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In recent years, the deep learning-based fault diagnosis methods for rotating mechanical equipment have attracted great concern.
However, because the data feature distributions present differences in applications with varying working conditions, the deep
learning models cannot provide satisfactory performance of fault prediction in such scenarios. To address this problem, this
paper proposes a domain adversarial-based rolling bearing fault transfer diagnosis model EMBRNDNMD. First of all, an
EEMD-based time-frequency feature graph (EEMD-TFFG) construction method is proposed, and the time-frequency
information of nonlinear nonstationary vibration signal is extracted; secondly, a multi-branch ResNet (MBRN) structure is
designed, which is used to extract deep features representing the bearing state from EEMD-TFFG; finally, to solve the model
domain adaptation transfer problem under varying working conditions, the adversarial network module and MK-MMD
distribution difference evaluation method are introduced to optimize MBRN, so as to reduce the probability distribution
difference between the deep features of source domain and target domain, and to improve the accuracy of EMBRNDNMD in
state diagnosis of target domain. The results of experiments carried out on two bearing fault test platforms prove that
EMBRNDNMD can maintain an average accuracy above 97% in fault transfer diagnosis tasks, and this method also has high
stability and strong ability of scene adaptation.

1. Introduction

The rotating mechanical equipment has broad applications
in various fields, such as related industries, military, and
for civil use. As an important component of rotating
mechanical equipment, the rolling bearing directly affects
the operating efficiency and working conditions of mechan-
ical equipment. However, due to long-term exposure to
harsh working conditions of high load, the parts of rolling
bearing tend to suffer from damages. Minor damage may
reduce the operating efficiency of mechanical equipment,
while serious damage might lead to shutdown of equipment,

which may even cause casualties. Therefore, study on the
state detection and fault diagnosis of rolling bearing has
important theoretical significance and engineering value
for improving productivity and ensuring production safety.

In researches on fault diagnosis based on signal process-
ing, good results have has been achieved by combining tradi-
tional feature extraction and machine learning classification
[1–4]. Especially the signal processing method represented
by ensemble empirical mode decomposition (EEMD), the
bearing fault mechanism information can be obtained by
analyzing the intrinsic mode functions (IMFs) of vibration
signal. Han et al. [5] put forward a method for rolling
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bearing fault diagnosis based on EEMD permutation
entropy and fuzzy clustering. Wang et al. [6] proposed an
improved EEMD algorithm, in which the sifting and
ensemble number are self-adaptive. Yang et al. [7] and Hu
et al. [8] proposed a fault detection and diagnosis method
based on EEMD and support vector machine (SVM).
Besides, Shao et al. [9] put forward a method called deep
wavelet auto-encoder with extreme learning machine
(ELM) for intelligent fault diagnosis of rolling bearing. Li
et al. [10] proposed a density-based clustering method with
principal component analysis (PCA) to improve the
performance of variable load diagnosis in fault diagnosis.
In the above researches, appropriate signal processing
methods need to be selected to extract effective features
according to the characteristics of data, such as EEMD,
wavelet transform (WT), and PCA. However, these methods
are too empirical, as a result of which, the selection of fea-
tures will directly affect the diagnosis results. In order to
reduce the influence of human experiences, a better method
is to enable the model to automatically extract features [11,
12].

In recent years, with the rapid development of deep
learning in computer vision, many scholars have applied deep
learning methods to the field of fault diagnosis. Compared
with machine learning, deep learning can adaptively extract
deep features from signals, which has solved the difficulty to
extract fault features [13]. Zhou and Yao et al. [14, 15] devel-
oped a convolutional neural network (CNN) based fault
diagnosis method for rolling rearing by using the waveform
of vibration as the 2-D image input of CNN. Fan et al. [16]
advanced a method about the convolutional neural network
and transfer learning based fault diagnosis method, aiming
at the vibration image samples of rolling bearing affected by
strong noise.

However, with the increase of network layers, the
traditional deep learning methods suffer from the problems
of gradient disappearance and gradient explosion, and as a
result the weight of the model cannot be updated effectively
[17, 18]. In order to solve this problem, HE et al. [19] proposed
a deep residual network (ResNet) in 2015, which uses
shortcuts to directly transmit the data of the front layer to
the back layer of the network and completes the feature fusion
through addition. Wei et al. [20] presented a novel framework
that combines a residual network as a backbone and an
extreme learning machine as a classifier to diagnose the faults
of rotating machinery. Wang and Wen et al. [21, 22]
constructed a multi-scale deep intra-class adaptation network,
which uses the modified ResNet-50 to extract low-level fea-
tures, and the experimental results show that the model
outperforms both other deep learning models and the
conventional methods. How to effectively extract features in
the bearing intelligent diagnosis model is a problem worthy
of study. This article proposes a method based on the EEMD
and improved multi-branch ResNet to extract deep features
of bearing faults from the time domain and frequency domain.
However, the success of deep learning methods in fault
diagnosis largely depends to sufficient and labelled training
samples, but it is difficult to meet these requirements in
practical works.

Transfer learningmethod can effectively solve the problem
of data scarcity, because it is able to apply the knowledge
learned in the source domain into the target domain, which
can help improve the prediction accuracy of unlabelled data
[23–26]. In the field of fault diagnosis, the transfer learning
methods can be divided into model-based methods, such as
maximum mean discrepancy (MMD), and domain
distribution-based methods, such as domain adversarial train-
ing of neural networks (DANN) [27–29]. Li and Yang et al.
[30, 31] presented a feature representation enhancement
method based on MMD and domain confrontation training.
Che et al. [32] put forward a domain-based adaptive method,
which can calculate the multi-core maximummean difference
(MK-MMD) of the selected hidden layer and add it to the loss
function, so as to improve the generalization ability of the deep
neural network. Tang et al. [33] integrated the MK-MMD loss
into the traditional fine-tuning convolutional neural network
(CNN) transfer learning framework and proposed a new
semi-supervised transfer learning (STL) method. Mao and
Cai et al. [34, 35] advanced a novel adversarial DA method
called the adversarial residual transformation network
(ARTN), which directly transforms the source features into
the target feature space to improve the generalization capabil-
ity. Li et al. [36] came up with a novel weighted adversarial
transfer network (WATN) for fault diagnosis in certain
domains and achieved satisfactory performance. Both MMD
and DANN have achieved good performances in fault diagno-
sis, but in some situations of variable working conditions, a
single transfer method often performs poorly. Therefore, this
paper proposes a multiple transfer fault diagnosis method
combining MMD and DANN to address degradation of
model diagnosis performance in scenarios with transfer of
working conditions.

