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In order to combine multimedia imagery and multispectral remote sensing data to analyze information, preprocessing becomes a
necessary part of it. It is found that the KNN algorithm is one of the classic algorithms of data mining. As one of the most
important branches in the field of data analysis, it is widely used in many fields such as classification, regression, missing value
filling, and machine learning. As a lazy algorithm, this method requires no prior statistical knowledge and no additional data
to train description rules and is easy to implement. However, the algorithm inevitably has many problems, such as how to
determine the appropriate K value, the unsatisfactory effect of data processing for some special distributions, and the
unacceptable computational complexity of high-dimensional data. In order to solve these shortcomings, the researchers
proposed the KNNLC algorithm. Then, taking the classification experiment as an example, through the comparison of the
experimental results on different data sets, it is proved that the average level of the classification performance of the KNNLC
algorithm is better than the classic KNN classification algorithm. The KNNLC algorithm shows better performance in most
cases, with an accuracy rate of 2 to 5 percentage points higher. An improved algorithm is proposed for the nearest neighbor
selection strategy of the traditional KNN algorithm. First, in theory, combined with the theory of sparse coding and locally
constrained linear coding, the classical KNN algorithm is improved, and the KNNLC algorithm is proposed. The comparison
of the experimental results on the data set proves that the average level of the KNNLC algorithm is better than the classical
KNN classification algorithm in terms of classification performance.

1. Introduction

Remote sensing image fusion is a technology that combines
multisource remote sensing images through advanced image
processing. It makes full use of the different characteristics of
a variety of data, so that the image has a higher spectral and
spatial resolution at the same time, and improves the vision
of the image. The effect and accuracy of image feature recogni-
tion and classification accuracy are shown in Figure 1 [1].
Remote sensing image fusion is a hot research topic in the
international remote sensing community in recent years. In
the method of image fusion, there are some classic algorithms,
such as HIS transformation method, COS transformation
method, HIS transformation method, and HSV transforma-
tion method. In recent years, with the introduction of wavelet
transform into the field of image processing, image fusion
methods based on wavelet transform have attracted people’s

attention. The fusion of SPOT panchromatic image and mul-
tispectral image based on 2-ary and 3-ary wavelet is studied,
respectively. However, these two algorithms simply replace
low-resolution images with high-resolution remote sensing
images for low-frequency components after wavelet decompo-
sition, without considering the loss of image features; although
the feature-based binary wavelet image is studied fusion, but
without considering the resolution of the image to be fused,
the fusion effect is not very good [2]. Based on the in-depth
study of wavelet transform fusion method, a new fusion
method is proposed, a feature-basedmultibandwavelet fusion.
The fusion results of SPOT image and TM5, 4, 3 image, SPOT
panchromatic image, and SPOT multispectral band image are
given and compared with other fusion methods [3]. The
experimental results show that the method in this paper has
obvious advantages compared with other fusion methods.
Although the KNN algorithm has a good effect on applications
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such as classification and prediction in many data sets, it inev-
itably produces many problems that need to be solved, such as
the high time complexity and space complexity of the algo-
rithm, and the K value. The processing effect is not ideal for
some special distributed data and the computational complex-
ity of high dimensional data is unacceptable. These shortcom-
ings must be solved for a mature algorithm. Therefore, experts
and scholars who are interested in this direction have done a
lot of research and obtained many optimization algorithms.

2. Literature Review

Jin, R. et al. systematically analyzed the effects of traditional
spectral parameters and two-band normalization and ratio
vegetation index under different observation angles in estimat-
ing wheat leaf nitrogen content (LNC), thereby establishing a
multiangle quantitative monitoring of wheat canopy leaf
nitrogen content model [4]. Du, JH et al. found that the can-
opy reflectance and the coefficient of determination of 40 con-
ventional spectral vegetation indices and LNC decreased with
the increase of the observation angle, regardless of the forward
or backward observation direction, and reached the maximum
at -20 in the backward direction value [5]. RI-1dB and EVI-1
have the closest relationship with LNC at -20° backward and
vertical angle, respectively. The areas with good correlation
between the ND and SR parameters of the original spectral
reflectance combination of the two bands and LNC are mainly
concentrated in the blue-red light band, the green-red band,
and the red-side red band combination range. This sensitive
area varies with the spectrum observation. The angle is differ-
ent. The new Multi-Angle Vegetation Index (MAVI), which
uses the combination of sensitive spectral parameters and
observation angles, can better estimate LNC. After indepen-

