Vn

MDV, the correction method is expressed
as

_~x
i
DBZ,k = _~x

i
DBZ,k − _~r

n
k +Vn

MDV

� �
sin ~φn

kð Þ,

_~y
i
DBZ,k = _~y

i
DBZ,k − _~r

n
k +Vn

MDV

� �
cos ~φn

kð Þ:

8><
>: ð38Þ

5.3. Judgment Method of Measurement Loss Causes. In
ground moving target tracking, the occlusion of obstacles
may also cause continuous missed detection. Therefore, it
is necessary to distinguish whether the target is occluded
by obstacles or enters the DBZ. According to the motion
characteristics of the ground target, the radial velocity has

a general tendency to decrease gradually before the target
enters the DBZ. Therefore, a radial velocity sliding window
is used to judge measurement loss causes in this paper.

The length of the sliding window is set to 5, and the his-
torical radial velocity f_rnk−1, _rnk−2, _rnk−3, _rnk−4, _rnk−5g is stored in
the sliding window at time k. Then, we define ∇_rnk−i as the
radial velocity change rate, which is expressed as

∇_rnk−i = _rnk−ij j − _rnk− i−1ð Þ
			 			� �

/τ, i = 1, 2, 3, 4, ð39Þ

where τ is the sampling interval.
Using the three-fourths judgment rule, when three

inequalities in equation (40) satisfy the condition, it is
judged that the reason of losing measurement is entering
the DBZ. In this case, the PF-DBZ and correction method
of target state proposed in this paper can be used. Otherwise,
it shows that the target is occluded by obstacles, and the tar-
get state only can be obtained by prediction based on the
recurrence of the target motion models.

∇_rnk−1 = _rnk−1j j − _rnk−2j jð Þ/τ ≤ 0,

∇_rnk−2 = _rnk−2j j − _rnk−3j jð Þ/τ ≤ 0,

∇_rnk−3 = _rnk−3j j − _rnk−4j jð Þ/τ ≤ 0,

∇_rnk−4 = _rnk−4j j − _rnk−5j jð Þ/τ ≤ 0:

8>>>>><
>>>>>:

ð40Þ

6. VSIMM-PF-DBZ Algorithm

The target state estimation algorithm mentioned in Section 5
is suitable for the target with a single motion model. How-
ever, according to Section 2, the motion of the ground target
involves the switching of the motion model, the located road
segment, and the motion area, which is difficult to describe
its motion characteristics by only a single model. Hence,
we combine the PF-DBZ algorithm with the VSIMM (see
[45] for details) and propose a VSIMM-PF-DBZ algorithm
to estimate the state of maneuvering target. In the VSIMM
method, the motion model set of the target is variable at

X̂k = pUN,k 〠
MUN

i=1
ωi
UN,k

~X
i
UN,k++pDBZ,k 〠

MDBZ

i=1
ωi
DBZ,k

~X
i
DBZ,k,

Pk = pUN,k 〠
MUN

i=1
ωi
UN,k X̂UN,k − ~X

i
UN,k

� �
X∧UN,k − ~X

i
UN,k

� �T
+ pDBZ,k 〠

MDBZ

i=1
ωi
DBZ,k X̂DBZ,k − ~X

i
DBZ,k

� �
X∧DBZ,k − ~X

i
DBZ,k

� �T
,

8>>>>><
>>>>>:

ð35Þ
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each time, which can accurately describe the motion state of
the multimodel maneuvering target.

At time k, the motion model set is denoted as Jk = f
Joff‐roadk , Jon‐roadk g, where Joff‐roadk and Jon‐roadk represent the
model set of off-road and on-road, respectively. In this
paper, Joff ‐roadk is fixed which contains CV and CT models,
and Jon‐roadk changes in real time according to the target loca-
tion. Therefore, updating Jk means updating Jon‐roadk .

When the target moves in the road network, its motion
is mainly constrained by the road topology, so the road
information can be used to assist the target estimation. Since
the road information can be obtained from GIS in advance
and generally does not change in target tracking, the motion
model set update strategy can be designed based on the road
information.

6.1. Motion Model Set Update Strategy. The motion model of
the target moving on a certain road segment will generally
not change, and only at intersections will the target switch
the road segment and its motion model will be changed.
Therefore, to update the model set of the next time, it is nec-
essary to determine which road segment the target will be
located at the next time and whether the target is close to
the intersection.