The deep learning technique has the advantage of
adaptively extracting deep features of data, which can be used
to build an end-to-end diagnosis mechanism. A lot of
researches have been carried out on intelligent diagnosis
models for rotating mechanical equipment based on deep
learning. However, various problems are also encountered in
current studies, such as vibration signals susceptible to
interference of noises, insufficient samples of equipment
faults, and the difference in distributions between target data
and source data caused by change of equipment working con-
ditions. Solving these problems should be the focus of deep
learning-based fault diagnosis model in future studies.

In our paper, the EEMD method is adopted to preprocess
the rolling bearing vibration signal, and we propose obtaining
the time-frequency information of vibration signal by building
EEMD-TFFG. To address the problem of degraded model
diagnosis ability under transfer of working conditions, DANN
and MK-MMD are introduced to optimize the multi-branch
ResNet (MBRN), so as to reduce the differences in probability
distributions of deep features between source domain and
target domain and to improve the state diagnosis accuracy of
target domain. The main contributions of this paper are as
follows:

(1) We propose an EEMD-based vibration signal con-
struction method—EEMD-TFFG, so as to achieve
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time-frequency analysis and feature extraction of
vibration signals

(2) A multi-branch feature extraction network MBRN
based on ResNet is designed, which can extract deep
features reflecting the fault state from EEMD-TFFG

(3) DANN and MK-MMD are introduced to optimize
MBRN, reduce the probability distribution difference
of data deep features between source domain and
target domain, and improve the diagnosis ability of
EMBRNDNMD under transfer of working
conditions. The experimental analysis results show
that EMBRNDNMD can achieve a high diagnosis
accuracy for target domain states under various
transfer modes, which has a strong ability to adapt
to varying working conditions

Section 2 introduces the principles of various methods,
including EEMD, ResNet, DANN, and MK-MMD; Section
3 presents the design idea and the structure of
EMBRNDNMDmodel; in Section 4, experiments are carried
out on the two datasets of CWRU and MFS-RDS by using
EMBRNDNMD, and related analysis is conducted; Section
5 draws conclusions of our work. Furthermore, we present
some acronyms in Table 1.

2. Preliminaries

2.1. Ensemble Empirical Mode Decomposition (EEMD). Hil-
bert-Huang transform (HHT) is one of the time-frequency
analysis methods with broadest applications. First, HHT carries
out empirical mode decomposition (EMD) of signal to obtain a
series of intrinsic mode functions (IMFs) of different scales;
then, instant frequency information with physical significance
is obtained through Hilbert transform of various IMF
components. However, EMD still has some problems, such as
end effect and mode confusion [37], which may reduce the
accuracy of fault classification. To address the mode confusion
problem of EMD, Zhaohua et al. [38] proposed the ensemble
empirical mode decomposition (EEMD) method based on
EMD. EEMD adds white Gaussian noise on the basis of
original signal, which makes the signal smooth, effectively
inhibits mode confusion, and improves the precision of signal
decomposition. The decomposition process of EEMD is as
shown in Figure 1.

The specific decomposition procedure of EEMD consists
of following steps:

(1) For the given original signal xðtÞ, initialize variable i
=1, and set the mean times of EEMD set as M

(2) For the original signal, add a group of white noises
niðtÞ, and obtain signal xiðtÞ.

xi tð Þ = x tð Þ + ni tð Þ, ð1Þ

where xiðtÞ is the i-th decomposed signal of additive white
noise, and niðtÞ is the i-th additive white noise (i=1, 2, 3,
…, M).

(3) Carry out EMD of xiðtÞ, and obtain various IMF
components and residual components as

xi tð Þ = 〠
J

j=1
cij tð Þ + rij tð Þ, ð2Þ

where cijðtÞ is the j-th IMF component obtained in the i-th
decomposition, and rijðtÞ is the residual component of the
i-th decomposition.

(4) Obtain the sum and average value of corresponding
IMF components got in M decompositions to offset
the noise, and obtain the final IMF components

cj tð Þ =
1
M

〠
M

i=1
cij tð Þ, ð3Þ

where cjðtÞ (j=1,2,3, …, J) is the final j-th IMF component
obtained from EEMD.

(5) Through EEMD, signal xðtÞ is finally decomposed
to:

x tð Þ =〠
j

cj tð Þ + r tð Þ, ð4Þ

where rðtÞ is the final residual component obtained after
EEMD of signal.

2.2. Residual Network (ResNet). Convolutional neural
network (CNN) is a network structure commonly used in
deep learning, which has achieved broad applications in
the field of fault diagnosis. CNN mainly consists of the input
layer, output layer, and hidden layer, while the hidden layer
can also be further divided into the convolutional layer,
down-sampling layer, and fully connected layer. In the
traditional CNN, the expression ability will be enhanced
with the increase of depth, and more complicated features
can be extracted. However, if the network layers are too
deep, it may also cause gradient attenuation, gradient
explosion, and other problems, leading to declined accuracy
of prediction.

To solve the problem of model degradation caused by
convolutional network being too deep, in 2015, Kaiming
He et al. [19] from Microsoft Research proposed the residual
network (ResNet). Utilizing shortcut, ResNet directly
transfers data from previous layers to following layers of
network and uses addition to achieve feature fusion, as
shown in Figure 2.

Addition connects input x and FðxÞ obtained after
stacking weight layers cross layer, and obtains output HðxÞ
= FðxÞ + x. Here, FðxÞ =HðxÞ − x, which is the residual.
Because the residual network has integrated such skip struc-
ture, even if the network depth is increased, the learning
network is only added with the load of identity function
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computation, and the data utilization efficiency will not be
reduced. As a result, more data information can be
transferred to deeper network, so as to prevent model degra-
dation caused by convolutional network being too deep.

