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Given that the single-terminal traveling wave location method has significant errors, a novel fault location method based on the
spatial domain image fusion and convolutional neural network (CNN) is proposed. Firstly, the three-phase traveling wave can be
decoupled by the phase-mode transformation matrix for obtaining the line-mode component of the traveling wave. Secondly, the
1D line-mode traveling wave can be converted into a 2D image by the Gramian angular field (GAF). The 1D line-mode
component can be mapped into the color, point, line, and other characteristic parameters of the 2D image. In order to expand
the invisible information of the line-mode traveling wave, the images obtained by the Gramian angular summation field
(GASF) and Gramian angular difference field (GADF) are weighted and fused. Finally, the CNN can be used to autonomously
mine the characteristic parameters of the weight-fusion image and realize fault location. The simulation results show that the
proposed method does not need to be considered in the traveling wave head and the traveling wave speed. The localization
method is not affected by fault time, fault distance, or transition resistance factors. It possesses high reliability with an absolute
range error of no more than 200m.

1. Introduction

The medium-voltage distribution network usually adopts a
small current grounding system (SCGS) in China, and the
single-phase grounding fault has become one of the crucial
factors influencing the reliability of the power supply [1,
2]. Fast and accurate fault location technology can reduce
power outage range and power outage time [3]. It has an
essential significance for improving the safety, reliability,
and economy of the distribution network.

The distribution network structures mostly are arbores-
cent radiation patterns. The model has many branches and
short line lengths. When the single-phase grounding fault
occurs in the small current grounding system, the fault sig-
nal presents nonlinear, faint, complexity, and other features.
These factors can give the challenge for fault location. At
present, the fault location methods can be roughly divided
into several ways, such as fault analysis method, artificial
intelligence method, signal injection method, traveling wave
method, and impedance method. At the beginning of fault

location, the distribution network system lines were consid-
ered geometrically symmetrical using symmetrical
component-based methodologies [4]. However, symmetrical
component-based analysis was applied only to the balanced
system. Elkalashy and colleagues [5] used a controlled thy-
ristor to generate a disturbance signal, achieving the wave
distance measurement. However, the technique must inject
a signal into the neutral point. It can only be used in the neu-
tral point grounding by arc suppression coil and cannot be
used in the neutral point ungrounded system. Liao [6] used
the substation voltage and current quantities to construct the
bus impedance matrix, through which the fault location can
be yielded. However, the method needs to know the distribu-
tion network parameters and topological structures in
advance. Sun and colleagues [7] presented an automated
outage mapping method for the automatic faulted line sec-
tion location. The method needs to collect much customer
electric information, and the process is relatively compli-
cated. Sapountzoglou et al. [8] used the gradient boosting
trees to establish a fault diagnosis for the low-voltage smart
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distribution network. The fixed number of interpolations
replaces the measurements of a particular branch. This
model adapts to changes in the network topology to some
extent but does not accurately locate the faulty segment.
Teng et al. [9] used the relationship matrix to locate the
faulted line sections. The matrix method is easy to realize.
However, when the topology changes, the network matrix
must be regenerated, demanding large-scale computation
quality. One of the most effective methods to calculate the
distance-to-fault is the traveling wave method [10, 11]. The
uncertainty of fault traveling velocity and arriving time of
fault initial traveling wave can affect the accuracy of the loca-
tion. Karmacharya and Gokaraju [12] used the wavelet-
based frequency characteristics to locate the fault sections.
But the wrong selection of the decomposition scale and
wavelet basis function may obtain erroneous fault location.
Machine learning has broad prospects in fault diagnosis.
Many intelligent fault diagnosis models have been proposed
[13, 14]. Luo et al. [15] built the stack autoencoder (SAE)
regression model to constitute the relationship between fault
features and fault locations, which can realize the end-to-end
faulted line location. Mirzaei and colleagues [16] used the
discrete wavelet transform to extract the features of fault
voltage, and the generated features are used to train the deep
neural networks for obtaining the faulted line segments. Luo
et al. [17] combined SAE with signal phase information to
realize the fault range finding for the multiterminal trans-
mission line.

