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Working memory (WM) is considered the mental workplace that retains and manipulates information. This study investigates the
internal mechanism in WM states from an electroencephalography (EEG) network perspective. Firstly, we devised a novel letter-
sequence version of the n-back experiment to collect EEG data, analyzed the neural oscillations in the theta and gamma bands,
and then constructed Phase Lock Value (PLV) grounded brain networks to examine the synchronizations among dissimilar
brain regions. The complex topology properties (e.g., global efficiency, local efficiency, and small-worldness) were scrutinized
as well. Additionally, we presented an original algorithm, the Weighted K-Order Propagation Number (WKPN) algorithm, to
extract the important brain regions associated with WM processes. The simulation revealed that the frontal and posterior
regions were activated in two WM states, i.e., update and readout states. Throughout the readout, brain networks performed
better in efficiency and resistance to interference. Furthermore, the right prefrontal and parietooccipital regions became more
prominent in the completion of extra difficult WM tasks. In summary, these EEG-based results can be taken as promising
evidence to understand and improve WM.

1. Introduction

Working memory (WM) is defined as a system that tempo-
rarily processes and stores information with restricted
capacity in the human brain [1]. It plays an important role
in human intelligence and complex cognitive activities such
as learning, comprehension, and reasoning. Standard WM
states include update, maintenance, and readout [2]. As the
objects being remembered are constantly varying, WM
adapts to these alterations by updating the stored informa-
tion with new ones. Another important function of WM is
to accurately read information from related brain regions
for further cognitive tasks. Studies have shown that during
these two states of WM (e.g., update and readout), the brain
exhibits abnormal patterns in patients with neurological dis-
orders, such as Attention Deficit Hyperactivity Disorder
(ADHD) [3] and Posttraumatic Stress Disorder (PTSD)

[4]. Therefore, the study of these two states is of great
importance.

Due to the noninvasive and high temporal resolution
characteristics, electroencephalography (EEG) has become
a popular technique used in the study of human cognitive
function [5, 6]. A body of evidence indicates that EEG oscil-
lations in the theta and gamma bands are of particular rele-
vance to WM states. For example, Itthipuripat et al. [7]
concluded that the theta power of the frontal cortex
increases during the updating state. Polanía et al. [8]
decoded contents of visual WM information within high-
gamma oscillations in the human prefrontal cortex (PFC)
during encoding (that is, updating) and maintenance
periods. The research of Semprini et al. [9] likewise validated
that theta and gamma oscillations of frontal and posterior
areas are associated with updating of memory information,
the maintenance of WM, and readout. However, there is
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no consensus on the specific oscillation mechanisms corre-
sponding to WM states.

There is increasing recognition that human functional
states depend not only on the oscillations of the independent
cortices but also on the interactions between a large number
of neurons or different regions [10]; consequently, scholars
have applied network methods to study information
exchange and communication of brain regions [11, 12]. By
considering the EEG electrodes as nodes and the statistical
relationships between them as edges, a complex brain net-
work can be implemented. In particular, statistical relation-
ships can be quantified using functional connectivity
metrics such as Mutual Information [13], Pearson’s correla-
tion [14], and Phase Locking Value (PLV) [15]. Since PLV
can reflect phase synchronization of signals and interactive
coupling and control relationships of different brain regions
in a superior degree, it is more suitable for studying the EEG
data [16]. As a result, in this study, we construct PLV-based
brain networks to investigate the underlying mechanism of
WM.

After constructing brain networks, researchers have
applied graph theory to analyze network features and probe
the human cognitive mechanism and pathogenesis of neuro-
logical diseases. As representing the global transmission of
information and functional separation in networks, the
global efficiency and local efficiency of directed functional
networks have been analyzed in Alzheimer’s disease in alpha
and beta bands [17]. Furthermore, it has been demonstrated
that the neural network has a small-world topology [18] that
supports simultaneous global and local information process-
ing. The small-worldness index has also been calculated to
extract topology descriptors of brain networks to understand
WM phases [19].