2.3. Domain-Adversarial Neural Network (DANN). The
conventional machine learning methods not only require
massive labelled data for training but also need similar
probability distributions between the source domain and
target domain. If the source domain and target domain pres-
ent significant difference in data distribution, the generaliza-
tion performance of model will degrade in the target
domain. The domain adaptive transfer learning mechanism
is an effective approach to solve this problem.

In recent years, with the application of generative
adversarial network (GAN) in image processing, the ideal
of generative adversarial has been broadly used in adaptive
transfer learning applications in various fields. A classic
example is the domain-adversarial neural network (DANN)
proposed by Ganin Y [29] in 2016. DANN utilizes the fea-
ture extractor and domain discriminator for adversarial
training, and the Nash equilibrium can be finally reached,
making the domain classifier unable to determine which
domain the data comes from. In this way, data from the
source domain and target domain with different
distributions can be mapped to the same feature space, and
the classifier trained in the source domain can be used to
directly classify data from target domain. The structure of
DANN is as shown in Figure 3 [29].

Specifically speaking, DANN consists of the three parts
of feature extractor, label predictor, and domain classifier.
The feature extractor is used to (1) confuse data from the
source domain and target domain to trick the domain
classifier; (2) extract features required by subsequent net-
work from the mixed data. The feature extractor and label
predictor form a feed-forward neural network to achieve

Table 1: A list of acronyms used in this paper.

Acronym Full form Acronym Full form

EMBRNDNMD
Domain adversarial-based rolling bearing fault transfer diagnosis

model
TL Transfer learning

EMD Empirical mode decomposition CNN Convolutional neural networks

EEMD Ensemble empirical mode decomposition ResNet Residual network

EEMD-TFFG Time-frequency feature graph MMD Maximum mean discrepancy

MBRN Multi-branch ResNet
MK-
MMD

Multi-core maximum mean difference

RNB ResNet module GAN Generative adversarial network

IMF Intrinsic mode function DANN Domain-adversarial neural network

IMFs Intrinsic mode functions GRL Gradient reversal layer

HHT Hilbert-Huang transform t-SNE
t-Distributed stochastic neighbor

embedding

HES Hilbert envelope Spectrum TCA Transfer component analysis

SVM Support vector machine JDA Joint distribution adaptation

PCA Principal component analysis CWRU Case Western Reserve University

ELM Extreme learning machine MFS-RDS
Mechanical fault diagnosis experiment

platform

Input signal x(t)

Average number of
initialization sets M, i=1

EEMD decomposition results: 

Start

End

EMD decomposition: 

Yes

No

xi(t)= x(t)+ni(t)

xi(t)= cij(t)+rij(t)
j=1

J

i<M?

i=i+1

ci(t)=
M
1 cij(t)

t=1

M

xi(t)= cj(t)+r(t)
j

J

Figure 1: Decomposition flow chart of EEMD.
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adversarial training between different fields. DANN adds a
domain classifier after the feature extractor, which is
connected by a gradient reversal layer (GRL). With the addi-
tion of GRL, the gradient direction will be automatically
flipped during back propagation in the training process of
model, and identical transformation can be achieved during
forward propagation.

Assuming X represents the input space, Y = f0,⋯, L − 1g
represents L labels, S is the labelled source sample and T is the
unlabelled target sample. There are two different distributions
of source domain DS and target domain DT , then the sample
functions of source domain and target domain can be
expressed as:

S = xi, yið Þf gni=1 ~ DSð Þn ; T = xið Þf gNi=n+1 ~ DX
T

� �n′ , ð5Þ

where N = n + n′, which represents the total number of
samples.

According to the source domain sample ðxi, yiÞ, the
classification loss of label predictor can be represented by
the negative logarithmic probability of correct label:

Ly Gy Gf xið Þ� �
, yi

� �
= log 1

Gy Gf xð Þ� �
yi

, ð6Þ

where Gf represents feature extraction network of X; Gyð
Gf ðxÞÞ represents the conditional probability of network
mapping X to Y .

Similarly, the loss function of domain classifier can be
represented as:

Ld Gd Gf xið Þ� �
, di

� �
= di log

1
Gd Gf xið Þ� � + 1 − dið Þ log 1

1 − Gd Gf xið Þ� � ,

ð7Þ

where di is a binary variable representing the domain class.
If di = 0, it means Xi ~DX

S ; if di = 1, Xi ~DX
T . Gd represents

the domain classifier.
The total loss LDANN of model consists of the two parts of

source label prediction loss Ly and domain classifier loss Ld :

LDANN θf , θy, θd
� �

= 1
nS

〠
xi∈DS

Ly Gy Gf xið Þ� �
, yi

� �
−
λ

n
〠

xi∈ DS∪DTð Þ
Ld Gd Gf xið Þ� �

, di
� �

:

ð8Þ

During the training process, the feature extractor learns
parameter θf by maximizing the loss function Ld of domain
classifier, and the domain classifier adjusts its parameter θd
by minimizing the loss function Ld .

2.4. Multi-Kernel MaximumMean Discrepancy (MK-MMD).
Maximum mean discrepancy (MMD) was proposed for
double-sample test, which is used to determine the distribu-
tion difference between two types of data, and it is a
common loss function in transfer learning. In MMD, the
most critical step is to choose kernel parameters, and unsuit-
able kernel parameters will not only affect the final
performance of mapping but also cause deviation in distance
measurement. To prevent selecting unsuitable kernel of
MMD, the MK-MMD method proposed by Gretton [39] is
employed in our paper. In MK-MMD, it is assumed that
the optimal kernel is obtained via linear combination of
multiple kernels, which can prevent choosing unsuitable
kernel parameters when only one kernel is used. Assuming
the source domain dataset Xs = fxsigi=1,⋯n satisfies P distri-
bution and the target domain dataset Xt = fxtjgj=1,⋯n

satisfies

Q distribution, the Euclidean distance between Xs and Xt in
MK-MMD is defined as:

d2k P,Qð Þ ≜ ΕP ϕ Xsð Þ½ � − ΕQ ϕ Xt� �� ��� ��2
H k

, ð9Þ

where E represents the mathematical expectation; ϕ stands
for the mapping of reproducing Hilbert space; H k refers to
the reproducing kernel Hilbert space with feature kernel k.