As seen from Figure 3, the possible location of the target
can be obtained according to the target state X̂

n
k−1. Then, it

can be judged whether the target is close to the intersection,
such as the ellipse region in Figure 3. The elliptic region can
be expressed as an inequality

x − x̂k−1, y − ŷk−1½ �Ppos
k−1

x − x̂k−1

y − ŷk−1

" #
≤ β, ð41Þ

where Ppos
k−1 is the position component of Pk−1 and β repre-

sents the gate threshold (in this paper, β = 6).
If intersection i with coordinates ðxiintersection, yiintersectionÞ

satisfies inequality (41), it means that the target is close to
the intersection, and the model set needs to be updated.
The processes of updating Jon‐roadk−1 are as follows.

Step 1. Get the target state ðX̂k−1, Pk−1Þ and model set Jon‐roadk−1
at time k.

Step 2. Judge whether the target has closed to the intersec-
tion according to equation (41). If the target is close to the
intersection, the corresponding motion models of all the
links connected to the intersection are added to the model
set Jon‐roadk ; otherwise, go to Step 3.

Step 3. Determine the road segment to which the target
belongs at time k according to X̂

n
k−1. If the target belongs to

the road section changes, the motion model of the previous
road segment is discarded and the motion model of the
new road segment is added in Jon‐roadk ; otherwise, Jon‐roadk =
Jon‐roadk−1 .

6.2. Process of the VSIMM- PF-DBZ Algorithm. Based on the
motion model set updating strategy, the VSIMM-PF-DBZ
algorithm is proposed by combining the VSIMM with the
PF-DBZ algorithm. Due to the uncertainty of the target
motion area, we use dual filter algorithm to obtain the target
state estimation of off-road state and on-road state and then
apply the weighted fusion method according to motion area

X̂k−1

X̂k−2

Road segment 1

Ro
ad

 se
gm

en
t 2

Road segment 3

Figure 3: Schematic diagram of intersection.
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Figure 4: Schematic diagram of target tracking scene.

Table 1: The parameters of the sensors.

Sensor
number

Coordinates

The
standard

deviation of
the range
noise

The
standard

deviation of
the azimuth

noise

The standard
deviations of
the radial

velocity noise

1 (0, 500) m 40m 5mrad 10m/s

2
(1000, -250)

m
20m 5mrad 5m/s

3
(1000,
1500) m

25m 8mrad 10m/s

4
(2550, 500)

m
35m 5mrad 15m/s

5 (4000, 0) m 45m 5mrad 25m/s

6
(5500,
1500) m

50m 7.5mrad 20m/s
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transition probability to obtain the overall state estimation.
The steps of VSIMM-PF-DBZ are as follows.

Step 1. Initialization.

Obtain the target state ðX̂k−1, Pk−1Þ, the motion model set
Jk−1, and the parametermk−1. Then, according to Section 3.3,
calculate the motion area transition matrix Tk, and obtain
pðmk = 0jmk−1Þ and pðmk = 1jmk−1Þ.

Step 2. Update the motion model set.

According to the motion model set update strategy pro-
posed in Section 6.1, obtain the model set Jon‐roadk of on-road
state.

Step 3. State estimation.

Use the PF-DBZ algorithm in the framework of the
VSIMM [45] to predict and update the target states and cor-
responding covariance matrices of all motion models. Then,
the target state estimation of the on-road state and off-road

state can be obtained, which are stated as ðX̂on‐road
k , Pon‐road

k Þ
and ðX̂off ‐road

k , Poff‐road
k Þ, respectively.

Step 4. Overall estimation.

Combined with ðX̂on‐road
k , Pon‐road

k Þ, ðX̂off‐road
k , Poff ‐road

k Þ, p
ðmk = 0jmk−1Þ, and pðmk = 1jmk−1Þ, the overall estimation
of the target state is calculated as

7. Sensor Management Optimization Model

The core of sensor management is predicting the revenue cor-
responding to different decision schemes in the future and
selecting the schemes with the best revenue [19]. Therefore,
it is important to select an optimization index for quantifying
the revenue. The trace of PCRLB can predict the theoretical
lower bound of the target state estimation error, which is often
used to reflect the sensor tracking performance [24]. Hence, in
this paper, the trace of PCRLB is used as the optimization
index in the sensor management process.

According to the relevant theory of PCRLB [24], the fol-
lowing inequality exists.

Ε X̂k − Xk

� �
X∧k − Xkð ÞT

h i
≥Ψ X∧kð Þ−1, ð43Þ

where ΨðX∧kÞ−1 represents the PCRLB of X̂k, which is the
inverse of the Fisher information matrix ΨðX̂kÞ.

