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The real-time smart monitoring with intelligence highly gained significant attention for enhancing the productivity of the crop.
Currently, IoT generates a lot of real-time data from the sensors, actuators, and identification technologies. However,
extracting the meaningful insights from the data is necessary for realizing the intelligent ecosystem in agriculture. Based upon
the previous studies, it is also identified that the limited studies have merely implemented machine learning (ML) on real-time
data obtained through customized hardware with dedicated server. In this study, we have proposed a customized hand-held
device that enables to deliver recommendations to the farmer on the basis of real-time data obtained through IoT hardware
and ML. A three-layer structure is proposed in the study for realizing custom hardware with 2.4GHz ZigBee and IoT sensors
for the data acquisition, communication, and recommendation. As a part of real-time implementation, the calibration of the
sensors is processed to form a real-time dataset with precision. The study evaluated four ML models and concluded that
XGBoost has shown a better accuracy on the proposed dataset. The XGBoost recommended the crop based on selected
parameters. The developed hand-held device can be customized with advance features with crop recommendations.

1. Introduction

Agriculture is the key to human survival, as it is the main
source of grain and other basic resources. In addition, agricul-
ture accounts for about 4% of the world’s gross national prod-
uct (GDP) [1]. Urbanization and population growth in 2050
conclude that food production must be sustainably doubled
with minimal water resources [2]. About 97% of the water
on the planet is salty, while the remaining 3 is freshwater [3].
Agriculture uses 70% of freshwater for irrigation in most
developing countries [4]. Therefore, the efficient use of fresh-
water during irrigation is the most significant issue in terms
of cost reduction and yield improvement. Using the traditional
method, farmers manually check and regulate the availability

of water resulting in a 50% water loss [5]. However, different
irrigation techniques like drip irrigation, sprinkle irrigation,
and furrow irrigation have minimized water wastage by 30-
70% [6]. Yet, the optimal management of water content in
the soil is not yet achieved with these irrigation techniques
as overwater usage in the agricultural field leads to an overflow
of nutrients from the soil [7].

Agriculture also requires adequate levels of fertilizers
and pesticides, as farmers use fertilizers and pesticides while
neglecting the optimal needs of the crop. Apart from that,
water availability, nutrient levels, and soil moisture are some
other factors that affect crop productivity as well. With the
traditional approach, it is a challenging task for the farmer
to determine water availability, nutrient levels, and soil
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moisture and also to identify which factor is fighting food pro-
duction [8]. Here, smart and real-time systems help to moni-
tor the various parameters of the agricultural field and
effectively control the water level with other resources to
increase productivity [9]. Nowadays, real-time monitoring
and intelligent systems are possible with the Internet of Things
(IoT), as IoT monitors agriculture with IoT-enabled sensors
and communication protocols implemented in agriculture
[10]. The above facts conclude that the IoT has played crucial
role in multiple areas including agriculture with its sensing,
communication, and real-time monitoring features through
the IoT hardware. Moreover, it is concluded from the previous
studies that the MLmodel delivered significant results on real-
time data [11]. The study framed a research question “How
and for what purpose may the ML technology be used in agri-
culture on IoT real-time data? On the basis of this research
question, this study has carried out the literature review.

1.1. Literature Review. Large-scale agricultural monitoring
applications require reliable WSN networks because the maxi-
mum number of sensors is operated over a long period. A wire-
less sensor network architecture for vegetable greenhouses is
presented to achieve scientific cultivation and minimize man-
agement effort from an environmental monitoring perspective
[12]. Smart greenhouse management systems and WSNs are
used to control and monitor agricultural parameters and activ-
ities in greenhouses autonomously [13, 14]. A smart green-
house information monitoring system records environmental
factors with ZigBee wireless sensors [15].Wi-Fi-based smart
WSN has been proposed to monitor the agricultural environ-
ment, and the system allows intelligent monitoring of agricul-
tural conditions [16, 17]. WSN’s efforts recommend that
sensor data can be collected and sent to the main server [18].
A WPAN-based water quality monitoring system has been
proposed to clean up and collect real-time sensor data on agri-
cultural land with the LabVIEWdata logger [19]. In addition to
WSN, the advent of IoT technology has enabled farmers and
technologists to solve the challenges farmers face, such as water
shortages, cost control, and productivity issues [20].