The feature kernel often chooses the convex optimiza-
tion combination of m kernels fkug associated with features
to provide effective mapping. The feature kernel is defined as
follows:

K ≜ k = 〠
m

u=1
∂uku : 〠

m

u=1
∂u = 1, ∂u ≥ 0, ∀u

( )

, ð10Þ

where ∂u is the weighted parameter of different kernels, and
the characteristic of multi-kernel k is guaranteed via con-
straint of ∂u.

3. Proposed Method and System Framework

By combining EEMD and MK-MMD, this paper proposes a
deep residual adversarial transfer bearing fault analysis
method EMBRNDNMD. In our paper, first, EEMD is
utilized to adaptively decompose the vibration signal into
empirical mode components IMFs of different scales, and
IMFs and corresponding Hilbert envelope spectrum (HES)
form the EEMD time-frequency feature graph (EEMD-TFFG)
of time-frequency features. Then, the multi-branch ResNet
structure is used to extract deep features of EEMD-TFFG,
the domain adversarial mechanism is introduced to ensure
consistent low-dimensional expressions of the deep features
of data between source domain and target domain, and in
the meantime, MK-MMD is utilized to constrain the
distribution difference between them in high-dimensional

Weight layer

Weight layer

Relu

Relu

X identity

F (x)+x

F (x)

Figure 2: Residual module of ResNet.
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space. Finally, the back propagation of ResNet is optimized
according to the fault state classification loss of source domain
data, the discriminant loss between source domain and target
domain, and the distribution difference loss of MK-MMD, so
as to improve the state classification ability and domain
adaptation ability of deep features, and to solve the transfer
problem of state diagnosis model under different working
conditions.

3.1. Construction of EEMD Time-Frequency Graph. After
EEMD of vibration signal, a group of linear stable empirical
mode components IMFs are obtained, and IMFs are auto-
matically distributed from high frequency to low frequency.
Considering that not every IMF can effectively represent the
time-frequency characteristic or the information of original
signal, Equation (11) is utilized to calculate the correlation
coefficient between each IMF component and the original
signal xðtÞ, so as to eliminate illusive components in IMF
component.

ρ ci tð Þ,x tð Þð Þ =
E ci tð Þ ⋅ x tð Þð½ � − E ci tð Þ½ � ⋅ E x tð ÞÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ci tð Þð Þp

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D s tð Þð Þp , ð11Þ

where ciðtÞ represents the i-th IMF component, E½⋅�repre-
sents the expected value of signal, and Dð⋅Þ represents the
mean square value of signal.

The bigger the correlation coefficient is, the more closely
related is the IMF component to the original signal, and the
richer time-frequency information it contains. Then, the
Hilbert envelope spectrum (HES) used to select the IMF
component is calculated. Here, the selected IMF
components and its envelope spectrum are rearranged into
a matrix in the order that IMF is the first and HES is the last,
so as to improve the correlation of the features and obtain a
group of time-frequency feature graphs, which are denoted
as EEMD-TFFG, and this step aims to facilitate subsequent
extraction of their deep features using 2D convolution
kernel.

The construction process of EEMD-TFFG includes the
following steps:

(1) After EEMD of the vibration signal, a group of
empirical mode components IMFs are obtained

(2) The correlation coefficient between each IMF
component and the original signal is calculated,
and the IMF components with correlation
coefficients higher than the threshold value are
selected for subsequent analysis

(3) Corresponding HES of IMF components selected in
Step (2) is calculated

(4) The selected IMF components and HES sequences
are rearranged into a matrix, and saved as a gray-
scale image

3.2. Design of Network Model Structure

3.2.1. Design of Deep Feature Extraction Network. Figure 4
shows the EEMD-TFFG of a group of vibration signals
under different bearing states, and each vibration signal
sample includes 1024 sampling points. We can see that
EEMD-TFFG has the following two characteristics:

(1) Each gray-scale image has the size of 32∗32, which is
small

(2) For the same signal, the features between the gray-
scale images of different IMF components are
relatively independent

𝜕Ly
𝜕𝜃y

𝜕Ly
𝜕𝜃y

𝜕Ld–𝜆
𝜕𝜃f

𝜕Ld𝜆
𝜕𝜃d

𝜕Ld
𝜕𝜃f

Loss Ld

Loss Ly

Class label y

Label predictor Gy(.;𝜃y)

Feature extractor Gf(.;𝜃f)

Forwardprop

Input x

Backprop (and produced derivatives)

Domain classifier Gd(.;𝜃d)

Domain label d

Fe
at

ur
es

 f

Gradient
reversal

layer

Figure 3: Schematic diagram of DANN model structure.
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Figure 4: EEMD-TFFG of bearing vibration signals.
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Based on these two characteristics of EEMD-TFFG, we
designed a multi-branch parallel ResNet structure as shown
in Figure 5, which is denoted as MBRN. In Figure 5, we
assume that 3 IMF components of vibration signal after
EEMD and corresponding HES are selected. The parameters
of each convolution layer of MBRN are shown in Table 2, in
which the normalization and relu layers are not represented.

According to characteristic (1) of EEMD-TFFG, if the net-
work layers are too deep, it will affect the extraction of features
of small-size image, so a single ResNet module (RNB) is set
with 1 convolutional layer and 3 basic residual modules, and
there are 7 convolutional layers in total, and this setting can
restrict the network depth. In RNB, various convolutional fea-

ture extraction layers have all used a 3∗3 convolution kernel, a
small receptive field is utilized for network stacking, and the
step size is set as 1. Besides, because the main redundant infor-
mation has been filtered through the EEMD time-frequency
figures, it will not cause information redundancy even if there
is no pooling layer. So we cancel the pooling layer of the model
to reduce the computational load.

According to characteristic (2) of EEMD-TFFG, a multi-
branch parallel network structure MBRN is built. RNB,
which has the same structure and independent parameters,
is used to extract the gray-scale image features for different
IMF and HES, and the deep features from the final output
layers of various RNBs are combined and used as the output
feature F of MBRN.