Rapid and precise fault location in the distribution net-
work can effectively reduce fault detection and outage time,
reduce economic losses, and improve power supply reliabil-
ity. This article focuses on solving the problem of the distri-
bution network fault location. The main contributions of
this article are summarized as follows:

(1) The 1D traveling wave signal can be converted into
the 2D image by Gramian angular field (GAF). We

used the spatial domain image fusion method to
reinforce the invisible information of the traveling
wave signal. The signal-to-image method can be
beneficial to the convolutional neural network
(CNN)

(2) The CNN network structure is designed for fault
location in the distribution network. The CNN can
mine the image features autonomously, without
human extraction of features, avoiding human factor
interference

(3) The difference from the traditional single-terminal
traveling wave location method, the proposed
method does not require detecting the wave head
and speed of the traveling wave. It can improve the
distance-measuring accuracy

The paper can be divided into the following sections. The
phase-mode transformation is introduced in Section 2. In Sec-
tion 3, the signal-to-image conversion method is proposed.
Section 4 describes the fault location based onGAF-CNN. Sec-
tion 5 shows the results of the fault-ranging experiments.

2. Phase-Mode Transformation

2.1. Characteristics of Traditional Traveling

2.1.1. Wave Fault Location. The traditional traveling wave
location is based on arriving time of fault initial traveling
wave and fault traveling wave velocity [18, 19]. The method
is heavily dependent on the first traveling wave head [20].
Figure 1 provides the direction traveling waves of the
voltage-mode component. As can be seen in Figure 1, the
duration time of the initial wave head is extremely short.
The traveling wave location methods are easily affected by
the high resistance earth fault, noise, and other harsh
grounding conditions.
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Figure 1: Direction traveling waves of voltage-mode component.
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Figure 2 depicts four types of hybrid lines consisting of
cable and aerial wire. For the hybrid transmission line, the
influence effect of several factors are as follows: (1) Due to
impedance-mismatching between the cable and aerial wire,
the traveling wave signal can reflect at the connection point,
affecting the effect of the fault location. (2) As the wave veloc-
ity of the front and the back of the junction point of the hybrid
line consisting of cable and aerial wire is different, the location
of the junction point needs to be precisely recognized.

As the traveling wave abruptly changes at the junction
point of the hybrid line consisting of cable and aerial wire,
we proposed an approach that does not consider the location
of the traveling wave head and traveling wave speed. The
proposed method only considers the traveling wave per se
of characteristics.

2.2. Phase-Mode Transformation Matrix of Three-Phase
System. Different phase-mode transformation matrices may
affect the effectiveness of the fault location [21]. The diagram
of the three-phase system is shown in Figure 3. _IA, _IB, and _IC
can denote the three-phase current phase quantity; m and n
represent the head-end of the line and the end of the line,
respectively; ZS and ZM represent the mutual impedance
and the self-impedance, respectively.

For the three-phase system shown in Figure 3, there is a
complex electromagnetic coupling between the conductors
of each phase of the power system, which needs to be
decoupled using the phase mode transformation method in
order to simplify the analytical calculations as

u½ �m = T½ �−1 u½ �φ,
i½ �m = T½ �−1 i½ �φ,

ð1Þ

where ½u�m represents the modal voltage vector, ½i�m denotes
the modal current vector, and T is the mode transformation
matrix. The mode transformation matrix T and the inverse
matrix T ‐1 can be defined as [22]

T = 1
15
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The mode transformation matrix T can transform the
current vectors into a modal form, as shown in
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0
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where _I0, _I1, and _I2 represent the current modulus compo-
nents of 0, 1, and 2.