A scalable IoT and WSN architecture is proposed for
remote monitoring and control of agriculture [21]. For the
same, an energy-saving ZigBee sensor network with bidirec-
tional communication and end devices is integrated to
deliver data from the sensors to the PC at variable times
determined by the central node [22]. SiloSense is a unique
architecture based on ZigBee to monitor the storage condi-
tions of grain silos to protect them from spoilage and disease
[23]. The most important parameters that are required to
monitor while growing wheat and other vegetables are soil
moisture, ambient temperature, air pressure, and sunlight
intensity [24]. mIoT- and WSN-based agricultural system
are for monitoring air, temperature, soil moisture, and
humidity with RF modules [25]. The cloud-based and IoT-
based smart irrigation system is designed to obtain data on
soil moisture, soil health, and temperature to reduce water
consumption [26, 27]. IoT-based greenhouse agriculture is
implemented to monitor climatic conditions and to obtain
data on a cloud server for analysis, while the ZigBee protocol
and the Wi-Fi module are integrated [28, 29]. The IoT-based

framework is designed to perform data analysis using real-
time data to increase productivity on farms through temper-
ature, soil moisture, and humidity sensor [30, 31].

IoT-enabled plant disease and pest prediction system is
implemented to reduce the use of insecticides and fungicides,
and additionally, an assessment of meteorological data is also
carried out to identify the correlation between pest growth
and climate [32]. ML helps to examine and analyze data from
different fields of agriculture to improve crop yields and offers
different analytical techniques to predict the yield of crop and
plant disease [33, 34]. The ML-based predictive model helps
farmers to get the right harvest with unconditional weather
behavior [35]. ML algorithms such as neural network-based
models are used for predictive analysis purposes [36]. From
the literature review, it is identified that smart monitoring in
the agricultural field needs to carry out with advanced technol-
ogies such as IoT. The literature also concludes that they are
limited studies that analyzed the accuracy of the data obtained
through sensors. In addition to this, customization of hard-
ware on the basis of agricultural field requirement is limitedly
explored by the previous researchers. ML technique is applied
on different datasets for disease detection, environmental
parameters monitoring, and automation in irrigation, but the
previous studies have yet to explore the crop recommendation
on the basis of real-time data. However, implementing ML on
real-time data primarily requires a resource-constrained and
dedicated server to fulfill the task of acquiring real-time agri-
cultural data rather than using it for multiple purposes.

To overcome this research, the gap of this study imple-
ments customized IoT hardware for obtaining the real-time
field data through wireless personal area network (WPAN)
and wireless local area network (WLAN). WPAN enables to
minimize the power consumption and also transmits the sen-
sor data reliably and securely. WLAN is used to connect the
customized hardware to the cloud server through IP protocol.
To maintain accuracy in the data, the calibration methods are
applied on the sensors. It is also identified from the previous
study that IoT requires analytical techniques to provide intel-
ligent decisions based on real-time sensor data obtained from
IoT sensors [11]. The contributions of the study are as follows:

(i) Customized hardware for sensor node, master node,
and hand-held device with ZigBee RF modem is
designed for sensing the real-time data of agricul-
tural field including temperature, humidity, soil
pH, and water level

(ii) An interference test is implemented to verify that
the ZigBee signal is not interfering with other
signals on the same frequency band

(iii) To enhance the security of data transmission, the
symmetric encryption approach with a private key
is applied by leveraging XXTea encryption functions

(iv) A cloud server is developed to log the real-time sen-
sor data of the agricultural field

(v) The pretrained machine learning model is applied
to real-time data such as temperature, humidity,
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rainfall, and soil pH sensor on the cloud server for
seasonal crop recommendations

The organization of the study is as follows: Section 1.1
covers the proposed system. Section 2 covers the circuit dia-
gram for the development of the system. Section 3 covers
simulation analysis and calibration. Section 4 covers the
real-time implementation of developed nodes and the cur-
rent consumption analysis. The article is concluded in the
final section.