3.2.2. Loss Calculation and Back Propagation Network. The
structural design of EMBRNDNMD model is as shown in
Figure 6. In addition to the deep feature extraction network
GMBRN , the model also includes the state classification net-
work Gy and domain discriminant network Gd . Here, Gy is
a two-layer fully connected linear network, and Gd is a
three-layer fully connected linear network. Three loss
functions are used to optimize the network model via back
propagation, and they are the bearing state classification loss
Ly , the discriminant loss Ld between source domain and
target domain, and the MK-MMD distribution difference
loss LMK−MMD between deep features of source domain and
target domain, respectively. The deep feature set of source
domain is denoted as Fs = f f sigi=1,::n, the sample label of
source domain data is denoted as Ys, and the deep feature
set of target domain is denoted as Ft = f f tjgj=1,::n.

The bearing state classification loss Ly is used to optimize
GMBRN and Gy . Ly is defined as:

Ly = 〠
n

i=1
log 1

Gy f sið Þysi
: ð12Þ

Ld involves two back propagation stages, which are for
optimizations of GMBRN and Gd , respectively. The two stages
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Figure 5: Multi-branch parallel ResNet structure.

Table 2: Specific parameters of RNB.

Type Layer
Kernel/stride/

channels
Input size

Output
size

Input / (32,32,1) (32,32,1)

Conv1

Conv2d (3,3)/1/16 (32,32,1) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

ReLU / (32,32,16) (32,32,16)

Block1

Conv2d (3,3)/1/16 (32,32,16) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

ReLU / (32,32,16) (32,32,16)

Conv2d (3,3)/1/16 (32,32,16) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

Block2

Conv2d (3,3)/1/32 (32,32,16) (32,32,32)

InstanceNorm2d / (32,32,32) (32,32,32)

ReLU / (32,32,32) (32,32,32)

Conv2d (3,3)/2/32 (32,32,32) (16,16,32)

InstanceNorm2d / (16,16,32) (16,16,32)

Block3

Conv2d (3,3)/1/32 (16,16,32) (16,16,32)

InstanceNorm2d / (16,16,32) (16,16,32)

ReLU / (16,16,32) (16,16,32)

Conv2d (3,3)/2/32 (16,16,32) (8,8,32)

InstanceNorm2d / (8,8,32) (8,8,32)

Pooling AvgPool / (8,8,32) (1,1,32)
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of back propagation are connected by the gradient reverse
layer (GRL), and the reverse mechanism of GRL is utilized
to form an adversarial relation between GMBRN and Gd . Back
propagation optimization aims to reach Nash equilibrium
between GMBRN and Gd . The equation of Ld is:

Ld = 〠
n

i=1
log 1

Gd f sið Þ + 〠
n

i=1
log 1

1 − Gd f ti
� � : ð13Þ

LMK−MMD represents the MK-MMD distribution differ-
ence loss, which is used to optimize GMBRN . LMK−MMD is
defined as:

LMK−MMD = E ϕ Fsð Þ½ � − E ϕ Ftð Þ½ �k k2Hk
, ð14Þ

where E represents the mathematical expectation; ϕ stands
for the mapping of reproducing Hilbert space; and Hk refers
to the kernel k used by reproducing the kernel Hilbert space.

The total loss of GMBRN can be expressed as:

LMBRN = Ly − λ1Ld + λ2LMK−MMD: ð15Þ

3.3. Procedure of Diagnosis Model. The procedure of transfer
diagnosis using the EMBRNDNMD model is as follows:

(1) Collect rolling bearing vibration signals under
different working conditions, assign data into the
source domain or target domain, the source domain
consists of labelled data, and the target domain is
composed of unlabeled data

(2) Use the EEMD method to calculate the IMF and
HES of vibration signal samples from the source
domain and target domain, and build corresponding
EEMD-TFFG

(3) Input the EEMD-TFFG of source domain and target
domain into MBRN, and extract deep features Fs
and Ft of EEMD-TFFG

(4) Calculate the state classification loss Ly of source
domain data, and optimize Gy via back propagation

(5) Calculate the MK-MMD distribution difference
between the deep features of source domain and
target domain, and obtain LMK−MMD

(6) Calculate the domain classifier loss Ld , and optimize
Gd via back propagation

𝜕Ly
𝜕𝜃y

EEMD

Feature
Fs, Ft

Feature extractor GMBRN
Fault classifier Gd

Class
label y

Domain classifier Gd

Domain
label d

RNB1

RNB2

RNB6

MK-MMD

EEMD

MBRN

GRL

Source

Label

Target

𝜕L
MK-MMD

𝜕𝜃y

𝜕Ld𝜆
𝜕𝜃d

Source domain forward propagation 
Target domain forward propagation 
Ly back propagation

LMK-MMD back propagation
Lc back propagation

Figure 6: Bearing fault transfer diagnosis model EMBRNDNMD.

Figure 7: CWRU bearing fault diagnosis and experiment platform.
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(7) Calculate the total loss LMBRN , and optimize GMBRN
via back propagation

(8) Iterate steps (3)-(7) until LMBRN is smaller than the
set value or iterations have reached the target
requirement, and obtain GMBRN and Gy after training

(9) The trained GMBRN is utilized to calculate the deep
feature Ft of sample EEMD-TFFG from the source
domain, and input Ft into the trained Gy to obtain
the label of test samples

4. Experimental Verification

4.1. Experimental Analysis on the CWRU Bearing Dataset

4.1.1. Introduction of the CWRU Bearing Dataset. In our
experiment, the CWRU bearing fault simulation and
experiment platform developed by Case Western Reserve Uni-
versity was used, and the rolling bearing vibration signals under
various states were collected to verify the performances of
algorithm and model proposed in this paper. The experiment
platform is presented in Figure 7, which mainly consists of
the parts of motor, rolling bearing, axis of rotation, torque
sensor/decoder, acceleration sensor, and signal acquisition
instrument.

In the experiment, the Reliance Electric motor of 2 HP
was used. Electrical discharge machining was used to create
different types of faults for motor bearings, the locations
included inner race, outer race, and rolling ball, and the

Table 3: Experiment datasets of bearing.