dent data testing at different years, the MAVIsRmodel is most
sensitive to leaf nitrogen content. By systematically analyzing
the angular sensitivity characteristics of different wavebands
and spectral parameters, Fang, X. et al. studied the quantitative
relationship between suitable characteristic parameters
extracted by different spectral analysis techniques and the nitro-
gen content of leaves. The results show that the correlation
between spectral vegetation index and leaf nitrogen content is
better than that of vertical and forward observation angles in
the backward observation angle. The red edge parameters
mND705, GND (750, 550), NDRE, and RI-1dB are compared
with LNC. The relationship is the closest, but the difference is
large under different experimental factors, especially when the
leaf nitrogen content is high (>4.5%), the spectral parameters
tend to be saturated [6]. Yang, FC and others found that the
newly constructed angle insensitive parameter (AIVI) reduces
the influence of different test factors. In the range of -10°~40°
observation angle, AIVI can establish a unified and stable mon-
itoring model, and it has been independently tested. According
to the data test, it is the best to construct a monitoring model of
wheat canopy leaf nitrogen content based on AIVI, which has
strong angle adaptability [7]. Ren, J. et al. found that the inver-
sion accuracy of wheat leaf nitrogen content based on FA-
BPNN analysis was significantly higher than that of conven-
tional spectral parameters under different observation angles
[8]. Therefore, both the new vegetation index AIVI and FA-
BPNN can reliably monitor the nitrogen content of wheat
leaves under different experimental conditions. By comparing
the relationship between various spectral analysis methods
and LAI under different observation angles, the appropriate
band sensitive to changes in LAI can be extracted, and the
observation angle; thus, a quantitative monitoring model for
wheat LAI was established. The results show that different
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Figure 1: Data analysis flow chart of multispectral remote sensing image.
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spectral analysis methods are more suitable for monitoring LAI
(leaf area index) near the vertical angle. The spectral reflectance
and the correlation between spectral parameters and LAI (leaf
area index) in the backward observation direction are higher
than those in the forward observation direction. Li, J. et al.
found that the two-band ratio (SR) and normalized index
(ND) under different observation angles did not show out-
standing monitoring advantages, but the SR effect was better
than the ND method [9]. Using factor analysis technology, it
is found that the load of the green light band decreases with
the increase of the observation angle in the first factor and
increases with the increase of the observation angle in the sec-
ond factor. After independent test data in different years, the
wheat LAI (leaf area index) monitoring model established with
the spectral parameter VIopt as a variable has good test results
and can be used for accurate estimation of wheat LAI (leaf area
index). Torra, V. et al. analyzed and compared the saturation,
angle sensitivity, and variety sensitivity of commonly used veg-
etation indices for estimating LAI (leaf area index). The results
of wide-angle adaptability show that the accuracy of LAI (leaf
area index) estimation of spectral parameters is better for erect
varieties than for discrete varieties. Nonperpendicular observa-
tion angles did not significantly improve the ability of spectral
parameters to estimate LAI (leaf area index) [10]. Except for
EVI and TVI, the spectral parameters NDVI, SAVI, OSAVI,
MSAVI, WDRVI, MTVI, and mND705 all tend to be saturated
when LAI is greater than 4. KA Zweig et al. found that the angle
reduction coefficient Kf constructed based on green light and
near-infrared bands is closely related to LAI (leaf area index).
The product of VIs and Kf effectively alleviates the saturation
and variety sensitivity of LAI (leaf area index) estimation at
different observation angles, and significantly improves the
monitoring accuracy and adaptability of LAI (leaf area index)
[11]. V., Subramaniyaswam et al. found that in the above-
mentioned spectral parameters, except for WDRVI, EVI, and
TVI, the other spectral parameters and the Kf product estab-
lished a unified monitoring model at all observation angles.
The prediction model based on mND705 and OSAVI spectral
parameters is more accurate and reliable [12]. The effects of var-
ious spectral processing methods to estimate chlorophyll den-
sity were analyzed by integrating spectral data from different
observation angles, and a multi-angle remote sensing monitor-
ing model for wheat leaf pigment density was established. The
results show that the spectral reflectance that has a good corre-
lation with chlorophyll density is mainly concentrated in the
red edge and the near-infrared region (720-900nm). The spec-
tral parameters VOG1, RI-1dB, NDRE, SDr/SDb, and DD are
closely related to the chlorophyll density. The sensitive bands
of the normalized and ratio vegetation index of the two bands
in the backward observation direction are mainly concentrated
in the red area, and in the forward observation direction, they
are mainly concentrated in the blue and red light areas.
Research by Hu, J. et al. found that the first factor of the FA-
BPNNmodel is mainly concentrated in the blue and red bands
under different observation angles, and the second factor is
mainly concentrated in the near-infrared region. Backward
observation close to the vertical observation angle is beneficial
to improve the prediction accuracy of chlorophyll density.
The spectral parameters SDr/SDb, DD, ND (720, 760), and