ΨðX̂kÞ satisfies the following recurrence relation:

Ψ X̂k

� �
=D22

k−1 −D21
k−1 Ψ X∧k−1ð Þ +D11

k−1
� �−1

D12
k−1 +DZ

k , ð44Þ

with

D11
k−1 = Ε −∇Xk−1

Xk−1
log p Xk ∣ Xk−1ð Þ

h i
,

D12
k−1 = D21

k−1
� T = Ε −∇Xk

Xk−1
log p Xk ∣ Xk−1ð Þ

h i
,

D22
k−1 = Ε −∇Xk

Xk
log p Xk ∣ Xk−1ð Þ

h i
,

DZ
k = Ε −∇Xk

Xk
log p Zk ∣ Xkð Þ

h i
,

8>>>>>>>>><
>>>>>>>>>:

ð45Þ

where the symbol ∇ represents the second-order derivative
and DZ

k is the Fisher information gain. When the sensor
cannot obtain the measurement, there is DZ

k = 0. Further-
more, for the Gaussian system discussed in this paper,
there is

D11
k−1 = Fkð ÞT Qkð Þ−1Fk,

D12
k−1 = D21

k−1
� T = − Fkð ÞT Qkð Þ−1,

D22
k−1 = Qkð Þ−1,

DZ
k = pnd Xkð Þ h

_n

 �T

R
_n� �−1

h
_n

,

8>>>>>>>><
>>>>>>>>:

ð46Þ

where h
_n

is the Jacobian matrix of measurement function

H
_nðXkÞ and Fk and Qk represent the state transition
matrix and covariance matrix of the process noise corre-
sponding to the real target motion model at time k,
respectively. Obviously, it is impossible to obtain the real
target motion model at time k in the process of deci-
sion-making, so the motion model corresponding to the
maximum distribution probability at the current time is
selected to do prediction [24].

In this paper, the sensor management method is non-
myopic, in which the management scheme is decided based
on the cumulative revenues over a time horizon in the
future. When the decision step is H, combining the sensor
management scheme Ak:k+H−1 in the time domain ½k, k +H
− 1� and the constraints equation (1), the objective

X̂k = p mk = 1 mk−1jð ÞX̂on‐road
k + p mk = 0 mk−1jð ÞX̂off‐road

k ,

Pk = p mk = 1 mk−1jð Þ Pon‐road
k + X̂

on‐road
k − X̂k

� �
X∧on‐road

k − X∧k

� �T

 �

+ p mk = 0 mk−1jð Þ Poff‐road
k + X̂

off‐road
k − X̂k

� �
X∧off‐road

k − X∧k

� �T

 �

:

8><
>:

ð42Þ
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optimization function is established as follows.

min R Ak:k+H−1ð Þ = tr Ψ X∧k, Akð Þ−1� |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
One‐step revenue

+〠H−1
h=1 γ

htr Ψ X∧k+h, Ak+hð Þ−1� |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Future expected revenue

,

s:t:
〠
N

n=1
ank+h−1 = 1, 1 ≤ h ≤H

t Ak+h−1ð Þ ≥ tmin

8><
>: ,

ð47Þ

where tr½ΨðX∧k, AkÞ−1� represents the trace of PCRLB after

executing sensor management scheme Ak and γð0 ≤ γ ≤ 1Þ
is a discount coefficient that indicates. The optimal solution
Aopt
k:k+H−1 of the objective function is the best sensor manage-

ment scheme in the time domain ½k, k +H − 1�.

8. Numerical Simulations

As can be seen from Figure 4, in our simulations, six Dopp-
ler sensors are used to track a ground moving target that can
move on the road or off-road. Besides, there are some obsta-
cles in the battlefield which may obstruct the detection of the

0 20 40 60 80 100
–40

–20

0

20

40

60

Ra
di

al
 v

el
oc

ity
 (m

/s
)

Time(s)

Doppler blind zone

(a) Sensor 1

0 20 40 60 80 100
–40

–20

0

20

40

60

Ra
di

al
 v

el
oc

ity
 (m

/s
)

Time (s)

Doppler blind zone

(b) Sensor 2

0 20 40 60 80 100
–60

–40

–20

0

20

40

60

Ra
di

al
 v

el
oc

ity
 (m

/s
)

Time (s)

Doppler blind zone

(c) Sensor 3

0 20 40 60 80 100
–60

–40

–20

0

20

40

60

Ra
di

al
 v

el
oc

ity
 (m

/s
) 

Time (s)

(d) Sensor 4

Doppler blind zone

–60

–40

–20

0

20

40

60

Ra
di

al
 v

el
oc

ity
 (m

/s
) 

0 20 40 60 80 100

Time (s)

(e) Sensor 5

0 20 40 60 80 100

–20

–30

–40

–50

–60

Ra
di

al
 v

el
oc

ity
 (m

/s
)

Time (s)

Doppler blind zone

(f) Sensor 6

Figure 5: The radial velocities of the target relative to all sensors.
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target. The sensor sampling interval is 1 s and the simulation
duration is 100 s.