Power Normal Inner race Outer race Rolling ball
Damage (mm) — — 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.007 0.014 0.021 0.028

Label — 0 1 2 3 4 5 6 7 8 9 10 11

Dataset A 0HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset B 1HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset C 2HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset D 3HP 50 50 50 50 50 50 50 50 50 50 50 50
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Figure 8: Vibration signal and its time-frequency components.
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damage diameters were 0.007 inch, 0.014 inch, 0.021 inch,
and 0.028 inch, respectively. As shown in Table 3, there
are 12 types of faults and 50 samples in each type.

In this paper, the vibration signals at motor drive end
with sampling frequency of 12 kHz are chosen for analysis.
In the experiment, four different motor powers of 0HP,
1HP, 2HP, and 3HP were set as 4 different working condi-
tions, and 12 transfer modes were obtained (A->B, A->C,
A->D, B->A, B->C, B->D, C->A, C->B, C->D, D->A, D-
>B, D->C). Among them, A->B means that we set the data-
set A as source domain and dataset B as target domain.

4.1.2. EEMD Analysis. First of all, we obtain the IMF
components of vibration signal sample by EEMD; then, we
perform Hilbert transform and spectral analysis of IMF
components, and calculate the envelope spectra of IMF com-
ponents. With fault at the inner race of bearing as example,
the waveform of original vibration signal and the IMF
components after EEMD are as shown in Figure 8.

The correlation calculation method described in Section
3.1 is used to select the IMF components. Under normal
conditions and fault conditions such as inner race fault
(IR), outer race fault (OR), and ball fault (BF), the
correlation coefficients between the IMF components of
bearing vibration signal at various order and the original sig-
nal are shown in Figure 9. According to Figure 9, with the
increase of order, the correlation coefficient between the
IMF component and the original signal gradually declines.
The IMF components and the original signal only maintain
a high correlation at the first four orders, so the IMF
components of first four orders after EEMD and corre-
sponding HES are chosen for subsequent extraction of deep
features in this paper.

4.1.3. Validation of IMFs Selection. To verify that the first 4-
order IMFs selected by the correlation calculation of bearing
vibration signals can effectively characterize the bearing fault
features, the first 3-, 5-, and 6-order IMFs (ET3, ET5, and
ET6, respectively) are selected as comparative groups, and
their performances are compared with the first 4-order IMFs
(ET4) used in this paper in the input signal experiment.
Finally, it is tested on the CWRU dataset, and the results
are shown in Table 4.

It can be seen from the table that the diagnostic accuracy
when using ET4 as input signal is basically higher than that
of other groups, because ET3 lacks IMF4 component’s fault
features, resulting in incomplete expression of fault features.
On the other hand, ET5 and ET6 add higher-order IMF on
the basis of ET4, resulting in high redundancy in the signal,
which interferes with the final results. The experimental
results verify the validity of the conclusion reached in EEMD
Analysis, which indicates that using the first 4-order IMF
component as the input signal can effectively improve the
accuracy of bearing fault diagnosis.

4.1.4. Analysis of Diagnosis Results. In this section, we test
the transfer diagnosis performance of EMBRNDNMD
model under four different working conditions of 0HP,
1HP, 2HP, and 3HP. To verify the theoretic analysis in Sec-

tion 3 and to evaluate the performance of EMBRNDNMD
model, we designed some models for comparative analysis,
and the specific designs include:

(1) EMBRN model: Compared to the EMBRNDNMD
model, this model also uses MBRN to extract deep
features of EEMD-TFFG and inputs deep features
into the state classification network, but it does not
involve the MK-MMD loss or the domain adversar-
ial network

(2) EMBRNDN model: On the basis of the EMBRN
model, it integrates a domain adversarial network
to optimize MBRN

(3) EMBRNMD network: On the basis of the EMBRN
model, it combines the MK-MMD loss to optimize
MBRN via back propagation

Table 4: Test results of different IMFs input signals.

Working
condition

IMF1-
IMF3

IMF1-
IMF5

IMF1-
IMF6

IMF1-
IMF4

A->B 94.17% 96.67% 97.83% 97.83%

A->C 93.50% 95.33% 96.50% 97.33%

A->D 94.00% 96.83% 97.33% 96.50%

B->A 92.83% 94.83% 95.83% 96.67%

B->C 95.83% 98.33% 99.33% 100%

B->D 94.67% 97.83% 97.50% 97.17%

C->A 92.33% 94.33% 94.83% 96.50%

C->B 92.83% 98.83% 97.33% 97.33%

C->D 94.83% 97.17% 98.67% 99.50%

D->A 93.17% 95.83% 96.33% 97.17%

D->B 94.50% 96.17% 98.00% 97.33%

D->C 95.17% 96.67% 98.83% 99.83%

Average 93.99% 96.18% 97.36% 98.17%
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Figure 9: Correlation coefficient between the IMF and the original
vibration signal.
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Table 5 lists the state identification accuracies of every
diagnosis model, and Figure 10 shows the radar comparison
maps of the identification accuracies of these models.
According to Table 5 and Figure 10, we can draw the
following conclusions:

(1) The diagnosis accuracy of EMBRN is significantly
lower than that of the other three models, which
indicates that the deep features of data present
distribution differences under different working con-
ditions, and the domain adversarial network and
MK-MMD domain adaptation method can well
solve this problem

(2) EMBRNDNMD has higher diagnosis accuracy than
EMBRNDN and EMBRNMD, which is consistent
with the theoretic analysis in Section 3.2. The reason
is that the EMBRNDNMD model has not only
considered the consistency of deep feature distribu-
tion in high-dimensional kernel space (MK-MMD
loss) but also increased the distribution similarity
in low-dimensional space (domain classification
loss).

(3) EMBRNDN and EMBRNMD have poor
performances under partial transfer modes, but
EMBRNDNMD can maintain a high accuracy under
all transfer modes, and it also has better stability
than the other models for comparison, which proves
the effectiveness and reliability of EMBRNDNMD
model

Figure 11 shows how the diagnosis accuracies of various
models change with iterations on various transfer modes.
According to Figure 11, in all transfer modes, every model

can converge after 2000 iterations and become stable after
1000 iterations. Compared to the other three models,
EMBRNDNMD has the fastest convergence speed, and its
accuracy curve is the most stable. The analysis results show
that under various transfer modes, EMBRNDNMD can not
only provide high diagnosis accuracies but also has higher
stability.