These indicators are effective in assessing overall net-
work topography but are not at local important brain
regions where activities are generally associated with cogni-
tive tasks. For example, Haque et al. [20] suggested that
the prefrontal region is vital for WM improvement from
the perspective of electrical stimulation. However, evidence
of concrete locations of important brain regions is still
needed. Currently, algorithms for evaluating important
regions of networks include, but are not limited to, weighted
degree centrality (WDC) algorithm [21] and weighted
betweenness centrality (WBC) algorithm [22]. The WDC
algorithm only considered the impact of adjacent nodes on
the importance of a node, which cannot reflect the global
characteristics. The WBC algorithm considered the global
properties but ignored the influence of the node number
on the transmission efficiency of the network. To further
bridge the local and global characteristics, our team pro-
posed the Weighted K-Order Propagation Number
(WKPN) algorithm [23], which introduced a scale factor K
that manifests the variation of network properties and
enables multiscale analysis of structural changes in
networks.

In this paper, we investigate the update and readout
states under different loads and study the mechanisms with
the WKPN algorithm. Different from the old-fashioned
experimental paradigm of memorizing Arabic numerals,

we first proposed an original WM paradigm combining
alphabet letters with a classical n-back experiment [24].
Then, the neural oscillations and activation brain regions
in theta and gamma bands were analyzed. To study the
interactions among brain regions, we calculated the PLV of
electrode pairs to construct brain networks. Their general
topology features were examined by computing global effi-
ciency and local efficiency to assess the small-worldness
property. Lastly, the WKPN algorithm was applied to extract
the node importance features of brain networks to locate
specific sites of key brain regions. The findings are taken as
a contribution from an EEG perspective to WM investiga-
tions in the future.

2. Materials and Methods

The analysis of WM states can be divided into the following
six steps: (1) Designing an experiment to obtain EEG data.
(2) Preprocessing raw signals to get analyzable data. (3)
Determining the investigated frequency band by time-
frequency analysis. (4) Constructing brain networks based
on PLV in the determined frequency band. (5) Calculating
the properties (e.g., global efficiency and local efficiency) of
brain networks. (6) To find the key nodes affecting network
properties, the WKPN algorithm is used to locate important
brain regions.

2.1. Paradigm. For the purpose of inducing WM with diverse
levels of difficulty and load, we devised two n-back experi-
ments with a letter-sequence version (in Figure 1). The
lengths of the letter sequence for them were 2 (low WM
load) and 4 (high WM load), respectively, and each included
1-back, 2-back, and 3-back tasks. The letters presented were
randomly selected from the English alphabet. The presenta-
tion of the paradigm was implemented by E-Prime v2.0
(Psychology Software Tools) in this study.

The paradigm started with a cue sign (a black cross) pre-
sented in 2 seconds. Subsequently, three groups of letter
sequences were displayed in the center of the screen. Sub-
jects are asked to memorize them in order. The duration of
every two letters was 3 seconds, and for better memoriza-
tion, every four letters were presented for 5 seconds. The
update state was defined as shown in Figure 1(a). This was
followed by a blank picture that lasted 0.5 seconds, which
corresponds to the maintenance state. A task cue (a number)
of n-back remained on the screen to remind the subjects to
recall and record the letter sequence, and this period was
considered the readout state. All subjects were required to
complete the experiment for the 2 letters condition, then
take a 10-minute break to finish the 4 letters condition (in
Figure 1(b)). Furthermore, subjects were asked to respond
as accurately and quickly as possible, and their reaction time
and accuracy were recorded to analyze behavioral perfor-
mance. Before the formal experiment, a practicing session
was prepared for subjects to ensure they were familiar with
the entire procedure.