ND (732, 738) are themost effective formonitoring wheat chlo-
rophyll density [13]. K nearest neighbors (KNN for short) is an
extension of the nearest neighbor method and is a lazy learning
method based on instance statistical classification. As one of the
classic algorithms for classifiers and machine learning, KNN’s
earliest related papers are nearest neighbor pattern classification
published by CoverTM and HartPE of Stanford University in
1967. In order to improve the KNN algorithm, the number of
nearest neighbors is set to K. The mathematical model of the
theory has been developed, opening the door to various
improved studies based on nearest neighbor theory.

3. Methods

3.1. KNN Algorithm. The basic idea of KNN: For an input
test sample with no assigned label, first compare the features
or attributes of the test sample with the corresponding fea-
tures or attributes of all training samples with existing labels;
then find the K nearest samples from the training samples,
and then sort the labels of these training samples in descend-
ing order, and the label corresponding to the first position in
the sequence is the label of the test sample. First, for a given
data set, if any data in the set has a class label, then this set is
called a training sample set, and the data in it is called a
training sample; conversely, if the class label of the data is
unknown, it is called the test sample, and the collection is
called the test sample set.

The working principle of the KNN classification algorithm
is to use a similarity measure to compare each attribute or fea-
ture of the test sample with the attributes or features corre-
sponding to all training samples in the training sample set,
and arrange the test samples corresponding to the similarity
in descending order. According to this, the firstK most similar
(measured nearest) training samples (K nearest neighbors)
can be found in the training set. Generally, K is selected as
an integer not greater than 20. Finally, sort the number of
occurrences of the class labels of the K training samples in
descending order, and the label corresponding to the first
place in the sequence is the class label of the test sample [14,
15]. First, for a given data set, if any data in the set has a class
label, Figure 2 is a classic example of the KNN classification
process. In Figure 2, the training sample includes two types
of triangles (Angle) and squares (Square). For the sake of sim-
plicity and clarity of description, we use T and S to represent
their numbers, respectively. The dots in the figure are test sam-
ples, andK is the number of training samples closest to the test
sample, that is, the number of nearest neighbors. When K =3,
T =2, S=1, and T > S in the small circle in the dotted line as
shown in the figure. According to the principle described
above, the test sample is assigned to the triangle type at this
time. When K =5 is adjusted, T =2, S=3, and T < S within
the large dashed circle in the figure; at this time, the test sam-
ple label is judged to be a square. Figure 3 is a flowchart of
KNN classification. The specific steps involved in calculating
the similarity measurement, selecting the nearest neighbor,
and classifying when executing the algorithm will be described
in detail later. The flow of the algorithm is described as follows:
Supposing that there arem samples in the training set, and the
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number of attributes of each sample is n, then the training set
can be recorded as

T = fXi = ðxi1, xi2,⋯, xinÞji = 1, 2⋯ ,mg. The set con-
sisting of the class label of each sample in the set can be
denoted as L = fCiji = 1, 2,⋯,mg. The test sample set is
denoted as S = fSi = ðsi1, si2,⋯sinÞji = 1, 2,⋯, ag, where a is
the number of test samples [16, 17]. Then, KNN classification
calculation, where a is the number of test samples. The KNN
classification algorithm can be described in Figure 2.

