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The cluster target brings a serious challenge to the traditional multisensor multitarget tracking algorithm because of its large
number of members and the cooperative interaction between members. Using multiradar joint tracking cluster target is an
alternative method to solve the problem of cluster target tracking, but it inevitably brings the problem of radar-target
assignment and tracking information fusion. Aiming at the problem of radar-target assignment and tracking information
fusion, a joint tracking method based on graph-long short-term memory neural nets (Graph-LSTMs) is proposed. Firstly, we
use multivariable stochastic differential equations (SDE) to model the cooperative interaction of cluster members and
transform the derived state space model of cluster members into the same form as the constant velocity (CV) motion model,
and the target state equation of cluster which can be used for Bayesian filtering iteration is established. Secondly, based on the
detection relationship between radars and cluster members, we introduce the detection confirmation matrix and propose a
radar-target assignment method to achieve multiple measurements of single member and detection coverage of all cluster
members. Then, each radar uses δ-GLMB filter to estimate the motion state of the assigned targets. Finally, on the basis of
spatial discretization, the labels of multiple estimates of cluster member states are obtained. We use the designed Graph-
LSTMs to learn the cooperative relationship between target states to fuse the labels and obtain better tracking effect. The
experimental results show that the proposed method effectively simulates the cluster motion and realizes the joint estimation
of cluster target motion state by multiradar. Our method makes up for the defect that a single radar cannot stably track
adjacent multiple targets and achieves better estimation fusion effect than the expectation-maximization (EM) algorithm and
mean method.

1. Introduction

The cluster target represented by UAV cluster is the research
hotspot of target tracking. It has different tracking characteris-
tics frommultitarget and extended target. Compared with mul-
titarget, there is cooperative interaction among cluster
members, and the movement of members is consistent. How-
ever, due to the large number ofmembers and the small distance
between members, it is easy to lead to serious crossing of detec-
tion gates and difficult to carry out measurement association.
Compared with the extended target, the cluster target is “non-
rigid,” and the size and shape of the target are easy to change.

At present, according to whether sensors can resolve
cluster members, cluster target tracking can be divided into
two research routes: cluster member tracking and overall

cluster tracking. When the cluster is far away from the sen-
sor and the members cannot be completely resolved, the
common method is to model the cluster extension shape as
an ellipse that is represented by a random matrix obeying
the inverse Wishart distribution [1]. In this method, there
is no need to consider the collaborative interaction between
members but to track the cluster as a whole.

When the members become resolvable to the sensor, the
problem to be solved in cluster target tracking is the accurate
state estimation of each cluster member. When solving this
problem, the comprehensive application of various measure-
ment methods [2] can ensure the resolution of the target to
the greatest extent. For an example, multiradar networking,
partition detection, and data fusion in the detection process
are common methods in the tracking of UAV cluster.

Hindawi
Journal of Sensors
Volume 2022, Article ID 8556477, 20 pages
https://doi.org/10.1155/2022/8556477

https://orcid.org/0000-0001-5410-2051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8556477


However, when using these methods, we need to solve not
only the problem of accurate tracking of individual member
but also the data fusion problem inevitably brought by mul-
tisensor joint tracking [3].

This paper would focus on the tracking of resolvable
cluster targets. All clusters in this paper refer to resolvable
clusters. The first step to achieve accurate cluster target
tracking is to obtain the prior information of cluster motion.
Therefore, it is necessary to accurately establish the cluster
target motion model. In terms of the general law of cluster
movement, Reynolds summarizes that the cooperative rule
is three different actions of separation, alignment, and cohe-
sion between cluster members based on the distance from
each other [4]. Viscek et al. study the speed consistency of
cluster members and put forward the Viscek model [5]. In
the model, they believe that the velocity consistency is
achieved because each member adjusts the velocity direction
to the average value of the velocity direction of other mem-
bers in its neighborhood. Couzin et al. study the phenome-
non of effective guidance and group decision-making and
discuss the splitting phenomenon of clusters [6]. However,
clusters described only by the above rules are prone to frac-
ture due to the dispersion of member positions. Under the
above rules, Olfati-Saber [7] adds the virtual leader and pro-
poses the Olfati-Saber model to solve the problem of cluster
fracture. The typical target we aim at in this paper is UAV
cluster. The main description methods of UAV cluster
motion include pilot following method [8], virtual structure
method [9], behavior-based method [10], graph-based
method [11], and consistency theory [12]. At present, most
of the methods to describe UAV cluster motion are from
the perspective of cluster control, which is difficult to adapt
to the Bayesian iterative estimation process. In order to solve
this problem, we try to deduce the motion model of a single-
cluster member described in the state space.

Radar-target assignment is another problem to be con-
sidered in the joint tracking of cluster members using multi-
radar [13, 14]. Under the limited radar resources, it is a
contradiction to improve the detection density and ensure
the full coverage of radar system to all cluster members. In
this paper, the concept of detection confirmation matrix is
introduced, and radar-target assignment problem is briefly
discussed based on the concept.

Aiming at the multitarget tracking (MTT) problem in
the clutter environment, the multitarget tracking algorithm
represented by the probabilistic data association [15] uses
tracking gate to distinguish measurement and clutter and
preliminarily solves the correlation problem between mea-
surement and target state. Reference [16] proposes a multi-
target tracking algorithm based on maximum entropy
fuzzy C-means clustering joint probabilistic data association,
which avoids confirmation matrix splitting and reduces the
computational load of the JPDA algorithm. However, due
to the large number of members in the cluster, the data asso-
ciation is very difficult, and only relying on the confirmation
matrix for measuring data association is difficult to meet the
requirements of tracking accuracy. At this time, due to the
avoidance of data association, tracking methods based on
random finite sets (RFS) gradually rise and are widely used

[17]. These methods include probability hypothesis density
(PHD) filter [18, 19], cardinalized probability hypothesis
density (CPHD) filter [20, 21], multitarget multi-Bernoulli
(MeMBer) filter [22, 23], and generalized label multi-
Bernoulli (GLMB) filter [24, 25]. Reference [26] uses the
MCMC particle filter algorithm to track the cooperative
cluster with few members and solves the problems of cluster
structure inference and joint estimation of cluster and mem-
ber state. Reference [27] uses δ-GLMB filter to track cluster
targets with splitting, merging, and reorganization behavior.
Usually, RFS-based tracking methods set the detection prob-
ability as a constant a priori, but this does not conform to
the actual sensor detection process. Reference [28] uses
active sonar equation to model the detection probability
and proposes the Pd-GM-PHD and Pd-GM-CPHD algo-
rithms to achieve more accurate tracking effect. The existing
filter based on RFS avoids the problem of data association
and realizes the joint estimation of the number of targets
and states. Compared with the probabilistic data association
algorithm, the number of targets that can be tracked is
increased. However, these methods cannot meet the require-
ments of the number of tracking cluster members only by
using a single sensor, and they do not consider the problem
of tracking information fusion caused by using multiple sen-
sors in the actual situation.

The traditional method of multiradar tracking information
fusion is to approximate the posterior distribution of the target
by Gaussianmixture. A fusionmethod of Gaussianmixture dis-
tribution using the Chebyshev information is proposed in [29].
A consensus CPHD filter based on Gaussian mixture distribu-
tion is designed in [30]. And a likelihood function distribution
approximation method based on polynomial weighting is
designed in [31]. However, these methods do not further con-
sider the useful information that the relationship between tar-
gets may provide. In recent years, machine learning
algorithms based on neural networks provide a new way for
mining information in target tracking [32, 33].

In this paper, in order to achieve better tracking effect,
we try to use Graph-LSTMs [34–36] to realize the fusion
of multiradar estimation information and mine the collabo-
rative information among cluster members at the same time.
The key contributions of this research are as follows.