2.2. EEG Recording. The EEG data were recorded with a
500Hz sampling rate using the NEUROSCAN electrode
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cap, the SynAmps amplifier, and Curry 7.0 software. The 64
Ag/AgCl electrodes were placed in accordance with the
international 10-20 system [25], and the ground electrode
was placed on the FZ electrode. The reference electrodes,
M1 and M2, were located in the Bilateral mastoid for mea-
surement of myoelectricity, and the additional electrodes
HEO and VEO at the outer left and right canthus and up
and down the left eye, respectively, for the recording of the
movement of the eye. The impedances were kept below 10
kiloohms.

Sixteen healthy students (2 female, age: M =23.6 years
old, SD=1.2) were recruited for the experiments, and their
participation was rewarded for the better experimental per-
formance. These subjects were right-handed and had no per-
sonal or family history of neurological disease. Their memory
abilities were all at the same normal level. Before the formal
experiment, subjects were prohibited from consuming alco-
hol and were required to remain sober. Written and oral
forms of informed consent were provided, and all subjects
chose the latter for convenience. Only subjects who gave their
consent were allowed to perform the experiment.

2.3. Data Preprocessing Analysis. Data preprocessing analysis
was performed using Brainstorm [26]. The continuous raw
data were first filtered with a 0.5-60Hz bandpass filter to
exclude the extra low- and high-frequency component, and
with a 50Hz notch filter to eliminate the power-line interfer-
ence. The signal artifacts were removed in two steps: first, we
manually deleted a small number of signal fragments with
significant multiple-channel noise. Then, independent com-

ponent analysis (ICA) [27] was applied to decompose the
EEG data into twenty components. Components of the
artifact related to eye movements, muscle activities, and
heartbeats were removed. Finally, the artifact-free data were
segmented into the update epoch and the readout epoch
according to Figure 1. Prior to analysis, the epoch data were
removed linear trend and completed baseline correction,
where the baseline was the signal from -2 to -0.002 sec for
update epoch analysis. For readout epoch analysis, the base-
line depended on the length of readout epoch. Readout
epochs with incorrect responses were excluded.

2.4. Time-Frequency Analysis. To analyze the time-frequency
representation of epoch EEG data in theta and gamma
bands, the complex Morlet wavelet transform was per-
formed. The continuous-time signal xðtÞ was convolved with
the complex Morlet wavelet function, w ðt, f Þ, to acquire the
power spectrum:

TF t, fð Þ = w t, fð Þ ∗ x tð Þj j2, ð1Þ

where t is time and f is frequency. w ðt, f Þ has the shape of a
sinusoid, weighted by a Gaussian kernel [28], and it can be
expressed as

w t, fð Þ = Ae −t2/2σ2tð Þei2πf t , ð2Þ

where σt is the standard variation of the Morlet wavelet in

the time domain, A = ðσt
ffiffiffi
π

p Þ−1/2, i = ffiffiffiffiffiffi
−1

p
. The resolution
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Figure 1: Experimental paradigms and procedure. (a) Paradigms for the n-back (n= 1, 2, 3) tasks of 2 letters and 4 letters conditions.
(b) The whole experimental procedure.
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of complex Morlet wavelet transform is given in units of
Full-Width Half Maximum of the Gaussian kernel, both in
time and frequency. The frequencies were reorganized into
two frequency bands (theta (4-8Hz) and gamma (30-
60Hz)) closely related to the WM process.

We divided epoch data into several trials and averaged
the time-frequency spectra of the subject across all trials to
conclude which brain regions were activated at specific fre-
quency bands. Statistics on power changes were performed
by one-way ANOVA (significant level is 5%). The significant
frequency bands in WM states were analyzed and chosen for
the follow-up brain network construction.