Simply put, the similarity between the test sample and
each training sample in the KNN algorithm is measured by
calculating the distance. For different data, using an appropri-
ate distance metric is the premise to obtain a good data pro-
cessing effect. The distance metrics commonly used in the
KNN algorithm are Euclidean Distance, Manhattan Distance,
MinKowsKi Distance, andHammingDistance. Given training
samplesX = ðx1, x2,⋯xnÞand test samplesS = ðs1, s2,⋯, snÞ,
then the distancedistðX, SÞbetween them is calculated with
the following formula.

See formula (1) for Euclidean distance:

dist X, Sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
n

i=1
xi − sið Þ2

s

: ð1Þ

See formula (2) for Mahalanobis distance:

dist X, Sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
n

i=1
xi − sij j

s

: ð2Þ

See formula (3) for Ming’s distance:

dist X, Sð Þ = 〠
n

i=1
xi − sij jð Þq

 !1/q

: ð3Þ

The Hamming distance is shown in formula (4):

dist X, Sð Þ = 〠
n

i=1
xi − sij j: ð4Þ

Minmax normalization is the most common data normali-
zation processingmethod. The principle of thismethod is to use
a mapping function to project attributes or eigenvalues into the

[0,1] interval. Minmax normalization can be expressed by the
following formula (5):

a′ = a −minF

maxF −minF
: ð5Þ

Among them, a is the original value, a′ is the value mapped
in the [0,1] interval, and minF and maxF are the lower and
upper bounds of the values belonging to the same attribute or
feature, respectively. There are many commonly used normali-
zation methods, but the basic principles are similar. For exam-
ple, the form introduced below is shown in formula (6):

aij′ =
aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑m+1
i=1 ∑n

j=1a
2
ij

q
: ð6Þ

The rules of this voting mechanism will also be used in this
study. The mathematical representation of the most frequent
rule is shown in Equation (7):

CS = arg max 〠
x∈N

I v = Cxð Þ: ð7Þ

Since attributes naturally have such distribution characteris-
tics, in the algorithm, in order to make the processing results
better reflect the objective facts, weights are generally assigned
to each attribute. In the KNN algorithm, the weighting formula
of the label can be used as formula (8) form representation:

Cs = arg max 〠
x∈N

wi × I v = Cxð Þ: ð8Þ

Figure 2: An example of KNN algorithm.

Enter test sample data

Calculated distance measure

We get K nearest neighbors based
on the similarity measure

The label that appears most
frequently in the nearest neighbor i

 the label of the test sample

Figure 3: KNN algorithm flow chart.
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Among the many weighting methods, the weighting
method based on the reciprocal similarity is the most classic,
and it is also used consistently by the KNN algorithm. Its
mathematical expression is shown in Equation (9):

wi =
1

dist X, Sð ÞP
: ð9Þ

Among them, P is the weighted power exponent, usually
taken as P = 2, see formula (10):

wi =
1

dist X, Sð Þ2 : ð10Þ

3.2. Data Analysis and Utilization.A Locally Constrained Lin-
ear Coding Based on Related Research (Locality-constrained
Linear Coding, LLC) to improve the classic KNN algorithm.
Multiangle remote sensing data has the characteristics of rich
information and large amount of data. The selection of spec-
tral absorption characteristic parameters, sensitive angles,
and optimal calculation methods are important issues in the
study of hyperspectral remote sensing. In addition to the data
processing methods commonly used in conventional vertical
remote sensing, this study also adopted normalization (ND),
ratio (SR), and neural network (BP) analysis methods. The
specific methods are as follows: Figure 4 shows typical reflec-
tions of vegetation spectral curves, which form absorption val-
leys at 455 (blue light), 680 (red light), 980, 1200, and 1468nm,
and reflection peaks at 550 (green light), 1090, 1285, 1685, and
2200nm [18, 19].

Factor analysis is a statistical method for extracting com-
mon factors from multiple variables for the purpose of
dimensionality reduction. Factor analysis can make factor
variables more interpretable through rotation, as shown in
Figure 5. Use SPSS software to perform factor analysis on
the standardized spectrum data, select the critical factor

numbers whose cumulative contribution rate exceeds 99%,
and output the factor data. The BPNN model is provided
by Matlab’s Neural Network Toolbox. The network is
divided into an input layer, a hidden layer, and an output
layer. In this study, the input vector is I and the learning goal
is T. The input layer is a comprehensive factor with a large
contribution rate obtained after factor analysis: the number
of neurons in the middle layer is the number of comprehen-
sive factors, and the activation function of the middle hidden
layer is “TANSIG”; the neurons in the output layer are 1,
and the activation function is “PURELN”; the training func-
tion uses the TRAINLM function [20, 21].