The initial position and velocity of the target are (0, 0) m
and 60m/s, respectively. The target moves off-road by turn-
ing right at an angle of 4∘ during 46-70 s, moves off-road in
uniform straight line during 71-85 s, and maintains uniform
straight line on road during other times. The process noise
variance along the X and Y directions are 20m and 20m,
and the process noise variances along the road and orthogo-
nal to the road are 20m and 1m.

All sensors have the same MDV VMDV = 25m/s, the
minimum dwell time tmin = 3s, the false alarm probability
pf = 10−6, the minimum detectable SNR SNRmin = 15db,
and the maximum detection distance Rmax = 10km. The
other parameters of the sensors are shown in Table 1.

The other parameters used in simulations are displayed
as follows: the discount coefficient γ = 0:9, the correlation
coefficient ϖ of the measurement noise is 0.5, and the num-
ber of the unconstrained and DBZ particles is 100 in the PF-
DBZ algorithm.

All the results were obtained by 100 trials of Monte
Carlo simulations.

Figure 5 shows the radial velocities of the target relative
to all sensors. Obviously, for each sensor, there is a situation
where the radial velocity of the target is below than MDV,
which means that the target will enter the DBZ of the sensor
at some times and a single sensor cannot achieve continuous
tracking of the target. Therefore, it is necessary for tracking
the target to use an effective sensor management method.

8.1. Determination of the Decision Step. The decision step H
is a very important parameter in sensor management,
which can directly affect the effectiveness of target tracking
[24]. Hence, the performances of target tracking under dif-
ferent H are studied in our simulations, and the corre-
sponding result is used as a basis to determine the value
of H. Figures 6 and 7 show the comparisons of the root
mean square error (RMSE) and the root time average
square error (RTAMSE) of the target under different H,
respectively.
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Figure 6: Comparisons of the RMSE under different decision steps.
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As can be seen from Figures 6 and 7, when H = 1 ~ 3,
with the increase of H, the RMSE and RTAMSE of the target
decrease gradually, which means that the effect of tracking

target is getting better and better. However, when H > 3,
the corresponding tracking errors (RMSE and RTAMSE)
increase instead of decreasing with the increase of H.
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Figure 8: The occurrence probabilities of blind zones under different sensor management methods.

Po
sit

io
n 

RM
SE

 (m
)

0 20 40 60 80 100
0

10

20

30

40

50

60

Time (s)

(a) Position RMSE

CSMM
PSMM

FSMM
MSMM

V
el

oc
ity

 R
M

SE
 (m

)

0

10

20

30

40

50

0 20 40 60 80 100

Time (s)

(b) Velocity RMSE

Figure 9: Comparisons of the RMSE under different sensor management methods.

12 Journal of Sensors



Especially when H = 4, the corresponding errors are larger
than the errors underH = 3. The reason for these is that with
the increase of H, the prediction error of the target state in
the future will also increase, resulting in the increase of the
target tracking error. At the same time, the occurrence of
measurement uncertainty events such as the target enters
the DBZ which will also lead to the increase of the tracking
error in the multistep prediction. Therefore, it is not the case

that a larger decision step is better for tracking. Based on the
above analysis, we choose H = 3 in next simulations.

8.2. Analysis of the Proposed Sensor Management Method. In
order to clearly analyze the performance of the proposed
sensor management method (PSMM) in this paper, we
selected three existing sensor management methods to com-
pare with it:
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Figure 14: Comparisons of the RMSE under different measurement noise treatment methods (ϖ = 0:1).
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(1) The myopic sensor management method (MSMM),
in which the management scheme is decided based
on one-step revenues in the future

(2) The closest sensor management method (CSMM), in
which the sensor closest to the target is selected for
tracking [19]

(3) The fixed sensor management method (FSMM), in
which the fixed sensor is selected for tracking in
the simulation duration (in our simulations, sensor
1 is selected)

The occurrence probabilities of blind zones under differ-
ent sensor management methods in 100 repeated simulations
are shown in Figure 8. For the convenience of presentation, we
call the target to enter the visual blind zone (VBZ) when it is
blocked by obstacles. Compared with the other methods, we
can see that the DBZ and VBZ appear the least times under
the PSMM. This is due to the PSMM considering not only
the one-step revenue of the sensor system but also the future
expected revenue in decision-making, which can better predict
the target state and thus select the nonblind sensor for track-
ing. The MSM only considers the one-step revenue in
decision-making which is myopic for tracking, so the corre-
sponding blind zone occurrence probability is higher than
those of PSMM. The CSMM and FSMM do not select the sen-
sor based on the tracking revenue in the future, which makes
the blind zones occurred many times in the tracking.