2.5. Complex Brain Network Analysis

2.5.1. Constructing Brain Network. The human brain can be
seen as a complex network formed with specific connectivity
patterns [29]. We created PLV brain networks in theta and
gamma bands. At first, information in the two bands of
epochs data (baseline excluded) was extracted, and then
the Hilbert Transform [30] was performed on a pair of elec-
trode signals xðtÞ and yðtÞ to obtain their analytic signals
zxðtÞ and zyðtÞ, according to the equations (3) and (4),

zx tð Þ = x tð Þ + iHT x tð Þð Þ, ð3Þ

zy tð Þ = y tð Þ + iHT y tð Þð Þ: ð4Þ

The relative phase ΔϕðtÞ between zxðtÞ and zyðtÞ was
also computed, and the corresponding PLV [31] was calcu-
lated as,

PLVxy =
1
n
〠
n

k=1
eiΔϕ tkð Þ

�����
�����, ð5Þ

where n is the total number of data points and tk is a data
point. Note that according to its definition, PLV always takes
values between 0 and 1. The larger the PLV, the stronger the
phase synchronization of the two signals, and 1 signifies that
one signal completely follows the other. Finally, the elec-
trodes were considered nodes, and the PLV values were
viewed as the weights of edges to construct the weighted
brain networks with 62 nodes (the M1 and M2 electrodes
were excluded).

2.5.2. Global Efficiency and Local Efficiency. Global efficiency
reflects the efficiency of information exchange of a network,
and local efficiency corresponds to network robustness.
According to the literature [32], small-world networks have
both high global efficiency and local efficiency. Therefore,
after constructing the PLV networks, we selected the two
indices to evaluate the small-worldness to describe the gen-
eral topological properties of the networks. Global efficiency
and local efficiency were calculated using the Brain Connec-
tivity Toolbox developed for the MATLAB environment.

Since the efficiency of the communication between
nodes vi and vj can be expressed as the inverse of the short-
est path, 1/dij, between them, the global efficiency of the

brain network is defined as the average of the inverse of
the shortest paths among all node pairs [33],

Eglobal =
1

n n − 1ð Þ〠i≠j
1
dij

, ð6Þ

where n=62. Note that if vi is not connected to vj, then dij is
equal to ∞. The value of Eglobal ranges from 0 to 1, and the
larger the value, the better the ability to exchange informa-
tion within the network.

Rows and columns corresponding to node vi
(i = 1, 2,⋯⋅ , n) in adjacency matrix A were deleted, and then
n subnetworks Si were constructed. Local efficiency of the
network is introduced as the average global efficiency of all
subnetworks [34],

Elocal =
1
n
〠
N

i=1
Eglobal Sið Þ: ð7Þ

The local efficiency assesses the ability of information
transmission of the network in the absence of a certain node.

Any changes in global and local efficiency related to the
different conditions (update, readout, 2 letters, 4 letters, n
-back tasks) were evaluated by means of statistical compari-
son, a one-way ANOVA method. This test was taken for all
subjects and the significance level was set at 5%.

2.5.3. Weighted K-Order Propagation Number Algorithm.
Considering that the WKPN algorithm was proposed based
on the comprehensive examination of the local and global
properties of networks, we used it to assess the specific loca-
tions of important brain regions.

The WKPN algorithm abstracts the disease transmission
based on the network topology. Each node was set as the
source of infection separately, and after a certain propaga-
tion time, the node importance was obtained based on the
number of infected nodes in the network. When the value
of propagation time is small, the result reflects the local char-
acteristic of the network, and as the time value increases, it
corresponds to the global property. Simulations showed that
this method can thoroughly portray the impact of long-
distance connections on information transmission in
small-world networks and can also increase the importance
of bridge nodes [35].