4. Results and Analysis

In the classification experiment, we select 4 typical sample sets
from the UCI data set as experimental materials. The basic sit-
uation of the sample data is shown in Table 1. Among them,
Australian and Magic are data sets with only two labels,
respectively, and the experiments on them belong to the
binary classification experiment, while the experiments on
the two data sets ofMpgdata and Ins belong to the case ofmul-
tiple classification [21–23]. In the four data sets, Iris is a com-
mon data set prone to overfitting. The sample is quoted only
to show the feasibility of the algorithm and the degree of
improvement compared with the more classic algorithms. Its
classification effect is obviously difficult to reach in practice.
However, the amount of data in the Magic data set is relatively
large. Although it is not as good as the big data standard, it is
still not general. From this, the potential of the improved algo-
rithm in processing high-capacity data sets compared to tradi-
tional algorithms can be seen.

For algorithm classification performance, regardless of the
sample size and the number of label classes, the establishment
of the corresponding confusionmatrix (confusion1matrix) is a
relatively common and objective evaluation method [24, 25].
The following briefly introduces the confusion matrix. In the
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classification problem, due to the difference between the pre-
dicted result and the objective facts, the final result has four
possibilities, namely, TP (true positive), FP (false positive),
FN (false negative), and TN (true negative). They, respectively,
represent the four possibilities of pairing between the sample
and the label, and the corresponding confusion matrix is
shown in Table 2.

Table 2 shows a quantitative comparison of the two algo-
rithms on the four data sets. The use of the mean± standard

deviation makes the results more accurate. For classification
algorithms, accuracy is often one of the most concerned
evaluation criteria. Compared with the classic KNN classifi-
cation algorithm, the KNNLC algorithm shows better per-
formance in most cases, with an accuracy rate of 2 to 5
percentage points higher [26]. Absolutely, the classic algo-
rithm is classic because of its extensive effectiveness. For data
with different distributions, the adaptability of classic algo-
rithms may be more common. For the classification of
Mpgdata data sets, sometimes the effect of improved algo-
rithms is not satisfying. It shows that the KNNLC algorithm
is sensitive to specific distributed data and needs further
improvement. The results on high-capacity sample data sets
show that to a certain extent, the KNNLC algorithm may be
more suitable for processing high-dimensional data, and its
classification accuracy and stability are significantly better
than the classic KNN algorithm. On the whole, in the classi-
fication problem, the KNNLC classification algorithm has
better performance than the classic KNN classification algo-
rithm, and the higher the data dimension, the more obvious
this advantage. In fact, this is because KNNLC uses local
coding to obtain neighbor samples, which meets the expecta-
tions of theoretical research, as shown in Table 3.

Table 3 shows the quantitative comparison of the experi-
ments of the two algorithms on the four data sets, respectively,
using the form of mean± standard deviation to make the
results more accurate. For classification algorithms, accuracy
is often one of the most concerned evaluation criteria. As
can be seen from the above table, compared to the classic
KNN classification algorithm, the KNNLC algorithm shows
better performance in most cases, with an accuracy rate of 2
to 5 percentage points higher.

5. Conclusion

Research on the improvement of KNN algorithm and its
application in the field of image processing. This article mainly
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Table 1: Basic situation of experimental materials.

Data set Number of instances Number of attributes

Inis 150 4

Mpgdata 390 7

Australian 690 14

Magic 19020 10

Table 2: Confusion matrix.

Predicted class
Actual class

Positive Negative

Positive TP FP

Negative FN TN

Table 3: Accuracy comparison of two classification algorithms
(mean± standard deviation).