(1) We establish a stochastic differential equation model
to describe the cooperative interaction relationship
within the cluster and unify it under the framework
of CV model, which would be used as the target state
equation of the cluster in the iterative filtering process

(2) Considering the problem of multiradar detection of
cluster targets, we propose a radar-target assignment
method. Benefiting from the introduction of detection
confirmation matrix, this method can not only ensure
that multiple radar systems detect all cluster members
but also realize multiple detection of the same mem-
ber, so as to obtain multiple target state estimates

(3) Based on the cluster motion model proposed in the
paper, the cluster motion trajectory dataset is
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simulated. We use δ-GLMB filter to realize the state
estimation of radar to assigned targets

(4) The bipartite graph of radar detection relation is
established and expanded into a tree structure. The
space around the predicted value of the target state
is discretized to obtain the label of the target state
estimated value. The Graph-LSTM model is used to
fuse the label of the estimated value, and a more
accurate fusion value is obtained. Experimental
results show that our method has more accurate
fusion labels and smaller OSPA distance than the
mean method and EM algorithm

The content of this paper is arranged as follows: Section
2 introduces the construction method of the cooperative
interaction model based on multivariable stochastic differen-
tial equation. Section 3 introduces the multiradar tracking
method of cluster targets and puts forward a radar-target
assignment method. On this basis, the state estimation of
the assigned targets is realized by using the δ-GLMB filter.
Section 4 introduces an estimation fusion method based on
Graph-LSTMs. In Section 5, the cluster motion simulation
is carried out, and the estimation fusion experiment is car-
ried out using the simulation data set to verify the effective-
ness of the proposed method.

2. Cooperative Interaction Motion Model

In this section, on the basis of cluster cooperation rules, the
self-organizing cooperative interaction motion model of
cluster is established, and its discrete form in state space is
deduced. In the model, the motion of cluster members is
directly related to other members in the neighborhood,
and cluster members act according to the motion state of
other members. Finally, the velocity of cluster members is
gradually consistent, and there is no collision between mem-
bers. Multivariable stochastic differential equation (SDE)
would be an effective tool for us to establish cluster member
cooperative interaction motion model [37].

2.1. Continuous-Time Collaborative Interaction Model. Con-
sidering that the motion state of cluster members is jointly
determined by their own state and the states of other mem-
bers in the neighborhood, the continuous-time collaborative
interaction motion model of cluster member i at time t is
constructed as follows:

d_st,i = ‐α _st,i‐f _stð Þ½ � + βri st,ið ÞÈ É
dt + dWs

t,i + dBs
t , ð1Þ

where st,i and _st,i, respectively, represent the position and
velocity of the target i at time t, α represents the velocity
control parameter, β represents the potential force control
parameter,Ws

t,i represents the motion noise of the members,
Bs
t represents the cluster motion noise, and f ð_stÞ represents

the average velocity of the cluster where target i is located.
Let the number of cluster members be N , and the expression

of f ð_stÞ is as follows:

f _stð Þ = 1
N
〠
N

j=1
_st,j: ð2Þ

The introduction of f ð_stÞ makes the average velocity
information of the cluster pass through the whole cluster,
makes the topology of the cluster structure have weak con-
nectivity, and realizes the gradual consistency of the velocity
of members.

riðst,iÞ represents the total potential force of member i by
other members in the neighborhood, which can avoid colli-
sion between cluster members. Its expression is as follows:

ri stð Þ = 〠
∀j,j≠i

r st,i, st,j
À Á

, ð3Þ

where rðst,i, st,jÞ represents the potential force of member j to
member i in the cluster, which is generated by the potential
function U jð⋅Þ. U jð⋅Þ needs to meet the following two prop-
erties. First, Ujð⋅Þ should be a continuous, differentiable, and
nonnegative function; second, Ujð⋅Þ needs to obtain a unique
minimum value at a certain required distance. In this paper,
a definition of U jð⋅Þ is given as follows:

U j dð Þ =
R11 ln

db + R12
d + R12

+ R11
db + R12

d − dbð Þ, d ≤ db,

R21 ln
dm − db + R22
−d + dm + R22

+ R21
dm − db + R22

db − dð Þ, db < d < dm:

8>>><>>>:
ð4Þ

Here, d = kst,i − st,jk and dr are the balance distance
between two members. When the distance is less than dr ,
the potential force is repulsive force. Otherwise, it is attrac-
tive force. dm is the maximum distance that can generate
potential force. The cluster potential field is shown in
Figure 1. R11, R12, R21, and R22 are the parameters control-
ling the intensity of potential field. Under the above defini-
tion of potential function, as the negative gradient of
potential function, the potential force rðst,i, st,jÞ is calculated
as follows:

r st,i, st,j
À Á

= − grad Uj dð ÞÀ Á
=

R11
d + R12

−
R11

db + R12
, d ≤ db,

−R21
dm − d + R22

+ R21
dm − db + R22

, db < d < dm:

8>>><>>>:
ð5Þ

2.2. Continuous-Time Joint Motion Model. Because the
cooperative interaction model of cluster member contains
the motion information of other members in cluster, it can-
not be solved separately. The models of all members in the
cluster need to be combined to obtain the analytical solution
together.

In 2-dimensional space, member position st,i = ½xt,i, yt,i�.
Use Xt to represent the joint state of all members in the
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cluster; then, we can get Xt = ½xt,1, _xt,1, yt,1, _yt,1,⋯,xt,N , _xt,N ,
yt,N , _yt,N �T . From (1), the linear differential equation of the
joint state in continuous time can be obtained as follows:

dXt = AXtdt + Rdt + CdWt +DdBt: ð6Þ

Matrix A ∈ R4N×4N is defined as follows:

A =

A1 A2 ⋯ A2

A2 A1 ⋯ A2

⋮ ⋱ ⋮

A2 A2 ⋯ A1

2666664

3777775,

A1 =

0 1 0 0

0 1 −Nð Þα
N

0 0

0 0 0 1

0 0 0 1 −Nð Þα
N

266666664

377777775
,

A2 =

0 0 0 0
0 α

N
0 0

0 0 0 0
0 0 0 α

N

26666664

37777775:

ð7Þ

Matrix R ∈ R4N×1 is defined as follows:

R = 0, βri,x stð Þ, 0, βri,y stð Þ,⋯,0, βrN ,x stð Þ, 0, βrN ,y stð ÞÂ ÃT
:

ð8Þ

Matrix C ∈ R4N×2N is defined as follows:

C =

C1 0 ⋯ 0
0 C1 ⋯ 0
⋮ ⋱ ⋮

0 0 ⋯ C1

2666664

3777775,

C1 =

0 0
1 0
0 0
0 1

2666664

3777775:
ð9Þ

Matrix D ∈ R4N×2 is defined as follows:

D = CT
1 , CT

1 ,⋯, CT
1

Â ÃT
: ð10Þ

Motion noise Wt = ½Wx
t,1,W

y
t,1,⋯,Wx

t,N ,W
y
t,N �T , and Bt

= ½Bx
t , B

y
t �T . According to the general practice, motion noise

is usually modeled as white noise with Gaussian distribution,

and their covariance matrices are QW = diag ð½σ2x, σ2
y ,⋯,σ2x,

σ2
y�Þ and QB = diag ð½σ2

g, σ2g�Þ, respectively. Because they have
the same form, in order to simplify the model, the two noises
can be combined into cluster joint motion noise Mt and its
covariance matrix QM = diag ð½σ2x , σ2y ,⋯,σ2x , σ2

y , σ2g, σ2
g�Þ.

Accordingly, after combining the two coefficient matrices,
there is H = ½C,D�. Equation (6) has the following form:

dXt = AXtdt + Rdt +HdMt: ð11Þ

The following analytical solution is obtained by solving
(11).

Xt+τ = eAτXt +
ðh=t+τ
h=t

eA t+τ−hð Þdh × R +
ðh=t+τ
h=t

eA t+τ−hð ÞHdMt ,

ð12Þ

where τ is the sampling time. Define the member joint state
transition matrix FcðτÞ = eAτ. Define the potential force joint
gain matrix EcðτÞ =

Ð h=t+τ
h=t eAðt+τ−hÞdh, and the noise joint

covariance matrix is calculated as follows:

Qc τð Þ =
ðh=t+τ
h=t

eA t+τ−hð ÞHQMH
T eA t+τ−hð Þ
� �T

dh: ð13Þ

It can be seen from (12) that EcðτÞ and QcðτÞ are only
related to the sampling time τ. Therefore, the time discreti-
zation of (12) can be realized by making τ = 1, and the fol-
lowing equation is obtained:

Xk+1 = FcXk + EcR + Γcwk: ð14Þ

Equation (14) is the discrete-time joint state model of
cluster, where Fc = Fcð1Þ and Ec = Ecð1Þ; wk is the Gaussian
white noise with covariance matrix Qc =Qcð1Þ; and Γc is
the state noise factor matrix, which is used to convert the
noise dimension and add the noise to the joint state Xk+1.