Table 1 provides the current modulus components
under all kinds of fault types. In Table 1, it is evident that
the modulus values obtained by applying the phase-mode
transformation matrix T are the nonnull value for any fault
types. Hence, modulus 1 or modulus 2 can accomplish the
fault analysis.

3. Signal-to-Image Conversion

3.1. Imaging Line-Mode Component. In order to obtain the
2D image of the traveling wave component, the Gramian
angular field (GAF) [23, 24] is used to encode mode 2
obtained by Equation (11). In the traditional Cartesian
coordinate system, the time domain signal is a typical
1D signal. The x-axis direction can represent the time
value, and the y-axis direction can represent the signal
amplitude. The time-domain signal can be represented in
a polar coordinate system. Given a time series X = fx1, x2
, x3, xng, the normalization method of ½−1, 1� can be used
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Figure 2: Types of hybrid line consisting of cable and aerial wire.
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Figure 3: Diagram of the three-phase system.
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to normalize the time series X as

~xi =
xi −max Xð Þð Þ + xi −min Xð Þð Þ

max Xð Þ −min Xð Þ : ð4Þ

The normalized time series can be transformed by
using the polar coordinate transformation. The magnitude
can be calculated as the cosine value of the polar coordi-
nate system, and the timestamp can be used as the radius.
The process of polar coordinate conversion can be defined
as

θi = arccos ~xið Þ, ‐1 ≤ ~xi ≤ 1, ~xi ∈ ~X,

ri =
ti
n
,

8<
: ð5Þ

where θi represents the polar angle, ti denotes the time-
stamp of the ith time series, ri is the radius of the polar
coordinate, and ~X is the rescaled time series in polar
coordinates.

Since time series has been transformed within polar
coordinates, it is easy to mine the correlation between differ-
ent moment points by the angle of each moment point. The
GAF can generate two types of images by using different
equations [25, 26]. Equation (7) defines the Gramian angular
summation field (GASF), and Equation (9) defines the Gra-
mian angular difference field (GADF).

GASF =
cos θ1 + θð Þ ⋯ cos θ1 + θnð Þ

⋮ ⋱ ⋮

cos θn + θ1ð Þ ⋯ cos θn + θnð Þ

0
BB@

1
CCA, ð6Þ
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ffiffiffiffiffiffiffiffiffiffiffiffi
I − ~X2

p T
·

ffiffiffiffiffiffiffiffiffiffiffiffi
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p
, ð7Þ

GADF =
sin θ − θ2ð Þ ⋯ sin θ1 − θnð Þ

⋮ ⋱ ⋮

sin θn − θ1ð Þ ⋯ sin θn − θnð Þ

0
BB@
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CCA, ð8Þ

GADF =
ffiffiffiffiffiffiffiffiffiffiffiffi
I − ~X2

p T
· ~X − ~X

T ·
ffiffiffiffiffiffiffiffiffiffiffiffi
I − ~X2

p
, ð9Þ

where I is the unit vector. By redefining the vector inner-
product <x, y > = x ⋅ y −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
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p
, the Gramian matrix

G can be expressed as
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The main diagonal elements of the GAF can store the
original values for all moments in the time series. The ith

row and jth column of the matrix can represent the correla-
tion coefficient between the ith moment and the jth moment.
The GAF can effectively represent the time correlation
between different data points. For an original time series
with length n, the size of the obtained GAF matrix is n × n.
If n is too big, the dimension of the obtained matrix is over
large.

The paper used the piecewise aggregate approximation
(PAA) to reduce the dimension of the original time series.
PAA is to segment the long time series uniformly and then
calculate the mean values of each segment. The mean values
can become a new data reduction representation [27]. In the
case of guaranteeing comprehensive information for the
original time series, the length of the time series is reduced
by the PAA. Figure 4 provides the procedure of signal-to-
image conversion.