2. Proposed Architecture

To realize the main objective of crop recommendation, in
real-time, machine learning is utilized. This system intends
to leverage multiple sensors with real-time data collection
such as temperature, humidity, rainfall, and soil pH sensor
to improve the efficiency and the recommendation of crops,
with the support of machine learning techniques. As shown
in Figure 1, the architecture is divided into multiple mod-
ules, with both software and hardware parts, each with its
purpose, from the hardware nodes, for data collection; the
server, for data processing; and finally, the hand-held device
to the user.

The system is composed of various environmental sen-
sors that are deployed around the agricultural field to collect
data on a variety of characteristics such as water level, tem-
perature, soil pH, and humidity. This information is then
sent to the master node, the main hub of our system, which
is in charge of communicating with the developed cloud
server and transferring the data obtained from the sensors.
In the server, the information is stored and is also run
through the ML algorithm to be studied. From there, based
on the algorithm’s analysis, the information is presented to
the user on a handheld device, such as crop recommenda-
tion. The crop recommendation feature is activated from
the hand-held device, and recommendations are received
on the hand-held device based on the user’s request.

2.1. Data Acquisition Layer. The data acquisition layer is the
primary layer of the architecture for acquiring the environ-
mental parameters of the agricultural field. This layer is specif-
ically dedicated to continuously monitor the environmental
parameters including water level, temperature, humidity, light
intensity, and rain level. For this, IoT sensors are attached to
the sensor node as shown in Figure 2 and through 2.4GHz
ZigBee communication [37], it transmits data to the master
node. In addition, the sensor node is enabled with security,
interference technique, and node mapping feature for secure
and reliable communication.

2.2. Data Processing Layer. IoT devices and sensors record
the environmental parameters of the agricultural field in real
time. Sensory data processing is done with the data process-
ing layer. The master node, which consists of the ZigBee RF
module, receives the data from the data acquisition layer and
transmits it to the cloud server via a Wi-Fi module
(Figure 3). The master node is powered by the battery power
supply. The data logger is also available in the data process-
ing layer for visualizing the sensor data through Bluetooth.

The master node with a Wi-Fi module connects to the Inter-
net to log the sensory data in the cloud server.

2.3. Analytics and Visualization Layer. Figure 4 illustrates the
system logic, where it explains the preprocessing and analysis
of gathered data from the sensor node. The sensor data is
received at the master node which is converted into a set of
scripts and is logged into the cloud server. Here, a cloud server
is also developed to log the sensor node values. In the prepro-
cessing step, the sensor data is converted into a suitable format
for performing machine learning analyses. The data is fed to a
machine learning model and based on the data the model, it
suggests recommended crop. The outcome of the model is
stored in the cloud server, and the hand-held device that con-
nects to the cloud server also visualizes the recommended crop
and real-time sensor data. To provide the user with a way to
see the data collected from the sensors and machine learning
outcomes, a cloud server is developed.

A cloud server is developed with two different API pro-
tocols for data exchange between backend and frontend
and backend and custom gateway. The interface between
the backend and the frontend for the exchange of data is
implemented with the REST API. REST APIs use HTTP
requests to perform basic database activities within a
resource, such as creating, reading, updating, and deleting
records. REST APIs accept JSON for the request payload
and send responses to JSON. JSON is the standard for data
transfer. The interface between the backend and the gateway
is implemented using the MQTT protocol. The cloud server
assists in checking all the sensor values retrieved from the
agricultural field in real time. Moreover, a hand-held device
is connected to the cloud server for providing the updates of
the crop based on request generated by the user.

3. Hardware Development

In this section, we present the schematic diagram of the sen-
sor node that is primarily implemented for data acquisition.
Moreover, the customization is carried out for the hardware
of agricultural monitoring including data logger and hand-
held device. A detailed description of the sensor node and
the hand-held device is presented below.

3.1. Sensor Node. Figure 5 illustrates the connection of differ-
ent electronic components of the sensor node. The node is
composed of a 2.4GHz RF modem that works in full-
duplex mode to transmit the data from one node to another
connected in the network. Principally, two sensors (gas
sensor and humidity sensor) are connected to the node
which are placed in the field. The function of the gas sensor
is to measure the concentration of the gas (such as LPG and
butane) in the present environment. The humidity of the
environment is detected with the help of a humidity sensor.
The humidity sensor gives serial data at the 9600 baud rate
to the microcontroller. The output of these sensors is in
analog form. Analog signal from the sensor is fed onto the
analog to digital pin of the ATMEGA 8 [38].