2.3. Discrete-Time State Space Model. After obtaining
discrete-time joint state model of cluster, it is necessary to

Repulsive
 region

Attractive
region

db

dm

Figure 1: Schematic diagram of potential field.
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separate the state space model of a single member from the
joint state model and further simplify it to a general form
suitable for iterative tracking algorithm. By analyzing the
coefficient matrix and covariance matrix, we can see that
they have the following symmetric forms, which would be
the basis for us to realize the above separation.

Fc =

Fs
c Fc

c ⋯ Fc
c

Fc
c Fs

c ⋯ Fc
c

⋮ ⋱ ⋮

Fc
c Fc

c ⋯ Fs
c

2666664

3777775,

Ec =

Es
c Ec

c ⋯ Ec
c

Ec
c Es

c ⋯ Ec
c

⋮ ⋱ ⋮

Ec
c Ec

c ⋯ Es
c

2666664

3777775,

Qc =

Qs
c Qc

c ⋯ Qc
c

Qc
c Qs

c ⋯ Qc
c

⋮ ⋱ ⋮

Qc
c Qc

c ⋯ Qs
c

2666664

3777775:

ð15Þ

Among them, the diagonal matrices with superscript s
are related to the motion state of the members themselves,
and other matrices with superscript c are related to the states
of other members in the cluster.

Further solving matrix Fc shows that for any member i,
its own state transition matrix Fs

c and the cooperation matrix
Fc
c are as follows:

Fs
c =

1 f1 0 0
0 f2 0 0
0 0 1 f1

0 0 0 f2

2666664

3777775,

Fc
c =

0 1 − f1
N − 1 0 0

0 1 − f2
N − 1 0 0

0 0 0 1 − f1
N − 1

0 0 0 1 − f2
N − 1

2666666666664

3777777777775
:

ð16Þ

f1 and f2 are constants, which are related to the member
number N and parameter α. Assuming that the influence of
potential force on the motion state of member i at a certain

time is only related to the potential force on member i at the
current time, there are

Es
c =

1 1
2 0 0

0 1 0 0

0 0 1 1
2

0 0 0 1

266666664

377777775
: ð17Þ

And Ec
ct =O4×4. O4×4 represents the fourth-order zero

matrix.
In the cluster movement dominated by collaborative

behavior, the motion randomness of other members has lit-
tle impact on the member i and would offset each other due
to synergy. The motion randomness of members is more
expressed as endogenous motion uncertainty. Therefore, it
can be considered that the noise covariance matrix of mem-
ber i can be directly simplified to Qs

ct .
Based on the above assumptions, the discrete-time state

space model of cluster member i can be given as follows:

xk+1,i = Fs
cxk,i + Fc

c 〠
∀j,j≠i

xk,j + ck,i + Γs
cwk,i, ð18Þ

where

ck,i = 〠
∀j,j≠i

ck, i,jð Þ =
βri,x
2 , βri,x,

βri,y
2 , βri,y

� �T
,

ck, i,jð Þ =
βri,x xk,i, xk,j

À Á
2 , βri,x xk,i, xk,j

À Á
,
βri,y xk,i, xk,j

À Á
2 , βri,y xk,i, xk,j

À Á" #T
:

ð19Þ

Γs
c is the state noise factor matrix, and wk,i is the Gauss-

ian noise with covariance matrix Qs
ct .

Although the above equation separates the motion states
of member i from other members in the cluster, the number
of members still affects the values of f1 and f2.

In order to completely separate the influence of collabo-
rative interaction, simple transformation is carried out
under the framework of constant velocity (CV) motion
model, and the discrete-time state space model of cluster
members is proposed as follows:

xk+1,i = Fkxk,i +w0
k,i: ð20Þ

Here,

Fk =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

2666664

3777775: ð21Þ

w0
k,i is a new collaborative noise, which includes all the
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effects of cooperative interaction and motion noise on a
cluster member motion state. Its calculation method is
shown in (22).

w0
k,i = Δck,i + Γkwk,i: ð22Þ

Here, Γk = Γs
c and Δck,i are calculated as follows:

Δck,i = 〠
∀j,j≠i

ωk

ck, i,jð Þ
ωk

− Fk _xk,i − _xk,j
À Á� �

, ð23Þ

ωk =
1

N − 1 I4×4 − diag f1, f2, f1, f2½ �ð Þð Þ: ð24Þ

In (23), _xk,i is the velocity vector and _xk,i =
½0, _xk,i, 0, _yk,i�T .

It is assumed that the interaction is a random variable
obeying to Gaussian distribution, that is, ck,ði,jÞ ∼N ð�ck,ði,jÞ,
Sk,ði,jÞÞ. Then, the collaborative noise w0

k,i can also be mod-

eled as Gaussian distribution, that is, w0
k,i ∼N ðμ0k,i,Q0

k,iÞ.
Here,

μ0k,i = 〠
∀j,j≠i

ωk

�ck, i,jð Þ
ωk

− Fk
b_xk,i − b_xk,j
� �� �

,

Q0
k,i = 〠

∀j,j≠i
Sk, i,jð Þ + ωkFk 〠

∀j,j≠i
Pk,j − Pk,i
À Á" #

FT
kω

T
k + ΓkQ

s
cΓ

T
k ,

ð25Þ

where Pk,i is the state covariance matrix of _xk,i. The whole
process of model construction is shown in Figure 2. The
model construction has experienced the transformation
from member to cluster and then to member and realizes
the discretization of continuous-time model.

However, even if model (20) is obtained, it is difficult to
directly apply the traditional tracking algorithm. There are
two reasons. On the one hand, the noise w0

k,i is not Gaussian
white noise, but the noise with time-varying mean and
covariance. On the other hand, due to the large number of
members in the cluster and the limited number of radar
channels, it is often difficult for a single radar to track the
whole cluster, and it is prone to the problem of
measurement-track association. In order to solve the above
problems, multiradar joint tracking becomes an alternative
method.

3. Multiradar Joint Tracking Method

In order to solve the problem of obtaining measurement
information in the process of cluster target detection and
reduce the impact of collaborative noise on cluster tracking,
the following solutions are proposed in this paper. Firstly, as
shown in Figure 3, multiple radars are used to detect a clus-
ter at the same time, and each radar obtains some measure-
ment information of cluster, respectively. The sum of all
measurement information needs to ensure full coverage of

all cluster members. Secondly, the states of the members
are estimated by using the multitarget filter. Finally, the state
estimation of each member is obtained by information
fusion. In order to ensure the effect of information fusion,
each member needs to estimate as much as possible.

3.1. Acquisition of Detection Information

3.1.1. Detection Relationship Construction. In order to reflect
the detection relationship between multiradar and cluster
members, we introduce the concept of detection confirma-
tion matrix Ω, which is defined as

Ω = ωst½ �, s = 1, 2,⋯,M, t = 1, 2,⋯, T , ð26Þ

where ωst is a binary variable. ωst = 1 indicates that cluster
member t is detected by radar s. And ωst = 0 indicates that
cluster member t is not detected by radar s. The average
detection density Ad is defined as the average detection times
of all members in the cluster. Ω needs to meet the following
three assumptions:

(1) Each member is detected by at least one radar, i.e.,

〠
M

s=1
ωst ≥ 1, t = 1, 2,⋯,N ð27Þ

(2) The number of members detected by each radar is
less than the number of radar channels Nc, i.e.,

〠
N

t=1
ωst ≤Nc, s = 1, 2,⋯,M ð28Þ

(3) The average detection density Ad should be greater
than the given value �Ad , i.e.,

Ad =
∑N

t=1∑
M
s=1ωst

N ≥ �Ad

ð29Þ

3.1.2. Radar Measurement Model. When the radar detection
relationship is determined, the measurement information
model of the target follows the general measurement model.
For member i, there are the following measurement models:

zk+1,i =Hk+1xk+1,i + vk+1,i, ð30Þ

where

Hk+1 =
1 0 0 0
0 0 1 0

" #
: ð31Þ
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The measurement noise vk+1,i is a Gaussian white noise
with covariance matrix Rk+1.