The steps of the WKPN algorithm are explained in detail
as follows. Based on the adjacency matrix A (62× 62) of the
network, the shortest paths of all node pairs were calculated.
The propagation time K is defined as the values of the short-
est paths, namely, K ∈ ½0, d�, and d is the diameter of the
weighted network. The number of nodes that a node vi can
reach within K is considered the K-order propagation num-
ber NK

vi
, and it was combined with the information entropy

to calculate the K-order structural entropy of the brain net-
work,

HK = −〠
n

i=1

NK
vi

∑n
j=1N

K
vj

log
NK

vi

∑n
j=1N

K
vj

 !
, ð8Þ
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where n is the number of nodes, equal to 62 based on previ-
ous work. Subsequently, the node importance of vi is defined
by considering the comprehensive evaluation from K =0 to
K = d, according to the formula,

Qvi
= 〠

d

K=0
1 − HK −min Hð Þ

max Hð Þ −min Hð Þ
� � NK

vi
−min NK� �

max NK� �
−min NK� �

 !
,

ð9Þ

where H = fH0,H1,⋯,Hdg and NK = fNK
v1
,NK

v2
,⋯,NK

vn
g.

Eventually, the nodes of the PLV networks were ranked
from highest to lowest importance to obtain vital brain
regions. The algorithm has been validated to be effective
for the assessment of important nodes in complex net-
works [35].

3. Results and Discussion

3.1. Behavioral Results. We recorded and analyzed the
behavioral performance of all subjects during the experi-
ments. As shown in Figure 2, response accuracy usually
decreased and reaction time increased as the difficulty of
the n-back task and WM load increased. However, interest-
ingly, in the 3-back task, the accuracy was higher (p=0.085)
and the reaction time was shorter (p< 0.05) as compared to
the 2-back task in the 2 letters condition. This is contrary to
the perception that the harder the task, the lower the
response accuracy. We speculated that the memory target
of the 3-back is the initial appearance which has an impres-
sive effect on the brain to elicit better WM behavioral results
under the low load condition.

3.2. Results of EEG Power. The topographical maps of time-
averaged power in theta and gamma bands are reported in
Figure 3. For the low WM load condition (in Figure 3(a)),
the midfrontal and posterior regions were activated at the
theta band in both update and readout states. Theta power
was generally higher in the update state than in readout
(p< 0.05, p< 0.05), which is consistent with the fact that

theta oscillations in these two regions have a vital impact
on WM update[36]. During update and readout, the
gamma power was increased in the occipital lobe, possibly
indicating that the posterior region plays an important
role in integrating and processing visual stimuli in our
experiment.

Under the high WM load condition (in Figure 3(b)), the
frontal and posterior regions were activated more strongly in
theta band compared to under the low load condition during
the update (p< 0.05, p< 0.05). It means that the oscillations
were strengthened with WM load increasing. However, we
did not find a clear pattern in the power changes of the acti-
vated regions during readout. Considering that the response
accuracy in the 2-back and 3-back tasks had been as low as
50%, we believed that 12 letters may have exceeded the
WM capacities of subjects, and thus for them, there was no
difference among the n-back tasks.

The differences of theta power in readout state under low
WM load were calculated at a representative electrode (FZ)
of the midfrontal region where the power peaked in the n
-back tasks (in Figure 4). The theta power of the FZ elec-
trode in the 3-back task was lower than that in the 2-back
task (p< 0.05), which is contrary to the conclusion related
to the difficulty factor of the tasks. This trend echoes the
behavioral results, and our conjecture that the memory con-
tent with first presence makes a strong impression has been
verified.

3.3. Topological Properties of PLV Brain Networks. The
global efficiency and the local efficiency of all brain networks
are demonstrated in Figure 5. As shown in the box plots, the
global efficiency and local efficiency were generally higher in
readout as compared to those in the update state. It indicates
that brain networks have higher small-world properties;
namely, they are more capable of transmitting information
globally and more resistant to interference. Furthermore,
we found that global efficiency and local efficiency in readout
were higher under low load condition. Given the lower
response accuracy in behavioral results, we suggest that the
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Figure 2: Behavioral performance of all subjects. (a) Response accuracy. (b) Reaction time. Statistics were performed using the paired
sample t test with a 95% confidence interval. A single data point represents a subject. Error bars represent standard deviation (SD).
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small-worldness of the brain is reduced under high WM
load condition, especially when it exceeds the individual’s
capacity.