The function of this pin is to convert the analog signal
into a digital signal. After fetching the signal from a sensor
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attached, the microcontroller performs the logical operation
and controls the overall operation. A display (16∗2 LCD) is
attached to each node. The function of this is to display
the measured parameters. MAX 232 IC is also used to pro-

vide communication between the node and PC. With the
help of this, the end-user can easily observe the parameters
and execute the needful action. The whole circuit is working
on the 5V power supply. The RF module is attached to the
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transmitter and receiver pin of the microcontroller. A Zig-
Bee module (CC2500) [37] is used in the system to provide
wireless communication in the network. This module works
in full-duplex mode and also can communicate with many
devices at the same time. The topology of each node in the
presented network is based on mesh topology. All the
required components are integrated and developed hard-
ware of the sensor node as shown in the Figure 6. The sensor
node is integrated with LCD to visualize the sensor values.

3.2. Hand-Held Device. Figure 7 shows the circuit diagram of
a hand-held device that consists of a Bluetooth modem. The
main function of this modem is to receive the data trans-
ferred from the data logger node. This node is at the end-
user and easily provides the collected data to the end-user.
This node is connected with other nodes in a mesh topology.
A display is used for showing the measured data. Based on
this data, end-user can easily take the decision. Figure 8 illus-
trates the hardware of the hand-held device, and the hand-
held device is also integrated with display to visualize the
data like real-time sensor value and crop recommendation.

3.2.1. Current Consumption Analysis of Hardware. Current
consumption analysis is performed based on the current
required by each component used to develop the system.
The power consumption by the ZigBee RF modem is maxi-
mum for each node, followed by consumption by the micro-
controller. Even though power was not a design issue for the
system, it is evident that the designed system requires less
power than standard available devices like Mica2 and Micaz
nodes. The current consumption analysis concludes that the
designed hardware is consuming less amount of power during
the data transmission. Specifically, the hand-held device is
only consuming a current of 79mA. The current consumption
may vary when the components in the hardware are increased.
From Table 1, it is concluded that the power consumption of
node 1 is 85mA, node 2 is 85mA, node 3 is 264mA, node 4
is 104mA, and node 5 is 83mA. To meet the power require-
ment of the sensor node, an energy harvesting system will be
integrated into the sensor node in the future. In agriculture,
solar panels will be used to implement solar energy harvesting
systems on sensor nodes. Table 2 shows the current consump-
tion of the hand-held device, and it is 79mA. The power to the
hand-held device is achieved with the battery.
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3.3. Calibration of Sensors. In this section, sensor calibration
is performed to set the sensor to operate accurately and
without error. This section describes the sensor calibrations
(temperature/humidity, soil moisture, and ultrasonic) used
to develop the system. Sensor calibration is an important

step, before the actual implementation of the sensor in the
system. For the developed system, each sensor is first cali-
brated with standard instruments and after checking its
accuracy, sensors are used in the system. For calibrating soil
moisture sensors, the oven method is used. For temperature/
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humidity sensor calibration, psychrometric is used. The
ultrasonic sensor is calibrated with a standard measurement
ruler. Tests were carried out for each sensor and compared
with standard instruments, and it was observed that the sen-
sors were calibrated appropriately as follows.

3.3.1. Soil Moisture Sensor. The soil moisture sensor is taken
from the Sunrom model (http://sunrom.com/) no. 1282
[39]. The sensor gives a reading in terms of numerical
values, as can be seen in Table 3. This sensor measures mois-
ture based on the volumetric water content in the soil. On
the other hand, the standard oven method for finding soil
moisture gives a reading in percentage. Initially, the sensor
readings are mapped by the oven method [40] to check the
error between the sensor value and instrument value.
Figure 9 shows the relation between soil moisture content
shown by the sensor and by standard instrument. It provides
calibration values of the sensor concerning the percentage
value of the oven method. To validate the calibration,
repeated experiments were conducted by taking soil samples
from five different places with valid water content and cali-
brated them with the standard instruments. Table 4 shows
the sample readings by soil moisture content (%) with sensor
values. The sensor reading from the sensor is received by an
analog-to-digital converter (ADC) and converted to a %
value using equation (1). If the ADC value of the sensor is
255, then the value is considered 100% accurate concerning
the standard oven method.