Equations (20) and (30) together constitute the system
equation of the cluster target tracking algorithm. Consider-
ing the problem of radar-target assignment and tracking
information fusion, the filter needs to have the ability to
propagate multiple hypotheses in the label set of different
trajectories and output the target label. We choose the δ-
generalized label multi-Bernoulli (δ-GLMB) filter [38, 39]
for target tracking.

3.2. Application of δ-GLMB Filter. In the process of cluster
target tracking, an accurate state estimation algorithm
should include the estimation of cooperative interaction.
However, we usually cannot obtain the priori information
of cooperative interaction. Therefore, we use the method of
multiradar estimation fusion to solve this problem, and each
radar runs a δ-GLMB filter.

The δ-GLMB filter recursively transmits the δ-GLMB fil-
tering density forward over time through Bayesian predic-
tion and update equation. The difference from GLMB is
that when predicting, δ-GLMB is summed on the label space
ðI+, ϑÞ ∈FðL+Þ × Ξ at the next time. Here, L+ = L ∪ B. From

the perspective of multitarget tracking, this is more intuitive
because it shows how the prediction introduces a new target
label. δ-GLMB is represented by parameter set fðwðI,ϑÞ, pðϑÞ
Þ: ðI+, ϑÞ ∈FðL+Þ × Ξg. The parameter set of δ-GLMB can
be regarded as an enumeration of all assumptions and their

related weights and track density fðIðhÞ, ϑðhÞ,wðhÞ, pðhÞÞgHh=1.
3.2.1. Prediction. At time k, the distribution of the random
finite set of δ-GLMB is as follows:

π Xð Þ = Δ Xð Þ 〠
I,ϑð Þ∈F Lð Þ×Ξ

w I,ϑð ÞδI L Xð Þð Þ p ϑð Þ
h iX

: ð32Þ

Then, the multitarget prediction density at time k + 1 is

π+ X+ð Þ = Δ X+ð Þ 〠
I+,ϑð Þ∈F L+ð Þ×Ξ

w I+,ϑð Þ
+ δI+ L X+ð Þð Þ p ϑð Þ

+
h iX+ ,

ð33Þ

where

w I+,ϑð Þ
+ =wγ I+ ∩Bð Þw ϑð Þ

S I+ ∩ Lð Þ,

w ϑð Þ
s Lð Þ = η

ϑð Þ
S

h iL
〠
I⊇L

1 − η
ϑð Þ
S

h iI−L
w I,ϑð Þ,

η
ϑð Þ
S lð Þ = pS ⋅ ,lð Þ,p ϑð Þ ⋅ ,lð Þ

D E
,

p ϑð Þ
+ x, lð Þ = 1L lð Þp ϑð Þ

+,S x, lð Þ + 1B lð Þpγ x, lð Þ,

p ϑð Þ
+,S x, lð Þ = pS ⋅ ,lð Þϕ x ⋅ ,ljð Þ,p ϑð Þ ⋅ ,lð Þ
 �

η
ϑð Þ
S lð Þ

:

ð34Þ

Joint

So
lv

e

Seperate

D
isc

re
tiz

e Si
m

pl
ify

Continuous-time
collaborative interaction
model of cluster members

Continuous-time joint
motion model of cluster

Discrete-time state space
model of cluster members

Figure 2: Model construction process.

UAV Cluster

Radar System

Figure 3: Multiradar detection.

7Journal of Sensors



Here, wγðI+ ∩ BÞ is the weight of newborn label ðI+ ∩ BÞ,
and wðϑÞ

S ðI+ ∩ LÞ is the weight of survival label. ϕðxj⋅ ,lÞ is the
single-target transfer density of trajectory l, and ηðϑÞS ðlÞ is the
survival probability of trajectory l. pγðx, lÞ is the probability
density of newborn state, and pðϑÞ+,Sðx, lÞ is the probability
density of survival state.

3.2.2. Update. After obtaining the multitarget prediction
density at time k + 1, it can be proved that the updated mul-
titarget filter density is also δ-GLMB.

The update process is shown as follows:

π X Zjð Þ = Δ Xð Þ 〠
I,ϑð Þ∈F Lð Þ×Ξ

〠
θ∈Θ Ið Þ

w I,ϑ,θð Þ Zð ÞδI L Xð Þð Þ p ϑ,θð Þ ⋅ Zjð Þ
h iX

,

ð35Þ

where

w I,ϑ,θð Þ Zð Þ =
δθ−1 0: Zj jf gð Þ Ið Þ η

ϑ,θð Þ
Z

h iI
w I,ϑð Þ

∑ I,ϑð Þ∈F Lð Þ×Ξ∑θ∈Θ Ið Þδθ−1 0: Zj jf gð Þ Ið Þ η
ϑ,θð Þ
Z

h iI
w I,ϑð Þ

∝ η
ϑ,θð Þ
Z

h iI
w I,ϑð Þ,

η
ϑ,θð Þ
Z lð Þ = p ϑð Þ ⋅ ,lð Þ,φZ ⋅ ,l ; θð Þ

D E
,

p ϑ,θð Þ x, l Zjð Þ = p ϑð Þ x, lð ÞφZ x, l ; θð Þ
η

ϑ,θð Þ
Z lð Þ

:

ð36Þ

Here, ΘðIÞ represents a subset of the current association
mapping with domain I. φZðx, l ; θÞ is defined as follows:

φZ x, l ; θð Þ =
δ0 θ lð Þð Þ 1 − pD x, lð Þð Þ + 1 − δ0 θ lð Þð Þð ÞpD x, lð Þg zθ lð Þ x, lj

� �
κ zθ lð Þ
� �

=

pD x, lð Þg zθ lð Þ x, lj
� �

κ zθ lð Þ
� � , θ lð Þ > 0,

1 − pD x, lð Þ, θ lð Þ = 0:

8>>>><>>>>:
ð37Þ

Here, pDðx, lÞ is the detection probability on ðx, lÞ. gð
zθðlÞjx, lÞ is the single-target likelihood function of zθðlÞ to ð
x, lÞ. κð⋅Þ is the Poisson clutter density.

3.2.3. Realization of δ-GLMB Filter. For cluster member
motion model, pSðx, lÞ = pS, and ϕðx+jx, lÞ =Nðx+ ; Fkx,Qs

cÞ
. Since the newborn density matrix is in the form of Gauss-
ian mixture, if the single-target density is in the form of
Gaussian mixture, there is

p ϑð Þ ⋅ ,lð Þ = 〠
J ϑð Þ lð Þ

i=1
ω

ϑð Þ
i lð ÞN x ;m ϑð Þ

i lð Þ, P θð Þ
i lð Þ

� �
: ð38Þ

Then,

η
ϑð Þ
S lð Þ = pS,

p ϑð Þ
+ x, lð Þ = 1L lð Þ 〠

J ϑð Þ lð Þ

i=1
ω

ϑð Þ
i lð ÞN x ;m ϑð Þ

S,i lð Þ, P ϑð Þ
S,i lð Þ

� �
+ 1B lð Þp lð Þ

γ ,

ð39Þ

where

m ϑð Þ
S:i lð Þ = Fkm

ϑð Þ
i lð Þ,

P ϑð Þ
S,i lð Þ = FkP

ϑð Þ
i lð ÞFT

k +Qs
c:

ð40Þ

When the motion model parameters are related to the
label, we just need to substitute pS = pSðlÞ, Fk = FkðlÞ, and
Qs

c =Qs
cðlÞ into the above equation.