Figure 12 shows the t-SNE diagrams of deep features
under the transfer mode of A->B by using different models,
and the high-dimensional features are mapped to the two-
dimensional space. According to Figure 12, compared to
EMBRN, by integrating the domain transfer method, the
deep features of models EMBRNMD and EMBRNDN have
a bigger between-class distance and a smaller within-class
distance, and the confusion problem among features under
various states is significantly alleviated. By combining the
MK-MMD loss and DANN, the separability of deep features
of the EMBRNDNMD model is further improved, and the
between-class confusion is also further reduced. The t-SNE
analysis proves that compared to the other three models,
the deep features extracted using EMBRNDNMD have bet-
ter cross-domain invariance, and it also has stronger
adaptation ability to working condition transfer.

4.1.5. The Influence of Hyperparameters on the Model. Four
kinds of optimizers—Ada Delta, RMS Prop, SGD, and Ada-
m—are selected for the test. The learning rates range from
0.001 to 0.2, and the results are listed in Table 6. It can be
seen that when the learning rates are less than 0.1, the accu-
racy remains at a higher level. However, when the learning
rates are higher than 0.1, it will make the network difficult
to converge and obtain satisfactory training results. The
Adam optimizer has the highest accuracy when the learning
rate is 0.001, reaching 99.79%, so we ultimately choose the
Adam optimizer to optimize the network parameters.

4.1.6. Comparison with Other Diagnosis Methods. To verify
the effectiveness of the EMBRNDNMD model proposed in
this paper under transfer of working conditions, we choose
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Figure 10: Accuracy distributions of various models.

Table 5: Fault classification results using various network models.

Working
condition

EMBRN EMBRNDN EMBRNMD EMBRNDNMD

A->B 87.33% 94.83% 94.33% 97.83%

A->C 78.50% 92.17% 93.50% 97.33%

A->D 73.17% 95.17% 94.33% 97.50%

B->A 85.33% 94.33% 94.50% 96.67%

B->C 94.83% 98.33% 100% 100%

B->D 82.17% 97.50% 95.17% 98.17%

C->A 79.33% 93.50% 93.83% 96.50%

C->B 90.50% 97.33% 97.17% 98.33%

C->D 94.33% 98.17% 98.33% 99.50%

D->A 75.32% 92.17% 94.83% 97.17%

D->B 81.50% 95.83% 97.17% 98.33%

D->C 93.17% 97.33% 98.83% 99.83%

Average 84.50% 95.67% 95.83% 98.17%
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Figure 11: Continued.
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some classic diagnosis models based on machine learning
and deep learning to test on the CWRU dataset, including
SVM, CNN, TCA, and JDA, and their diagnosis accuracies
under 12 transfer modes are obtained. The results are listed
in Table 7. According to comparison and analysis results, we
can find:

(1) Under varying working conditions, EMBRNDNMD
can provide higher diagnosis accuracies than the
methods of SVM, CNN, TCA, and JDA

(2) JDA has the closest diagnosis accuracies to
EMBRNDNMD, and its accuracies are even higher
than 90% under some transfer modes. However, it
also has poor performance under some other
transfer modes, and its overall performances are
not as stable as EMBRNDNMD

(3) Compared with the conventional models,
EMBRNDNMD is more advantageous in solving
the problem of working condition transfer, which
also proves the effectiveness of the design of
EMBRNDNMD model

4.2. Tests on the MFS-RDS Experiment Platform and
Related Analysis

4.2.1. Introduction of MFS-RDS Experiment Platform. To
verify the generalization ability of the proposed
EMBRNDNMD model, the mechanical fault diagnosis
experiment platform (MFS-RDS) was used to further
evaluate the model performance. The MFS-RDS platform
mainly consists of a three-phase motor, AC variable fre-
quency drive (VFD) and tachometer. The sound and
vibration data recorder WebDAQ-504 (MCC, US) was used
for data collection. The vibration acceleration sensor was
installed above the bearing seat. The experiment platform
is as shown in Figure 13. In the experiments, bearings under
the four states of normal condition, damage of 0.1mm inner
ball, damage of 0.1mm outer ball, and damage of 0.1mm
rolling ball were used.

In the experiment, the vibration signals with sampling
frequency of 8 kHz under the three speeds of 900 r/min,
1200 r/min, and 1800 r/min were collected, corresponding
to the three working conditions of E, F, and G. With the
vibration signal of 1024 continuous sampling points as a
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Figure 11: Comparison of model accuracy-iterations.

Table 6: Hyperparameters experimental results.

Learning rates Ada delta RMS prop SGD Adam

0.001 99.25% 98.29% 99.46% 99.79%

0.05 99.17% 98.12% 99.21% 99.42%

0.01 98.67% 97.95% 99.16% 99.29%

0.1 94.21% 92.86% 95.37% 96.25%

0.2 93.63% 90.28% 93.71% 93.33%
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sample, 120 vibration signal samples were collected under
each bearing state, as listed in Table 8. Three working
conditions correspond to 6 transfer modes (E->F, E->G, F-
>E, F->G, G->E, G->F).

4.2.2. Experimental Results and Analysis. On the MFS-RDS
bearing dataset, the diagnosis results of different methods
under various transfer modes are presented in Table 9 and
Figure 14. According to analysis of the experimental results,
we can come up to the following conclusions:

(1) Under various transfer modes, the average diagnosis
accuracy of EMBRN model reaches 85.39%; after
introducing the domain adversarial module, the
average accuracy of EMBRNDN is 93.51%; after
introducing the MK-MMD loss, the average
accuracy of EMBRNMD is 96.01%. This further
proves that the domain adaptation mechanism can
effectively improve the fault diagnosis accuracy
under varying working conditions of bearing

(2) EMBRNDNMD maintains a high accuracy under all
transfer modes and also shows great stability. Its
average accuracy reaches 98.54%, which proves that
the distribution consistency between deep features
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Figure 12: t-SNE diagrams of all models under the transfer learning task A->B.

Table 7: Comparison of different models in diagnosis accuracy.