Soilmoisture %ð Þ = wet soil gð Þ‐dry soil gð Þð Þ ∗ 100
dry soil gð Þ :

ð1Þ

3.3.2. Ultrasonic Sensor. An ultrasonic sensor [41] is calibrated
with a standard scale. Table 5 clearly shows the bias value
between sensor value and scale which is 3 cm in each case. So,
this biasing is managed by programming the microcontroller
accordingly. It shows a constant bias value by the sensor, which
is eliminated with the help of the microcontroller program.
After calibration, the sensor shows accurate readings.

3.3.3. Temperature/Humidity Sensor. Temperature/humidity
is calibrated with a psychrometer [42]. It is achieved by map-
ping the values of the sensor with that of the standard instru-
ment. The values are adjusted using programming the
controller. The readings are taken every half an hour in
March 2020. As shown in Table 6, readings are taken, and

Table 1: Current consumption analysis of sensor nodes.

Components Node 1 (mA) Node 2 (mA) Node 3 (mA) Node 4 (mA) Node 5 (mA)

Microcontroller 17 17 17 17 17

RF modem 58 58 58 58 58

Sensor 1 1 1 1 1 1

Sensor 2 5 5 180 20 3

LCD (16 × 2) 4 4 4 4 4

Total (mA) 85 85 264 104 83

Table 2: Current consumption analysis of hand-held device.

Component Current (mA)

Microcontroller 17

RF modem 58

LCD (16 × 4) 4

Total (mA) 79

Table 3: Calibration of soil moisture sensor with the standard
method.

Soil moisture reading Standard value (%) (oven method)
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the sensor is calibrated accordingly. For calibration of the
sensor, a psychrometer is used as per the calculation given
in [43].

3.4. Security and Interference Test

3.4.1. Security. As part of the security feature, during the
implementation stage, we employ the AVR family of micro-
controllers for applications comparable to the one being
proposed. Complex algorithms are a curse in AVR utilizing
time complex or memory because they frequently turn the
executing code into a blocking one, which means that any

other routine to be conducted by the controller is blocked
and may create delays in executing the intended function.
Keeping these factors in mind, we should take considerable
sensitivity while employing cryptographic algorithms in
these low-bit controllers. Cryptographic functions like
XXTea and AVRCrypto can be used to implement the
encryption method. In our case, we use the XXTea encryp-
tion functions to implement symmetric encryption with pri-
vate keys that remain exclusive to another layer of network
nodes to increase the security of data communication.

3.4.2. Interference. The basic parameter for detecting and
handling interference includes bit error rate (BER), packet
error rate (PER), received signal strength indicator (RSSI),
signal-to-interference-to-noise ratio (SINR), throughput,
and time delay. In this study, we apply an interference avoid-
ance algorithm based on frequency agility [39]. This algo-
rithm allows ZigBee to detect interference and flexibly
move nodes to a secure channel with minimal power con-
sumption and minimal latency while handling the interfer-
ence. In this technique, the end devices measure PER with
a transmission time of at least 20 packets, and if the PER
goes beyond the 25% level, the interference information is
transferred to the parent router to assess the link quality
indicator (LQI). When the parent router determines that
the LQI value is less than 100, it instructs the scanning
energy detection to perform interference detection on acces-
sible channels (ED).

PER = Number of failedmessages
Number of attemptedmeasurements

� �
∗ 100%:

ð2Þ

4. Machine Learning Models

As previously stated, the machine learning algorithm is used
to recommend the crop based on sensor data. To achieve it,
the algorithm must first be trained to understand the system
and the environment to provide the outcome of crop

Table 4: Soil moisture sensor and reading by standard method for different samples.