In the update process, pDðx, lÞ = pD. For the measure-
ment model shown in (30), the measurement likelihood is
gðzjx, lÞ =N ðz ;Hk+1x, Rk+1Þ. Gaussian mixture expression
provides the most general configuration for linear Gaussian
model. It is assumed that each single-target density pðϑÞð⋅ ,lÞ
is in the form of Gaussian mixture.

p ϑð Þ ⋅ ,lð Þ = 〠
J ϑð Þ lð Þ

n=1
ω ϑð Þ
n lð ÞN x ;m ϑð Þ

n lð Þ, P ϑð Þ
n lð Þ

� �
: ð41Þ

Then,

ci,j = − ln
pD∑

J ϑð Þ lið Þ
n=1 ω

ϑð Þ
n lið Þq ϑð Þ

n zj ; li
À Á

1 − pDð Þκ zj
À Á

24 35: ð42Þ

In addition, for the updated association process ðϑ, θÞ,
there are

η
ϑ,θð Þ
Z lð Þ = 〠

J ϑð Þ lð Þ

n=1
w ϑ,θð Þ

Z,n lð Þ,

p ϑ,θð Þ x, l Zjð Þ = 〠
J ϑð Þ lð Þ

n=1

w ϑ,θð Þ
Z,n lð Þ

η
ϑ,θð Þ
Z lð Þ

N x ;m ϑ,θð Þ
Z,n lð Þ, P ϑ,θð Þ

n lð Þ
� �

:

ð43Þ
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Here,

w ϑ,θð Þ
Z,n lð Þ = ω ϑð Þ

n lð Þ ×
pDq

ϑð Þ
n zθ lð Þ ; l
� �

κ zθ lð Þ
� � , θ lð Þ > 0,

1 − pDð Þ, θ lð Þ = 0,

8>>><>>>:
q ϑð Þ
n z ; lð Þ =N z ;Hk+1m

ϑð Þ
n lð Þ,Hk+1P

ϑð Þ
n lð ÞHT

k+1 + Rk+1
� �

,

m ϑ,θð Þ
Z,n lð Þ =

m ϑð Þ
n lð Þ +G ϑ,θð Þ

n lð Þ zθ lð Þ −Hk+1m
ϑð Þ
n lð Þ

� �
, θ lð Þ > 0,

m ϑð Þ
n lð Þ, θ lð Þ = 0,

8<:
P ϑ,θð Þ
n lð Þ = I −G ϑ,θð Þ

n lð ÞHk+1
� �

P ϑð Þ
n lð Þ,

G ϑ,θð Þ
n lð Þ = P ϑð Þ

n lð ÞHT
k+1 Hk+1P

ϑð Þ
n lð ÞHT

k+1 + Rk+1
� �−1

, θ lð Þ > 0,

0, θ lð Þ = 0:

8<:
ð44Þ

When the parameters of the measurement model are
dependent on the label l, it is only necessary to substitute
pD = pDðlÞ, Hk+1 =Hk+1ðlÞ, and Rk+1 = Rk+1ðlÞ into the above
equation.

4. Multiradar Estimation Fusion Based
on Graph-LSTMs

Through the above process, we can obtain multiple estima-
tions of the same member state. An obvious fact is that in
the tracking process, we only consider the explicit relation-
ship between radar and target in detection and tracking
but hardly consider the implicit relationship of motion con-
sistency among cluster members which may play a positive
role in improving the tracking accuracy. In this section, the
purpose of applying the Graph-LSTM algorithm is to cap-
ture this implicit relationship.

4.1. Construction Tracking Relationship Graph

4.1.1. Bipartite Graph Model. In order to reflect the detection
and tracking relationship between radar and cluster mem-
bers, we establish the graph of radar and cluster. Radar sys-
tem and cluster can be divided into two subsets ðS, TÞ, and
we connect the radar si that has detection relationship and
obtains the target estimation with the corresponding target
t j by edge E ⊆ S × T , and Figure 4 is as follows. According
to the definition of bipartite graph, this graph is a bipartite
graph, expressed as G = fðS, TÞ, Eg.
4.1.2. Build Node Unfolding Tree. In the bipartite graph of
detection and tracking relationship between radar and tar-
get, the size and topology of the graph neighborhood are
variable. However, the common machine learning algo-
rithms can only deal with feature vectors with fixed length.
In order to apply the machine learning algorithm to mining
information, an effective solution is to unfold the bipartite
graph into a tree at a given depth and the learning algorithm

is used to learn the sequence from the child node to the root
node.

For a bipartite graph, given the depth D = 2, the tree Ttj

is constructed with the target t j as the root node, and the
unfolding results are shown in Figure 5. In the unfolding
tree, the root node depth is 0. The radars with detection
and tracking relationship with target t j are taken as child
nodes, and the depth is 1. Other detection and tracking tar-
gets of these radars are the child nodes of the radar, with a
depth of 2. In the process of building Ttj

, when the depth

d > 1, the same target may be repeatedly detected by other
radars. At this time, for the same node k, we would add
superscript to represent its copy with k′ and k″. From the
depth d ≥ 2, there is an upward transmission of other target
motion information in the tree, which makes the acquisition
of fusion apply the implicit information between targets.

4.2. State Space Labeling. In this paper, we would apply
graph-long short-term memory neural nets (Graph-LSTMs)
to sequence learning. The core of Graph-LSTMs is multilevel
LSTMs, which is called multilevel sequence learners (MLSL).
However, MLSL can only output the label of the target sate,
and the continuous state of the target is difficult to adapt to
this output form. In order to apply MLSL, it is necessary to
label the state space and convert the true state and multiple
estimations of the target into label space.

The labeling of state space needs to be carried out in
position space and velocity space, respectively. In position
space, given the number of labels NL and taking the pre-
dicted position as the center, we can generate an orthogonal
grid of ðNL − 1Þ × ðNL − 1Þ, as shown in Figure 6. The space
around the predicted position is discretized into ðNL − 1Þ2
small spaces. We call the small space as label space. We
use Lp to represent its label, and Lp = ½Lx, Ly�T . Similarly,

we can get label Lv in velocity space and Lv = ½Lvx , Lvy �
T .

Then, we can obtain the label of the target estimation L =
½Lx, Lvx , Ly, Lvy �

T .

At time k, the estimated state of target t j is xkjk,j. At time

k + 1, the label Lik+1,j of radar si estimation xik+1jk+1,j for target
t j is calculated as follows:

Lik+1,j = xik+1 k+1,jj − xk+1 k,jj
� �

⊙ d−1ΔL
j k

+ Lk+1 k,jj , ð45Þ
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Figure 4: Bipartite graph of radar-target.
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where xk+1jk,j is the state prediction at time k + 1; Lik+1,j rep-
resents the label of the estimation xik+1jk+1,j of radar si; Lk+1jk,j
represents the label of xk+1jk,j, which is usually used as the
central label of label space; ⊙ represents the product of
the corresponding element; and dΔL represents the side
length of label space, which can reflect the fineness of state
space labeling. In the paper, dΔL = ½dΔLx , dΔLvx , dΔLy , dΔLvy �

T .

The elements of dΔL are preset by us. b⋅c means rounding
down. Therefore, the smallest label is 0. After the label space
is given, if the calculated target estimation label is outside the
label space, the estimation would be discarded.

4.3. Sequence Learning Using MLSL

4.3.1. Learning Strategy. Next, we would traverse the tree Ttj
from bottom to top; use the MLSL to calculate the state label
yt j of root node. In the process of network training, yt j is

compared with the expected state label �yt j , the loss is calcu-

lated, and backpropagation is carried out to train the net-
work parameters.

4.3.2. MLSL Model. LSTM is the basis for efficient sequence
learning in MLSL, which can alleviate the problem of gradi-
ent disappearance with the increase of time step in recurrent
neural network. The basis of sequence learning ability of
LSTM is the introduction of three gates in its basic unit.
The structure and operation flow of LSTM unit are shown
in Figure 7.

In the picture, id is the input gate, which controls the
information of the input vector xd and updates the current
information flow Cd . f d is the forget gate, which determines
whether the value information is retained in Cd . od is the
output gate, which includes the input information of level
d + 1 and determines the value of hidden state hd of level d
. σ and tanh are the activation functions. The operation
update mechanism of each gate is as follows:

f d = σ Wf × hd+1, xd½ � + bf
À Á

,
id = σ Wi × hd+1, xd½ � + bið Þ,

Ĉd = tanh WC × hd+1, xd½ � + bCð Þ,
Cd = f d × Cd+1 + id × Ĉd ,

od = σ Wo × hd+1, xd½ � + boð Þ,
hd = od × tanh Cdð Þ,

ð46Þ

where Wf , Wi, WC , and Wo are the weight parameters of
each gate obtained by network training and bf , bi, bC , and
bo are the bias obtained by network training.

LSTMs composed of basic cells in series can accept any
length of eigenvector as input and generate an output vector.
If an LSTM can accept a sequence of vectors containing N
vectors and generate an output vector of size K , we call its
shape ðN , KÞ. After obtaining the unfolding tree, D kinds
of LSTM cell are applied to the tree with depth D, and the
number of each kind of LSTM cell is the same as the number
of nodes in its depth. At its depth, each LSTM cell processes
the relevant node information to obtain the output vector.