The method of the signal-image conversion has two
major advantages as follows:

(1) The relationship between the 1D signal and the 2D
image is double-mapping relation, which does not
lose any information of the 1D signal

(2) It can maintain the time dependence of the signal.
The texture information and color distribution of
the 2D image can reflect the invisible information
of the 1D signal

3.2. Spatial Domain Image Fusion. Figure 5 provides the
density histograms of the outputs of the GASF matrix and
GADF matrix. As can be seen in Figure 5, the distribution
of the GASF is different from that of the GADF. Hence, in
order to make full use of the fault information, the images
generated by GASF and GADF can be fused by the weighted
average fusion algorithm. The fusion process is shown in
Figure 6.

By integrating the complementary information, image
fusion can reduce or inhibit the impact of the single,

Table 1: Current modulus components under all kinds of fault
types.

Fault types Phase boundary conditions Modulus 1 Modulus 2

AG _IB = _IC = 0 _IA _IA

BG _IA = _IC = 0 −3_IB
CG _IA = _IB = 0 −3_IC 2_IC
AB _IC = 0, _IC = −_IB _IB −4_IB
BC _IA = 0, _IB = −_IC 5_IB −5_IB
AC _IB = 0, _IC = −_IA 4_IA −_IA
ABG _IC = 0 _IA + 2_IB _IA‐3_IB
ACG _IB = 0 _IA − 3_IC _IA + 2_IC
BCG _IA = 0 2_IB − 3_IC −3_IB + 2_IC
ABC _IA + _IB + _IC = 0 _IB − 4_IC −4_IB + _IC
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Figure 5: The density histograms of the outputs of the GASF matrix and GADF matrix.
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repetitive information on the perceived objects. The image
fusion can use the various characteristics of the fault signal
in the maximum limit. The method can provide a basis
for applying deep learning algorithms in fault diagnosis.

4. Fault Location Based on GAF-CNN

4.1. CNN Structure of Fault Location. The convolution neu-
ral network (CNN) is a hierarchical neural network [28].
CNN can have significant potential advantages in both
feature extraction and model fitting [29]. It has been
applied in object detection, image processing, and natural
language processing with notable success [30, 31]. The
basic structure of the CNN is mainly composed of the

input layer, convolution layer, pooling layer, fully con-
nected layer, and output layer. The fault location model
based on GAF and CNN is shown in Figure 7. Table 2
provides the parameters of the fault location model based
on GAF and CNN. In Table 2, “Valid” represents the valid
padding, and “Same” denotes the same padding. In order
to cope with the problem that the traditional single-
ended traveling wave ranging method is affected by wave
speed and pseudo wave head, the paper proposes a
single-ended traveling wave fault location method for dis-
tribution networks that combines traveling wave theory,
GAF, and CNN. The method locates the fault location
without considering the wave head and wave speed of
the traveling waves.
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Figure 7: Fault location model based on GAF and CNN.

Table 2: Parameters of fault location model based on GAF and CNN.

Layer name Structural parameters Output size

Input layer 64 × 64 64 × 64
Convolution lay 96@11 × 11, Stde = 4½ �, “Valid” 14 × 14 × 96
Activation layer 1 ReLu 14 × 14 × 96
Normalization layer 1 Local response norm 14 × 14 × 96
Pooling layer 1 Max pooling 3 × 3 6 × 6 × 96
Convolution layer 2 2 groups of 128 5 × 5 × 48, Stride = 2½ �, “Same” 6 × 6 × 256
Activation layer 2 ReLu 6 × 6 × 256
Normalization layer 2 Local response norm 6 × 6 × 256
Pooling layer 2 Max pooling 3 × 3 2 × 2 × 256
Convolution layer 3 384@3 × 3 × 256, Stride = 1½ �, “Same” 2 × 2 × 384
Activation layer 3 ReLu 2 × 2 × 384
Convolution layer 4 2 groups of 192 5 × 5 × 48, Stride = 1½ �, “Same” 2 × 2 × 384
Activation layer 4 ReLu 2 × 2 × 384
Convolution layer 5 2 groups of 13 × 3 × 192, Stride = 1½ �, “Same” 2 × 2 × 256
Activation layer 5 ReLu 2 × 2 × 256
Fully connected layer 1 neuron 1 × 1 × 1
Regression layer Distance-to-fault 1
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4.2. Fault Location Process. The fault range-measurement
method in this paper includes four procedures: signal acqui-
sition, imaging line-mode component, spatial domain image
fusion, and CNN fault location. The method does not need
to detect the traveling wave head and does not need to know
the traveling wave speed. The method is solely focused on
the feature of the line-mode component itself. Figure 8 pro-
vides the flowchart of the fault location. The step-by-step
procedure can be described as follows:

(1) The sampling frequency is 1MHz. In a postfault dis-
tribution network, the phase voltage vectors of the
head-end distribution line can be collected, which
are converted to the mode vectors by the phase-
mode transformation

(2) The line-mode component of mode 2 can be con-
verted into the image by the Gramian angular sum-
mation field and the Gramian angular difference
field

(3) The images generated by GASF and GADF can be
fused by the spatial domain image fusion. The
weighted average fusion algorithm can make full
use of the fault information. The details of the fusion
image are more abundant than the original image,
and the edge is more clear than the original image.
The fusion image can fully reflect the fault character-
istics in the distribution network

(4) The fusion images can be used as the input of the
CNN. We establish a corresponding relationship
between the fault information and feature informa-
tion by convolution layer, activation layer, normali-
zation layer, pooling layer, fully connected layer,
and regression layer. The output of the CNN can
achieve the fault location. Some parameters need to
be set before training the CNN model: “Solver”,
adam; “InitialLearnRate”, 0.001; “LearnRateDrop-
Factor”, 0.005; “LearnRateDropPeriod”, 10; “L2Reg-
ularization”, 0.004, “MaxEpochs”, 15; and
“MiniBatchSize”, 10

5. Experimental Results and Analysis

5.1. Experiment Dataset. Since deep learning requires mas-
sive data as support to generate the ideal model by sufficient
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Figure 8: Flowchart of fault location.
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training and iteration. It is simply impossible to complete
the preparation of massive datasets by using manual simula-
tion with multiple repetitions in the simulation process.
MATLAB/SIMULINK has developed a rich operation mech-
anism for automation of the simulation process in order to
relieve users from the burden of multiple identical repeti-
tions of simulation so that users can realize model customi-
zation and simulation batching, and this paper selects
MATLAB/SIMULINK for batching and automation of dif-
ferent types of fault simulation. We used the hybrid line con-
sisting of cable and aerial wire to acquire data. The structure
map of the hybrid line is shown in Figure 9, with a total line
length of 20 km. The sampling frequency is 1MHz. The sim-
ulations and deep learning have been performed using i7-
10875H CPU, NVIDIA Geforce RTX 2060 with Max-Q
Design, 64-bit operating system.

The zero and positive sequence parameters of the aerial
wire are listed as

R0 = 0:251Ω/km, L0 = 4:560 × 10−3 H/km,
C0 = 0:0056 × 10−6 F/km, R1 = 0:178Ω/km,
L1 = 1:250 × 10−3 H/km, C1 = 0:0098 × 10−6 F/km:

ð11Þ

The zero and positive sequence parameters of the cable
line are listed as

R0 = 2:750Ω/km, L0 = 1:118 × 10−3 H/km,
C0 = 0:390 × 10−6 F/km, R1 = 0:278Ω/km,
L1 = 0:265 × 10−3 H/km, C1 = 0:438 × 10−6 F/km:

ð12Þ

Table 3 provides the parameters of the training samples,
including fault types, sample size, ground resistance, and
fault close angle.