Working
condition

SVM CNN TCA JDA EMBRNDNMD

A->B 67.25% 78.33% 80.38% 91.75% 97.83%

A->C 67.42% 79.33% 75.67% 84.58% 97.33%

A->D 67.37% 78.17% 76.25% 85.31% 97.50%

B->A 75.13% 80.53% 91.75% 93.28% 96.67%

B->C 62.38% 78.87% 74.63% 91.27% 100%

B->D 67.56% 80.05% 82.18% 93.83% 98.17%

C->A 65.37% 71.08% 84.37% 91.08% 96.50%

C->B 61.22% 69.50% 84.53% 87.58% 98.33%

C->D 67.51% 79.33% 82.75% 91.32% 99.50%

D->A 62.34% 78.00% 80.52% 92.64% 97.17%

D->B 64% 78.83% 86.78% 91.16% 98.33%

D->C 67.36% 74.17% 86.43% 90.93% 99.83%

Average 66.24% 77.14% 82.34% 90.39% 98.17%
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from source domain and target domain can be effec-
tively improved by combining the MK-MMD loss
and domain adversarial module

To further prove the above conclusions, we use the
confusion matrix of the test dataset sample labels and
prediction labels of various models to analyze the diagnosis
precision, and use the t-SNE diagrams to carry out visual
analysis of the deep features extracted by every model.
Figure 15 shows the confusion matrices and t-SNE diagrams
of every model under transfer mode G->E. According to the
confusion matrices, we can see that EMBRNDNMD
designed in this paper has the best performance. With the
introduction of MK-MMD loss and domain adversarial
module, the types and number of false classifications by both
EMBRNDN and EMBRNMD show remarkable decline.
Moreover, by combing the MK-MMD loss and domain
adversarial mechanism, the number of false classifications
by EMBRNDNMD is further reduced. In the meantime,
the t-SNE diagrams show that compared to other models,
the deep features extracted by EMBRNDNMD present bet-

ter class separability, which proves that EMBRNDNMD
has better adaptability to various scenes.

4.2.3. Comparison with Other Diagnosis Methods. To verify
the generalization ability of the EMBRNDNMD model, the
same comparative experiment as in Section 4.1.6 is set and
carried out on the MFS-RDS dataset. The experimental
results are shown in Table 10.

From the table, it can be seen that the experimental
results of EMBRNDNMD on MFS-RDS datasets are
basically consistent with the results in Section 4.1. The
diagnostic accuracies of EMBRNDNMD under varying
working conditions are higher than the other groups, and
the accuracies are all above 97%. This shows that the
EMBRNDNMD model still performs well in cross-platform
device diagnostics. It also has excellent stability when
running on the MFS-RDS datasets, which can effectively
improve the fault diagnosis accuracy under varying working
conditions of bearing.

Figure 13: Mechanical fault diagnosis and rotor dynamic
simulation and experiment platform.

Table 8: Introduction of MFS-RDS bearing dataset.

Speed (r/
min)

Normal
Inner
race

Outer
race

Rolling
ball

Damage
(mm)

— — 0.1 0.1 0.1

Label — 0 1 2 3

Dataset E 900 120 120 120 120

Dataset F 1200 120 120 120 120

Dataset G 1800 120 120 120 120

Table 9: Results of various network models on the MFS-RDS
bearing dataset.

EMBRN EMBRNDN EMBRNMD EMBRNDNMD

E->F 86.04% 94.38% 97.71% 99.79%

E->G 85.63% 92.92% 96.04% 98.96%

F->E 83.96% 92.08% 94.37% 98.33%

F->G 85.21% 93.95% 97.79% 97.51%

G->E 86.46% 94.79% 96.86% 98.12%

G->F 85.02% 92.92% 92.63% 98.54%

Average 85.39% 93.51% 96.01% 98.54%
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Figure 14: Transfer results statistics on the MFS-RDS bearing
dataset.

Table 10: Comparison of different models in diagnosis accuracy.

Working
condition

SVM CNN TCA JDA EMBRNDNMD

E->F 72.92% 81.67% 88.33% 94.17% 99.79%

E->G 69.17% 84.17% 86.67% 92.71% 98.96%

F->E 68.33% 80.62% 81.04% 91.04% 98.33%

F->G 66.46% 79.79% 79.79% 87.29% 97.51%

G->E 69.38% 74.79% 83.33% 93.33% 98.12%

G->F 69.58% 80.83% 86.67% 92.29% 98.54%

Average 69.31% 80.31% 84.31% 91.81% 98.54%
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Figure 15: Compare the confusion matrices and t-SNE diagrams of different models.
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5. Conclusions

This paper proposes a transfer diagnosis method
EMBRNDNMD for rolling bearing faults. In this method,
the EEMD method is used to extract the time-frequency
information of the vibration signal, and the time-frequency
feature graph EEMD-TFFG is constructed; then, the feature
extraction network MBRN is designed according to the
characteristics of EEMD-TFFG to extract deep features of
EEMD-TFFG fault status; finally, the MBRN is optimized
by combining DANN and MK-MMD, which improve the
diagnosis ability of EMBRNDNMD under transfer of work-
ing conditions. According to theoretical derivation and
experimental verification, we can draw the following
conclusions:

(1) Using the EEMD method to perform time-frequency
analysis of vibration signals, a construction method
of EEMD-TFFG is proposed, which can provide
time-frequency feature information reflecting the
state of rolling bearings for subsequent deep learning
networks

(2) MBRN is designed according to the characteristics of
EEMD-TFFG. The multi-branch network structure
and residual stacking mechanism can solve various
problems of EEMD-TFFG, such as small size, scat-
tered features, and independent time-frequency fea-
tures of different scale information

(3) A joint domain transfer mechanism is designed
based on DANN and MK-MMD, which can
effectively improve the consistency of data deep fea-
tures between the source domain and target domain,
and reduce the distribution differences of deep fea-
tures in high-dimensional kernel space between the
source domain and target domain. It can effectively
improve the diagnosis ability of EMBRNDNMD
under transfer of working conditions. The results of
experiments carried out on two bearing fault test
platforms show that the EMBRNDNMD model can
achieve high diagnostic accuracy in various working
condition transfer modes
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