Sa

SaSb
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Sc

Sc

tj tj

tk

tk tl′ tk′ tk′′ tl
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Figure 5: An example of a graph and its unfolding tree at node t j for depth 2.
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For LSTMs with depth dð0 < d <DÞ, it is expressed as Ld
and the shape is ðM + Kd+1, KdÞ. M indicates that there are
M edges connected to the child nodes. Kd+1 indicates the
output from the lower level LSTMs, and M + Kd+1 indicates
the series connection of the two eigenvectors. Taking
Figure 5 as an example, the output f ðt jÞ of the target t j is cal-
culated as follows:

f t j
À Á

= f sað Þ ∩ g sa, t j
À Á

+ f sbð Þ ∩ g sb, t j
À Á

+ f scð Þ ∩ g sc, t j
À Á

,
f sað Þ = g sa, tkð Þ + g sa, tlð Þ,

f sbð Þ = g sb, tkð Þ,
f scð Þ = g sc, tkð Þ + g sc, tlð Þ:

ð47Þ

Here, f ð⋅Þ and gð⋅Þ are the input and output vectors of
LSTMs, respectively. gðsi, t jÞ is the state estimation label of
target t j obtained by radar si. The symbol ∩ represents the
concatenation of feature vectors, and the symbol + repre-
sents the collection of information.

4.3.3. Parameter Update Process. Ld with the same depth
have the same parameters, which are expressed as parameter
vector WðdÞ. When updating, nodes in the same level inde-
pendently forward and backward propagation to minimize
the loss function. In the training process, repeatedly select
the same root node t∗j , unfold graph Gt∗j

into tree Tt∗j
, and

carry out forward and backward propagation to update
parameters.

Forward propagation is carried out from the lowest level
child node to the root node. For node u with arbitrary depth
d, if it has d + 1 level LSTMs, it obtains the output f ðuÞ from
d + 1 level. The information that node u propagates to the
parent node v is gðv, uÞ ∩ f ðuÞ.

In backward propagation, after obtaining the output
eigenvector yt j = f ðt jÞ, the loss Lðyt jÞ is calculated through

the loss function.

L yt j

� �
= yt j − �yt j : ð48Þ

Here, �yt j is the expected output eigenvector. In a train-

ing, after the loss is obtained, the derivative ∂L/∂yt j of the
loss to the output vector can be obtained. Then, the deriva-
tive of the loss to any input vector is obtained. When the
input vector is like gðv, uÞ ∩ f ðuÞ, since gðv, uÞ does not
need to propagate, the backward propagation of loss only
needs to calculate ∂L/∂f ðuÞ. The derivative of the loss prop-
agates from the root node to the lowest level child node to
stop when the depth is D and the input vector is only gðv,
uÞ.

Since there are many Ld at the same depth and have the
same parameters, the Ld at the same depth need to calculate
and update the parameters in parallel and then fuse the
parameters for each Ld . Suppose that there are mLd in one

level, which are labeled as Lð1Þd , Lð2Þd ,…,LðmÞ
d . If the updated

parameter ΔiW
ðdÞ can be obtained for LðiÞd , the updated

parameter ΔWðdÞ is calculated as follows:

ΔW dð Þ = Δ1W
dð Þ + Δ2W

dð Þ+⋯+ΔmW
dð Þ

m
: ð49Þ

4.3.4. Overall Network Structure and Output. Taking depth
D = 2 as an example, the estimation fusion network is shown
in Figure 8. Firstly, a bipartite graph is constructed accord-
ing to the detection and tracking relationship between radar
and target, and we unfold the graph into a tree with the
tracked target as the root node. Secondly, the target state is
labeled, and the labels of the estimation are obtained from
the velocity and position space, respectively. Then, we input
the estimation label into the trained MLSL. Finally, we input
the network output vector into the Softmax full connection
layer to obtain the probability of each label in the label space.
The state label fusion L̂k+1,j of the target is the label with the
highest probability in the label space.

After obtaining the target label fusion L̂k+1,j, we need to
convert the label fusion of the target into the state fusion.
The transformation method is as follows:

xk+1 k+1,jj = L̂k+1,j − Lk+1 k,jj
� �

⊙ dΔL + xk+1 k,jj : ð50Þ

5. Experiments and Results

5.1. Simulation Scene Setting. In order to evaluate the track-
ing performance of the algorithm proposed in this paper, we
set up a simulation experiment scene in 2-dimensional
space. In this simulation scenario, a total of 3000 simulation
tracks are simulated. 30 targets form a cluster and move at
the same time. Then, there are 100 clusters in total. Total
time of cluster movement T = 100 s. 80% of the simulation
data set is used for training and 20% for testing.

Set the cluster motion model parameters as shown in
Table 1. 30 cluster members are randomly dropped in area
½0,100� × ½0,100� (m2), and the initial velocity in each direc-
tion is a random number in the range of [0,140]m/s. After
the cluster is dropped, the members adjust the actual veloc-
ity through self-organizing cooperative interaction. Due to
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Figure 7: LSTMs cell.
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the cooperative interaction, the actual velocity of the mem-
ber is not ð _x, _yÞ in the state vector. If the sampling interval
is τ, the calculation method of actual velocity v is shown in
(51). The movement process of a cluster is shown in
Figure 9, and the actual velocity of each member is shown
in Figure 10.

v =
vx

vy

" #
= 1
τ

xt+τ

yt+τ

" #
−

xt

yt

" # !
: ð51Þ

As can be seen from Figures 9 and 10, after the cluster
falls, the members begin to diffuse under the action of repul-
sive force due to the small spacing between each member.
Affected by the cooperative interaction, the actual velocity
of each member begins to converge. vx converges to about
60m/s, and vy converges to about 75m/s in about 30 s. After
the velocity of cluster converges, the cluster forms a stable
structure and moves at almost the same velocity. At this
time, the dispersion range of the cluster is about 1600 ×
1600m2.

Figure 9 also shows that after the cluster forms a cooper-
ative motion with almost the same velocity, the members in
the cluster still have dynamic adjustment due to the action of
motion noise and potential force. This adjustment action is
very common, which would have a negative impact on the
stable tracking of δ-GLMB filter.

5.2. δ-GLMB Filter Tracking Results. When the number of
cluster members N = 30, given the minimum value of the
average detection density �Ad = 2:5, select the number of
radars m = 10 and set the maximum number of radar track-
ing targets Nc = 8. In this case, the average detection density
Ad ≈ 2:7 > �Ad . According to the above parameters, a detec-
tion confirmation matrix Ω is determined. The graphical
representation of the matrix Ω is shown in Figure 11, in
which 30 columns of the grid represent 30 targets and 10
rows represent 10 radars. Those marked with color in the
grid are regarded as having detection relationship.

Set the initial state covariance of cluster targets P0 =
diag ð½1 × 104, 1 × 103, 1 × 104, 1 × 103�TÞ, the measurement

noise covariance Rk = diag ð½4 × 102, 4 × 102�TÞ, and the
potential force noise Sk = diag ð½5, 2:5, 2:5, 5�T × 10−4Þ. The
clutter obeys the Poisson distribution of the expected value
λc = 8 in time.

The δ-GLMB algorithm parameters are set as follows:
target detection probability pD = 0:98 and target survival
probability ps = 0:99. The newborn target model is deter-

mined according to the measurement set at time k, i.e., πγ

= frðiÞγ , pðiÞγ gjZkj
i=1 , where the newborn probability rðiÞγ = 0:02

and state distribution of newborn targets pðiÞγ ðxÞ =N ðx ;
mðiÞ

g , PgÞ. Here, mðiÞ
γ = ½zk,i, 0�T and Pγ = diag ð

½1 × 104, 5 × 103, 1 × 104, 5 × 103�TÞ.
In the process of tracking 100 clusters, δ-GLMB filter

runs 1000 times in total. The main filtering conditions are
shown in Figure 12, and the proportion of each condition
is shown in Table 2.