5.2. Results of Signal-to-Image Conversion. Figure 10 pro-
vides two-dimensional image conversion diagrams of four
kinds of fault distances. As seen from Figure 10, the 1D
line-mode component can be mapped into the color, point,
line, and other characteristic parameters of the 2D image.
In the fusion images, texture information and color distribu-
tion show different characteristic parameters with different
fault distances. The traditional analytical method needs to
detect the traveling wave head and needs to know the travel-
ing wave speed. But both are difficult to identify in the trav-
eling wave. The mapping of the GAF coding method on the
time series can possess uniqueness. The line-mode compo-
nent can be encoded by GAF, which can produce the fault
graph of obvious characteristics. Then, the fault distance
can be obtained by regression prediction of fault feature
maps using the convolution neural network.
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Figure 10: Two-dimensional image conversion diagrams of four kinds of fault distances.
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5.3. Result Analysis of CNN. Figure 11 provides the root
mean squared error (RMSE) and loss curve of the CNN
model. As seen from Figure 11, RMSE and loss values can
decrease rapidly with increasing training steps, and all finally
tend to zero, indicating that the fault location model has fast

convergence speed, high stability, and high prediction preci-
sion. The model has a good training process.

Figure 12 provides the visualization of the features of
each layer of the convolution. In extracting image features,
each convolutional kernel is equipment to a feature extrac-
tor. Different levels of convolution kernels can extract differ-
ent feature information. Different layers have different
abilities to learn characteristics and can extract images with
more abstract features. The anterior convolution kernel in
CNN can extract the bottommost image features, such as
color features and texture features. As the number of the
convolutional layers increases continuously, the range of fea-
ture images becomes smaller. When the convolution layers
are accumulated continuously, the convolutional kernels
gradually start to extract the abstract features that are more
complicated and have a higher identification degree.

5.4. Result Analysis of Testing Samples. Table 4 provides fault
location results under different fault conditions. From
Table 4, it is easy to know that the test results have higher
judging accuracy. The range error is relatively small. This
method can fully utilize the convolution neural network to
extract the features of the image generated by blending the
GASF matrix and GADF matrix. This method avoids the
problematic points in the wave head identification and
traveling-wave velocity estimation. Compared to traditional
traveling wave distance measurement, the proposed method
has some advantages in the ranging accuracy.

Figure 13 provides the evaluation indexes for three input
methods under 500 testing samples. From Figure 13, it is
easy to know that the explained variance score (EVS) and
decision coefficient (DC) are near 1, indicating that three
input methods all have good fitting results. However, the
root means square error (RMSE) and mean absolute error
(MAE) of image fusion is the smallest, indicating that image
fusion-CNN has the preferable fault location effect.

Different phase-mode transformation matrixes also
influence the effect of fault distance measurement. Table 5
provides the results of fault location under different phase-

Parts of Conv1

Parts of Conv2

Parts of Conv3

Parts of Conv4

Parts of Conv5

Figure 12: Visualization of features of each layer of convolution.

Table 4: Fault location results under different fault conditions.

Fault close
angle

Fault
types

Fault
distance
(km)

Location
result (km)

Range error
(km)

30° AG
2.5 2.6015 0.1015

3.8 3.6464 -0.1536

30° BG
6 6.1125 0.1125

8.5 8.5372 0.0372

30° CG
3.5 3.5934 0.0934

10.5 10.4977 -0.0023

90° AG
11.2 11.2676 0.0676

15.6 15.7050 0.1050

90° G
1.6 1.6304 0.0304

6.6 6.5188 -0.0812

90° CG
7.6 7.4203 -0.1797

16.8 16.7595 -0.0405

120° AG
5.1 5.1559 0.0559

10.3 10.3953 0.0953

120° BG
3.5 3.4825 -0.0175

18.5 18.4629 -0.0371

120° CG
11.5 11.5596 0.0596

13.9 13.8692 -0.0308

150° AG
1.0 0.9247 -0.0753

11.5 11.6639 0.1639

150° BG
13.4 13.5175 0.1175

16.6 16.7541 0.1541

150° CG
3.5 3.4625 -0.0375

12.3 12.4579 0.1579
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mode transformation matrixes. From Table 5, it is evident
that the Clarke transformation has a poor fault location
effect when the system occurs in the BG fault. The reason
is that the mode 2 component of the Clarke transformation
always equals zero when the system occurs in the BG fault.
However, the phase-mode transformation matrix used in
this paper still has a good effect on the fault location under
different fault conditions.