Figures 9 and 10 show the comparisons of the RMSE and
RTAMSE under different sensor management methods,
respectively. Obviously, the PSMM can obtain the best
tracking performance compared with the other methods.
Besides, the position RMSE curves and velocity RMSE
curves under PSMM are relatively stable in the simulation
duration, and the corresponding error is basically not
sharply increased, which means that it can achieve continu-
ous and stable tracking of the target by the PSMM.

Figure 11 shows the sensor management schemes of the
PSMM, which is the optimal solution of the objective func-
tion (47). It can be seen that the minimum continuous work-
ing time of the selected sensor satisfies the constraint that
the minimum dwell time tmin = 3s in tracking, which verified
that the management scheme is reasonable and effective.

Furthermore, in order to show that the proposed target
state estimation algorithm based on the DBZ information
is effective and advanced, the VSIMM-PF-DBZ algorithm
is compared with the VSIMM-PF algorithm [43] in which
the DBZ information is not be used. It can be seen from
Figure 8(d) that the DBZ will appear continuously during
4-8 s under the FSMM. Therefore, we compare the two algo-
rithms during 0-20 s under the FSMM in Figure 12, so as to
study the tracking performance of them. Obviously, the
tracking errors of the VSIMM-PF-DBZ are less than
VSIMM-PF when the DBZ appears (4-8 s), which indicates
that the estimation algorithm proposed in this paper can
reasonably use the DBZ information to track the target.

8.3. Analysis of the Proposed Motion Model. In this paper, a
more realistic target motion model is established based on

road topology information. To analyze the effect of utilizing
road topology information in terms of tracking perfor-
mance, the proposed motion model is compared with the
model without utilizing any road topology information.
Note that if no information is used, equation (2) is always
used to describe the target motion in proposed tracking
algorithm. Figure 13 shows the comparisons of the RMSE
under different motion models. Obviously, the position
and velocity RMSE under the proposed motion model are
less than those under the motion model without road topol-
ogy information. Especially when the target moves on the
road (0~45 s and 86~100 s), the difference between the
results with the two kinds of models is obvious. From the
comparisons, we can see that the tracking accuracy is
improved by utilizing road topology information to describe
the target motion.

8.4. Analysis of the Proposed Decorrelation Method of the
Measurement Noise. To analyze the performance of the pro-
posed decorrelation method of the measurement noise, the
results of tracking errors corresponding to using and not
using decorrelation methods are compared. Note that the
correlation coefficient ϖ is set as two values, 0.1 and 0.8,
and the other parameters remain unchanged.

Figures 14 and 15 show the comparison of the RMSE
when ϖ = 0:1 and ϖ = 0:8, respectively. As can be seen, there
is little difference between the results of the two methods
when ϖ = 0:1. On the contrary, when ϖ = 0:8, the results
with decorrelation method are much better than those with-
out decorrelation method. The comparison results show that
the proposed decorrelation method is effective, especially
when the correlation coefficient is large.

9. Conclusions

In this paper, a sensor management method for ground
moving target tracking is proposed, in which the DBZ infor-
mation is used to improve the tracking accuracy in the pres-
ence of the DBZ. Firstly, a more realistic motion model of
the ground target is established, in which the target motion
state is divided into two categories: off-road and on-road.
Secondly, a sensor measurement model under measurement
uncertainty is presented, and a decorrelation method is pro-
posed to solve the problem that the measurement noises are
statistically correlated. Third, a target state estimation algo-
rithm based on the DBZ information is proposed, in which
the DBZ information is fully utilized. Furthermore, com-
bined with the VSIMM, an estimation algorithm is given
to track the maneuvering target with multiple models.
Finally, the PCRLB is used to quantify the tracking accuracy
in the future, and a nonmyopic sensor management optimi-
zation model is established. Simulation results indicate that
the proposed sensor management method can track the tar-
get accurately by selecting the suitable sensor management
scheme at each time. Meanwhile, the proposed motion
model and decorrelation method of the measurement noise
are verified to be effective. As future work, we will study
the sensor management method for multitarget tracking in
the presence of the DBZ.
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