As shown in Figure 12, under the set parameters, the δ-
GLMB algorithm can track all 8 assigned cluster members
with a proportion of 91.6%. Figure 12(a) shows that the filter
can accurately track all targets in a short time and achieve
stable tracking in the whole process of target movement.
This condition is the most ideal, accounting for 57.6% of
all major conditions. Figure 12(b) shows that the filter can
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Figure 8: Overall network structure.

Table 1: Cluster motion model parameters.

Parameter Value Parameter Value

db 20 dm 50

α 0.1 β 0.2

σx 1 σy 1

σg 1 R11 40

R12 3 R21 40

R22 1
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achieve stable tracking of 8 targets after 20 s. This is due to
the slow acquisition of the target by the filter because of
the wide distribution of the target, which is unfavorable to
the accurate tracking of the target in the early stage of
motion. Figure 12(c) reflects that in the later stage of track-
ing, the target filtering results of some filters have the prob-
lems of inaccurate track association and filtering tracks
crossing, which is related to the close spacing of the assigned
targets. The tracking condition shown in Figure 12(d) is not
ideal. The filter has been unable to track the 2 assigned tar-
gets, accounting for 7.1%. However, we need not worry too
much about this, because other filters may obtain the motion
estimation of these targets and make up for these defects in
the fusion stage. Other tracking conditions include discon-
tinuous tracks, multiple track initiation, and other problems,
accounting for a small proportion, which is caused by the
defects of the random finite set tracking algorithm itself.

Accumulate the number of targets tracked by 10 radars
to obtain the total number of targets that can be tracked by
the radar system, and calculate the average value of the total
number of 100 experiments. The results are shown in
Figure 13.

It can be seen from Figure 13 that the radar system can
only track about 20 targets at the initial time when Ad ≈

2:7. Then, the total number of targets tracked increases
sharply to about 28. After 15 s, almost all targets can be
tracked stably.

5.3. Estimation Fusion Results Using Graph-LSTMs

5.3.1. Network Training Results. In order to verify the effec-
tiveness of Graph-LSTMs for multiradar estimation fusion,
set the label space length dΔLx = dΔLy = 2m and dΔLvx =
dΔLvy = 0:5m/s. Set the number of labels NL = 11 on each

dimension, that is, f0, 1, 2,⋯,10g. The training set is used
to train the network parameters, and the test set is used to
test the fusion effect. The results are shown in Figures 14
and 15.

Figure 14 shows the label prediction accuracy of 1-MLSL
with different training times. 1-MLSL indicates MLSL with
depth D = 1. Figure 14(b) shows the mean and standard
deviation of the probability of correct label output from Soft-
max layer. It can be seen from Figure 14(a) that the more
training times, the better the network fusion effect. When
the training times are less than 10000, the prediction accu-
racy of target labels increases rapidly with the increase of
training times. When the number of training times is more
than 10000, the prediction accuracy increases slowly, and
the network parameter training is completed. Figure 14(b)
shows that after the accuracy of label prediction increases
to a certain level, the prediction probability of correct label
can only increase to about 0.38. However, with the increase
of training times, the standard deviation decreases, and the
network prediction is more stable.

The curves shown in Figure 15 are the fitting result of the
prediction accuracy of the target label under different depths
and different training times. Figure 14 shows that when the
training times are less, the network prediction effect with
depth D = 1 is better. When the number of training times
increases, the prediction effect of the network with depth D
= 1 improves significantly and exceeds the effect of D = 1.
The effect of depth D = 1 is always slightly worse than that
of D = 1, 2. This shows that when the number of training is
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less, the simple network that only considers the detection
and tracking relationship between radar and target can
obtain better fusion effect, and with the increase of training
times, the complex network that can mine the cooperative
relationship between targets can play a better prediction

effect. When the network depth D = 3, the relationship
between radars is considered, which may have a better effect
on mining deeper information, but it would take a lot of
training time.

5.3.2. Estimation Fusion Effect. In this experiment, we com-
pare the prediction probability of the target true label by
using the Graph-LSTM algorithm proposed in this paper,
the commonly used EM algorithm [40, 41] and the mean
method, and give the corresponding OSPA distance in target
tracking. The Graph-LSTM algorithm sets the depth D = 2.
The OSPA distance is used to evaluate the tracking
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Figure 12: δ-GLMB filtering condition.

Table 2: Proportion of filtering condition.

Condition Proportion Condition Proportion

Figure 12(a) 57.6% Figure 12(b) 28.3%

Figure 12(c) 5.7% Figure 12(d) 7.1%

Others 1.3%
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performance of the algorithm in the experiment. The OSPA
distance is defined as follows [42].

At time k, the true state set of cluster members is Xk =
fxk,1, xk,2,⋯,xk,mg, and the target estimation state set given
by the estimation algorithm is Xkjk = fxkjk,1, xkjk,2,⋯,xkjk,ng,
where m and n represent the actual number of targets and
the estimated number of targets in the cluster, respectively.
xk,i ∈ Xk and xkjk,i ∈ Xkjk represent the actual value and esti-
mated value of the target i state vector, respectively. The
OSPA distance between the true state set and the estimated
state set is calculated as follows:

OSPAp,c Xk, Xk kj
� �

=
1
n

min
π∈Πn

〠
m

i=1
dc xk,i, xk k,π ið Þj
� �� �p

+ n −mð Þ ⋅ cp
 !" #1/p

, m ≤ n,

OSPAp,c Xk kj , Xk

� �
, m > n,

8>>><>>>:
ð52Þ

where Πn = pmn represents all permutations of m elements in
the state set.

dc xk,i, xk k,π ið Þj
� �

=min c, xk,i − xk k,π ið Þj



 


� �

: ð53Þ

min
π∈Πn

represents the group with the smallest distance differ-

ence between the true point trace and the estimated point
trace of all targets. c and p are distance sensitivity parameters
and correlation sensitivity parameters, respectively.

Set c = 100 and p = 1 in the experiment; the network
fusion effect and OSPA distance are shown in Figure 16.

Figure 16 shows the prediction accuracy of target state
label and the average OSPA distance of 20 test sets in track-
ing. It can be seen from Figure 16 that at the initial time, the
prediction accuracy of target state label is low and the corre-
sponding OSPA distance is large because the radar system is
difficult to track all targets. As the filtering process proceeds,
all targets are tracked and the OSPA distance decreases. At
about 80 s, the OSPA distance increases due to correlation
errors in some filters.

In the whole tracking process, the Graph-LSTM algo-
rithm used in this paper has better prediction accuracy of
correct labels than the comparison methods, which is related
to the fact that the Graph-LSTM algorithm with depth D = 2
can consider the cooperative interaction between cluster tar-

gets. Accordingly, the method of using Graph-LSTM algo-
rithm to calculate the fusion has less tracking error, and it
can better alleviate the problem of inaccurate target tracking
caused by correlation error in the later stage of tracking.

5.4. More Simulation Samples. In order to reflect the improv-
ing effect of our method on the accuracy of obtaining multi-
radar fusion estimates, we set more cluster motion trajectory
data and obtain more fusion results of target estimators.
There are four starting points of cluster motion in the sen-
sor’s field of view, namely, ±8 × 103, ±8 × 103, and the
parameters of the cluster motion model are consistent with
those above. The starting point and direction of cluster
motion are random. We obtain 20 cluster motion trajecto-
ries. Cluster center trajectories are shown in Figure 17.

Six detection allocation schemes are randomly generated
for each cluster, and a set of detection schemes is shown in
Figure 18. We can obtain 120 sets of multiradar estimates.
The proposed method, mean method, and EM algorithm
are, respectively, used to fuse multiple estimates of the target.
The average OSPA distance of the fusions is shown in
Figure 19.

According to Figure 19, the average OSPA distance
medians of the proposed method, EM algorithm, and mean
method are 22.4, 27.8, and 34.3, respectively. Our method is
superior to the mean method and EM algorithm in terms of
fusion accuracy of estimates, which reflects the effectiveness
and superiority of our method for multiple estimate fusion.
However, the effect of the EM algorithm is more stable. This
is because there are large differences between some test data
and training data in the whole estimation process, and the
Graph-LSTM algorithm parameters cannot be accurately
obtained by learning, which makes our method not effective.
In order to further improve the robustness of the proposed
algorithm, the generalization ability of the algorithm can
be improved by increasing the number of training samples
or pretraining.