The BP neural network, support vector machine (SVM),
and extreme learning machine (ELM) are added for testing

experiments. The test samples are 500 fusion images.
Figure 14 provides the evaluation results of fault location
under the different diagnosis methods. The RMSE and
MAE of this paper are the smallest in different diagnosis
methods. From Figure 14, it can be seen that this method
can adaptively extract feature vectors for fault range finding.

In order to verify the effectiveness of the proposed
method, three different kinds of fault location methods are
compared. The fault range finding results are shown in
Table 6. Compared with other methods, the proposed
method has the smallest distance-measuring error. This is
because the proposed method does not require detection of
the wave head and speed of the traveling wave. This method
features intelligence and does not require manual mining of
fault features.

6. Conclusions

In this paper, a new fault distance measuring in the
nonsolid-earthed network based on spatial domain image
fusion and convolution neural network is proposed and
verified:

(1) The 1D line-mode component can be converted into
the 2D image by GASF and GADF. Imaging line-
mode components can enhance the unviewable fea-
tures of the 1D line-mode component. The fault
location using the fusion images can have the best
effect

(2) Compared with different diagnosis methods, CNN
can automatically extract the features of the fusion
images and eliminate the influence of human factors

(3) Compared to traditional traveling wave distance
measurement, the proposed method can avoid the
problematic points in the wave head identification
and traveling-wave velocity estimation. The fault
location in the paper still has minor errors under dif-
ferent fault conditions

Image fusion
GADF

GASF

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n 
In

de
x

Root means square error Mean absolute error
Explained variance score Decision coefficient

Figure 13: Evaluation indexes for three input methods.

Table 5: Results of fault location under different phase-mode
transformation matrixes.

Fault
types

Fault
distance
(km)

Clarke
(km)

Range error
of Clarke
(km)

This
paper
(km)

Range error of
this paper

(km)

AG

0.5 0.7350 0.2350 0.5554 0.0554

1.0 1.0652 0.0652 0.8966 -0.1034

2.2 2.5064 0.3064 2.4352 0.2352

4.5 491 0.3991 4.4899 -0.0101

5.5 6.7651 1.2651 5.5770 0.0770

6.0 6.6974 0.6974 6.0206 0.0206

7.9 7.4039 -0.4961 8.0608 0.1608

BG

0.5 3.2778 2.7778 0.6003 0.1003

1.0 3.8437 2.8437 0.8025 -0.1975

2.2 3.7938 1.5938 2.3667 0.1667

4.5 5.3339 0.8339 4.5479 0.0479

5.5 5.4917 -0.0083 5.4859 -0.0141

6.0 5.5436 -0.4564 6.0423 0.0423

7.9 5.4927 -2.4073 8.0606 0.1606

CG

0.5 0.5973 0.0973 0.6811 0.1811

1.0 0.9620 -0.0380 0.8551 -0.1449

2.2 2.3238 0.1238 2.3071 0.1071

4.5 4.7555 0.2557 4.5175 0.0175

5.5 6.7567 1.2567 5.3396 -0.1604

6.0 6.7053 0.7053 5.9139 -0.0861

7.9 7.4334 -0.4666 7.8825 -0.0175
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Figure 14: Evaluation results of fault location under the different
diagnosis methods.
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Notations

SCGS: Small current grounding system
CNN: Convolutional neural network
GAF: Gramian angular field
GASF: Gramian angular summation field
GADF: Gramian angular difference field
RMSE: Root mean squared error
MAE: Mean absolute error
EVS: Explained variance score
DC: Decision coefficient
ELM: Extreme learning machine
SVM: Support vector machine.
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