We ranked the importance of all nodes in order from the
highest to the lowest based on the WKPN algorithm. The
top five important nodes of the PLV networks and their first
five edges with the highest weights are shown in Figure 6.
Figure 6(a) illustrates that important brain regions in both
update and readout states are concentrated in the frontal
and parietooccipital lobes for low WM load condition. It is
consistent with the results of time-frequency analysis and

reflects the processing of visual information in the occipital
lobe [37] and the executive control of the frontal region
[38] during the WM task in terms of synchrony. In the theta
band, the frontal regions were more tightly connected in
readout. With the increase of difficulties of n-back tasks,
the node importance of the right prefrontal electrodes
became greater, especially the AF4 electrode, and the num-
ber of important nodes in the parietooccipital region was
growing. It indicates that the interactive coupling and con-
trol relationships in the two regions intensified with the
increase of task complexity. In particular, it has been

Update
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Update
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Figure 3: Topographic maps of the theta and gamma power in update and readout states for an example subject. (a) 2 letters condition.
(b) 4 letters condition.
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proposed that the left hemisphere is relative to verbal infor-
mation and logical reasoning, while the right is responsible
for spatial thinking [39]. Therefore, it can be assumed that

as the difficulties of WM tasks increase, the brain may con-
vert verbal information into spatial information to better
extract memory content. In the gamma band, there was no
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significant difference between the important brain regions
which were mainly located in the frontal and right parie-
tooccipital regions in the two states.

For the high load condition, the parietooccipital region
became more vital in update in the theta band
(Figure 6(b)), which is perhaps related to the increased
visual information in our paradigm. However, in readout
state, there was no clear trend in the distribution and con-
nection of important brain regions. This further validates
the tasks in 4 letters condition are so challenging that there
is no difference between the n-back tasks for subjects.

Based on the above findings, we attacked the important
node (FZ) of brain networks in update and AF4 in readout,
as well as calculated global efficiency and local efficiency
again. As shown in Figure 7, these two indexes dropped sig-
nificantly after the networks were attacked. This implies that
these key nodes play a significant role in strengthening the
efficiency of information transfer of the brain network. Thus,
the stronger small-worldness of brain networks in readout
might be related to the enhanced importance of the right-
hand nodes.

4. Conclusions

In this paper, EEG data collected with a novel letter-
sequence version of n-back pattern were used to research
WM update and readout states. Time-frequency analysis
was applied to investigate activated brain regions and the
conversion of their power. The PLVs of electrode pairs were
calculated to construct complex brain networks, and then
the topological characteristics of the PLV networks were
considered by calculating global and local efficiency to assess
the small-worldness. Ultimately, the WKPN algorithm was
leveraged to divulge the specific location of crucial brain
regions from the perspective of the synchronization and
control relationships.

Based on the aforementioned approaches, the principal
conclusions can be summarized as follows: (1) In terms of
both power and synchrony, the frontal and parietooccipital
regions each have an important impact on the WM update
and readout states. (2) The brain networks have higher
global and local efficiency during WM readout. (3) The

importance of the right prefrontal region (such as AF4)
and the parietooccipital region (such as PO3) increases in
the readout state under more difficult WM tasks. (4) The
first memory target achieves higher accuracy in a lower load
condition.

The WKPN algorithm is verified to be effective by locat-
ing and attacking network critical nodes. This means that we
provide a new way from a brain network perspective to track
important regions at the sensor level. It is helpful for some
intensive research, such as transcranial electrical stimulation
(tES) [40]. Selection of stimulus points is based on the loca-
tions obtained from the algorithm rather than a priori
knowledge, which can improve the effectiveness of stimuli.
Moreover, considering that the EEG technique acquires
scalp signals, source localization [41] is expected to be
applied to survey the deeper level of brain mechanisms in
future work.
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