Data set KNNLC KNN

Iris 0.9667士0.0470 0.9400士0.0857

Mpg data 0.8000士0.0551 0.7769士0.0745

Australian 0.8464士0.0445 0.7928士0.0305

Magic 0.8220士0.0055 0.8002士0.0088
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discusses and improves the traditional KNN algorithm and
the mean filtering algorithm from the perspective of the near-
est neighbor selection strategy. Therefore, in the process of
obtaining the neighbors, the neighbors with higher similarity
can be captured. At the same time, based on this idea, the tem-
plate selection of the mean filter is regarded as the neighbor
selection, and the membership function is combined to obtain
a more effective filter template, and experiments have proved
the advantages of the improved algorithm [27]. Aiming at
the problem that traditional KNN algorithm is sensitive to
data distribution, combined with sparse coding and LLC the-
ory, using the nearest neighbor selection strategy of local
coding, KNNLC algorithm is proposed, which improves the
effect of classic KNN algorithm. Through experiments on
multiple representative data sets, it is proved that the KNNLC
algorithm has great advantages and potential compared with
the classic KNN algorithm in classification performance. The
KNNLC algorithm shows better performance in most cases,
with an accuracy rate of 2 to 5 percentage points higher.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Liang, C. Sun, J. Jiang, X. Liu, and Y. Xie, “An efficiency-
improved clustering algorithm based on KNN under ultra-
dense network,” IEEE Access, vol. 8, pp. 43796–43805, 2020.

[2] H. Guo, Y. Li, Y. Li, L. Xiao, and J. Li, “BPSO-Adaboost-KNN
ensemble learning algorithm for multi-class imbalanced data
classification,” Engineering Applications of Artificial Intelli-
gence, vol. 49, pp. 176–193, 2016.

[3] K. Wang, X. Yu, Q. Xiong, Q. Zhu, and L. Zhao, “Learning to
improve WLAN indoor positioning accuracy based on
DBSCAN-KRF algorithm from RSS fingerprint data,” IEEE
Access, vol. 7, pp. 72308–72315, 2019.

[4] R. Jin, Y. Wang, C. Niu, and W. Song, “A novel high precision
and low consumption indoor positioning algorithm for inter-
net of things,” IEEE Access, vol. 7, pp. 86874–86883, 2019.

[5] J. H. Du, “Automatic text classification algorithm based on
gauss improved convolutional neural network,” Journal of
Computational Science, vol. 21, pp. 195–200, 2017.

[6] X. Fang, Z. Jiang, L. Nan, and L. Chen, “Optimal weighted k-
nearest neighbour algorithm for wireless sensor network fin-
gerprint localisation in noisy environment,” IET Communica-
tions, vol. 12, no. 10, pp. 1171–1177, 2018.

[7] F. C. Yang, B. Tseng, C. Y. Lin, Y. J. Yu, A. Linacre, and C. I.
Lee, “Population inference based on mitochondrial dna con-
trol region data by the nearest neighbors algorithm,” Interna-
tional Journal of Legal Medicine, vol. 135, no. 4, pp. 1191–
1199, 2021.

[8] J. Ren, Y. Wang, C. Niu, W. Song, and S. Huang, “A novel clus-
tering algorithm for wi-fi indoor positioning,” IEEE Access,
vol. 7, pp. 122428–122434, 2019.

[9] J. Li, “An improved K-nearest neighbor algorithm using tree
structure and pruning technology,” Intelligent Automation
and Soft Computing, vol. 25, no. 1, pp. 1–15, 2019.

[10] V. Torra, Y. Narukawa, A. Honda, and S. Inoue, “Modeling
decisions for artificial intelligence,” 14th International Confer-
ence, MDAI 2017, 2017, pp. 77–88, Kitakyushu, Japan, 2017.

[11] K. A. Zweig, O. Deussen, and T. D. Krafft, “Algorithmen und
meinungsbildung,” Informatik-Spektrum, vol. 40, no. 4,
pp. 318–326, 2017.

[12] V. Subramaniyaswam and R. Logesh, “Adaptive KNN based
recommender system through mining of user preferences,”
Wireless Personal Communications, vol. 97, no. 2, pp. 2229–
2247, 2017.

[13] J. Hu, Y. Li, W. X. Yan, J. Y. Yang, H. B. Shen, and D. J. Yu,
“KNN-based dynamic query-driven sample rescaling strategy
for class imbalance learning,” Neurocomputing, vol. 191,
pp. 363–373, 2016.