6. Discussion

6.1. Selection of d
△L. In the estimation fusion method using

Graph-LSTMs proposed in this paper, dΔL is the key param-
eter to determine the fusion effect. Compared with dΔLv , dΔLp
play a more major role. In order to compare the effects of
different dΔLx and dΔLy on the estimation fusion, set dΔLx =
dΔLy = dΔLp = 1, 2, 5, 10m for experiments under the above

experimental conditions. The experimental results are
shown in Figure 20.

It can be seen from Figure 20 that different dΔLp have dif-

ferent label prediction accuracy and the OSPA distance.
Generally, the larger the dΔLp , the higher the label prediction

accuracy. However, when dΔLp is too large, the OSPA dis-

tance cannot be reduced accordingly. The main reason for
the above phenomenon is that the larger the dΔLp , the larger

the actual space occupied by each label. Radar estimate and
target true state are more likely to have the same label.
Therefore, the higher the label prediction accuracy can be
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Figure 13: Total number of targets tracked.
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achieved. However, the essence of state space labeling is to
use the state at the label to represent all the states in the state
space represented by the label. According to (23), the fusion
state is related to the actual state space occupied by each
label. If it is larger, the OSPA distance between the fusion
state and the true state of the target may be larger, and the
performance of the algorithm would be reduced. For this
experiment, when dΔLp = 1, the OSPA distance is large due to

the low accuracy of label prediction, while when dΔLp = 10, the
OSPA distance is large due to the excessive setting of dΔLp .

dΔLp = 2 is a better choice that can balance the prediction accu-

racy and OSPA distance under the experimental conditions of
this paper. The determination of dΔLp is mainly related to the

distance between the estimations of multiradar and the true
state of target. In general, we can obtain some prior information
to determine dΔLp from the posterior probability of δ-GLMB

filter.

6.2. Selection of Ad . When the number of radars is constant
in multiradar system, the number of members in cluster
and the number of targets tracked by single radar are both
important factors affecting the fusion accuracy of cluster
member estimation, and the average detection density Ad
reflects the relative quantity relationship between them. In
order to measure the influence of Ad , the number of targets
estimated by a single radar is gradually increased under the
experimental conditions of 10 radars and 30 cluster mem-
bers. The OSPA distance of the fusion at different average
detection densities is shown in Figure 21.

It can be seen from Figure 21 that at the initial stage,
with the increase of average detection density, the fusion
error of cluster target state estimation decreases gradually.
OSPA = 17:9 is the minimum fusion error when Nc = 11.
This is because the fusion becomes more accurate as the
number of target estimates increases when the tracking load
is lower than the maximum tracking capability of a single
radar. However, with the further increase of Nc, the tracking
load exceeds the maximum tracking capability of radar. The
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inaccurate association increases first, and the estimation
error starts to increase slowly. Subsequently, the proportion
of missed detection gradually increases, and the actual cor-
rect tracking density does not increase with the detection
density but decreases, and the fusion error of estimates
increases rapidly.

6.3. Limitations and Improvements of Our Method. Our pro-
posed radar-target assignment method preliminarily solves
the problem of full coverage of cluster members, but the
whole assignment process is given randomly without consid-
ering the optimal allocation scheme. In the actual tracking
process, different members of the cluster have different
values, and the members who are leaders should be tracked
accurately first. At the same time, different radars also have
different detection capabilities. The factors that affect the
detection ability of radar include radar resolution and the
position of the target in the beam. Higher-resolution radars
should be used to detect higher-value targets. Therefore,
we regard the problem of radar-target allocation as a nonlin-
ear integer programming problem [43], and the mathemati-
cal model is as follows:

Maxf =〠
t∈T

Vt 1 −
Y
s∈S

1 − pstð Þωst

 !
ð54Þ

s:t:〠
N

t=1
ωst ≤Nc, ∀s ∈ S ð55Þ

〠
M

s=1
ωst ≥ 1, ∀t ∈ T ð56Þ

〠
N

t=1
〠
M

s=1
ωst ≥N ⋅ Ad , ∀s ∈ S, t ∈ T ð57Þ

Figure 18: A set of cluster detection schemes.

MeanG-LSTMs

45

40

35

30

25O
SP

A
 d

ist
an

ce

20

15

EM

Figure 19: The average OSPA distance of the fusions.

1

0.5

0
0

T (s)

Ac
cu

ra
cy

20 40 60

d𝛥Lp
 = 1

d𝛥Lp
 = 2

d𝛥Lp
 = 5

d𝛥Lp
 = 10

80

Mean

100

0
T (s)

20

20

40

40

60

60

80 100

O
SP

A
 d

ist
an

ce

Figure 20: Tracking effect at different d
△Lp.

17Journal of Sensors



ωst ∈ z+, ∀s ∈ S, t ∈ T , ð58Þ
where T is the cluster member set, S is the radar set, Vt rep-
resents the value of target t, and pst represents the detection
and tracking capability of radar s to target t. The definitions
of other parameters are consistent with those in the paper.
Equation (54) is the objective function to maximize the tar-
get value of the detection target cluster. Equations (55)–(58)
are constraint conditions, which represent the full coverage
of radar to members, the limit of the number of radar chan-
nels, and the reasonable detection density, respectively.

To solve equation (54), we can use traditional optimiza-
tion algorithms, such as branch and bound method and cut-
plane method. We also can use intelligent optimization
methods, such as genetic algorithm, particle swarm optimi-
zation algorithm, and ant colony algorithm. The optimiza-
tion results of multiradar detection allocation can
effectively support the generation of better tracking results.

Our algorithm has achieved good results in tracking a
stable cluster target with a large number of members, but
more advanced methods need to be proposed to deal with
the possible splitting or merging of clusters. For large-scale
clusters, splitting and merging are important moving char-
acteristics that reflect the intelligence of clusters, which
brings greater difficulty to the application of tracking algo-
rithms. The state estimation results of the merging cluster
using δ-GLMB filtering are shown in Figure 22.

Figure 22 shows the tracking results of δ-GLMB filter
when two clusters are merging. It can be seen that the filter
can still achieve effective tracking when the cluster is merg-
ing with a small maneuver. However, with cluster merging,
the distance between the two cluster members decreases,
and the filter loses track of one member at 60 s. When using
multiradar to track clusters, the exchange of information
between radars can make up for the problem of losing track,
but it would still lead to the decline of effective tracking den-
sity and tracking accuracy.

The reason for the above phenomenon is that when the
cluster merges, the original cooperative relationship is
destroyed, and the newly established cooperative relation-

ship leads to the failure of the target state equation describ-
ing the original motion. Similarly, this phenomenon occurs
when a cluster is split. In order to solve the above problems,
we should establish the cluster equation of motion in a mul-
timodel way [44]. During tracking, the algorithm automati-
cally detects whether cluster splitting or merging occurs
and switches the motion model accordingly.

7. Conclusion

In this paper, we propose a method of using multiradar to
track cluster targets. According to the characteristics of clus-
ter target motion, we simulate the cooperative interaction
behavior with multivariable stochastic differential equations
and obtain the state space motion model of cluster members
that can be used for iterative tracking algorithm. In the con-
struction of the detection relationship between multiradar
and cluster members, this paper proposes a radar-target
assignment method. After a single radar obtains the assigned
target, the target state is estimated by δ-GLMB filter. After
obtaining the estimate, the label of the estimate can be
obtained by using the state space labeling method proposed
in this paper. On this basis, multiple estimation labels of the
same target are input into the Graph-LSTMs applied to
obtain the fusion label, and then, the joint estimate of target
states by multiradar is solved. In the simulation experiment,
we simulate the cluster motion and analyze the estimation of
the filtering algorithm. Then, we compare the fusion effect of
the Graph-LSTM algorithm applied in this paper with the
EM algorithm and the mean method and discuss the influ-
ence of parameters dΔL and Ad on the fusion effect. The
results show that multiradar can effectively track cluster tar-
gets and obtain more accurate estimation fusion in the
method proposed in this paper. However, the radar-target
assignment method proposed in this paper is not the opti-
mal detection situation, and the method does not consider
the impact of different value members on detection. In the
discussion, we explore the improvement of the assignment
method. In addition, the tracking algorithm adopted in this
paper does not take into account the merging or splitting
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of cluster targets, which would be the focus of our next
research.
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