[14] S. Yin, H. Zheng, S. Xu, H. Rong, and N. Zhang, “A text clas-
sification algorithm based on feature library projection,” Jour-
nal of Central South University, vol. 48, no. 7, pp. 1782–1789,
2017.

[15] C. Yücelba, “A new approach: information gain algorithm-
based k-nearest neighbors hybrid diagnostic system for Par-
kinson's disease,” Physical and Engineering Sciences in Medi-
cine, vol. 44, no. 2, pp. 511–524, 2021.

[16] Z. Qin, T. Kirubarajan, and Y. Liang, “Application of an effi-
cient graph-based partitioning algorithm for extended target
tracking using gm-phd filter,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, no. 6, pp. 4451–4466, 2020.

[17] H. Sun, X. Liu, Q. Deng, W. Jiang, and Y. Ha, “Efficient FPGA
implementation of K-nearest-neighbor search algorithm for
3D LIDAR localization and mapping in smart vehicles,” Cir-
cuits and Systems II: Express Briefs, IEEE Transactions on,
vol. 67, no. 9, pp. 1644–1648, 2020.

[18] N. Bhaskar and P. M. Kumar, “Optimal processing of nearest-
neighbor user queries in crowdsourcing based on the whale
optimization algorithm,” Soft Computing, vol. 24, no. 17,
pp. 13037–13050, 2020.

[19] D. A. Adeniyi, Z. Wei, and Y. Yang, “Personalised news filter-
ing and recommendation system using Chi-square statistics-
based K-nearest neighbour ((SB)-s-2-KNN) model,” Enter-
prise Information Systems, vol. 11, no. 6-10, pp. 1283–1316,
2017.

[20] H. J. Cho and J. Chae, “A safe exit algorithm for moving k
nearest neighbor queries in directed and dynamic spatial net-
works,” Journal of Information Science and Engineering,
vol. 32, no. 4, pp. 969–993, 2016.

[21] B. Aiazzi, L. Alparone, S. Baronti, R. Carlà, A. Garzelli, and
L. Santurri, “Sensitivity of pansharpening methods to temporal
and instrumental changes between multispectral and panchro-
matic data sets,” IEEE Transactions on Geoscience & Remote
Sensing, vol. 55, no. 1, pp. 308–319, 2017.

[22] U. K. Ghosh, K. K. Naik, and M. P. Kesari, “Digital image pro-
cessing of multispectral aster imagery for delineation of alter-
ation and related clay minerals in sakoli belt: Maharashtra –
a case study,” Journal of the Geological Society of India,
vol. 88, no. 4, pp. 464–470, 2016.

[23] Q. Xie, X. Chen, L. Li, K. Rao, L. Tao, and C. Ma, “Image fusion
based on kernel estimation and data envelopment analysis,”
International Journal of Information Technology & Decision
Making, vol. 18, no. 2, pp. 487–515, 2019.

7Journal of Sensors



[24] L. Chen, X. Zhang, and H. Ma, “Sparse representation over
shared coefficients in multispectral pansharpening,” Tsinghua
Science and Technology, vol. 23, no. 3, pp. 315–322, 2018.

[25] C. Han, H. Zhang, C. Gao, C. Jiang, N. Sang, and L. Zhang, “A
remote sensing image fusion method based on the analysis
sparse model,” IEEE Journal of Selected Topics in Applied Earth
Observations & Remote Sensing, vol. 9, no. 1, pp. 439–453,
2016.

[26] D. Stevic, I. Hut, N. Dojcinovic, and J. Jokovic, “Automated
identification of land cover type using multispectral satellite
images,” Energy & Buildings, vol. 115, pp. 131–137, 2016.

[27] I. Kotaridis and M. Lazaridou, “Remote sensing image seg-
mentation advances: a meta-analysis,” ISPRS Journal of Photo-
grammetry and Remote Sensing, vol. 173, no. 3, pp. 309–322,
2021.

8 Journal of Sensors


	Multispectral Remote Sensing Data Analysis Based on KNNLC Algorithm and Multimedia Image
	1. Introduction
	2. Literature Review
	3. Methods
	3.1. KNN Algorithm
	3.2. Data Analysis and Utilization

	4. Results and Analysis
	5. Conclusion
	Data Availability
	Conflicts of Interest