(a)

Samples
Sample 1 Sample 2

Wet soil (g) Dry soil (g) Soil moisture Wet soil (g) Dry soil (g) Soil moisture

Standard instrument reading 114 98 16% 62 52 19.23%

Sensor reading 42 49

(b)

Sample 3 Sample 4 Sample 5
Wet soil

(g)
Dry soil

(g)
Soil

moisture
Wet soil

(g)
Dry soil

(g)
Soil

moisture
Wet soil

(g)
Dry soil

(g)
Soil

moisture

Standard instrument
reading

68 50 36% 72 52 38.46% 78 53 47.16%

Sensor reading 93 95 123

Table 5: Calibration of ultrasonic sensor with standard instrument.

Distance by standard
scale (cm)

Distance by ultrasonic
sensor (cm)

Bias (cm)

10 13 3

20 23 3

30 33 3

40 43 3

50 53 3

Table 6: Calibration of temperature/humidity sensor with a
standard instrument.

Dry
temperature
by standard
instrument

Wet
temperature
by standard
instrument

Relative
humidity by
a standard
instrument

in %

Temp.
sensor

(Sunrom
1211)

Humidity
by the

sensor in
% (Sunrom

1211)

18 10.8 47.3 18 47

19 11.5 46.1 19 46

20 12.1 45 20 45

21 12.7 44 21 44

22 13.4 42 22 43

23 13.8 41 23 41

24 14.1 42 24 42
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recommendations. One of the goals of this study is that to
choose which algorithm is the best algorithm that can be
used not only in the system but in other situations with sim-
ilar data. To do this, four different classification algorithms
were tested to see which one had the highest accuracy.

(a) Decision trees (DTs): through hierarchical partition-
ing of training data, some functions are used to split
the data, and this division is done iteratively until the
leaf node contains the number record amount that
can be used to classify data [44, 45]. However, as

(a) Customized hardware

(b) Sensor node with sensors

(c) Blueterm data logger

Figure 10: Hardware prototype.
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described in [46], this algorithm faces some limita-
tions because a small change in the training data
set can lead to a significant change in the tree and
predicting the next value with accuracy becomes
more difficult

(b) Support vector machine (SVM) is used mainly for
classification, classifies data by building dimensions
n between two classes, finds an optimal hyperplane

to classify data, uses interval distance between neigh-
boring points, and distinguishes between classes
with minimum error margin [47]. According to a
simpler interpretation, given the training data, the
algorithm generates the best hyperplanes ranking
new examples

(c) Random forest (RF) is best applied to classification
problems and integrates the DT aggregate packing
process by selecting a subset of features from the
individual nodes in the tree, avoiding correlation
on the bootstrap set [45] and working with a tree
classifier, where one tree for each classifier

(d) XGBoost: with the same model as DT, the goal of
this algorithm is, as the name suggests, to improve
the performance of the model. It creates a sequence
of models, and instead of training all the models
individually, it models consecutively so that the
new models try to correct the errors of the previous
models [48]. The first model is built on the original

(a) Sensor node (b) Gateway

(c) Sensor node deployed in agricultural field

Figure 11: Final hardware and deployed sensor node in the agricultural field.

Table 7: Data splitting in training and testing.

Total samples Ratio Training sample Testing sample

32,000 70 : 30 22,400 7,600

Table 8: Features of each data set.

Feature Description

SensorIDi ID of sensor

Valuei Collected value

averagei
Average of the sensor values for last five

observations

diff_seni Difference from other sensor

hasRecommendationi Recommendation of crop
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data set, the second model improves the first model,
the third model improves the second model, and so
on. Models were added sequentially until no further
improvements could be made

4.1. Data Creation. The complete hardware of the proposed
system is shown in Figure 10(a). Figure 10(b) illustrates the
sensor node based on the 2.4GHz ZigBee module that is
embedded with multiple sensors including water level, tem-
perature, humidity, pH, and light intensity. Moreover, the
sensor node is interfaced with a liquid crystal display for
visualizing the sensor data. In this study, a custom sensor
node with IoT sensors is deployed in the agricultural sector
of the Maheru, Punjab region as shown in Figure 11. The
sensor node is deployed in an outdoor environment to get
data from the sensors in real time. As discussed earlier in
this section, the sensor node is interfaced with multiple sen-
sors to detect the environmental parameters of the farm field
and communicate with the cloud server through a master
node based on 2.4GHz ZigBee communication and wireless
fidelity (Wi-Fi).

The input parameters of the sensor data are temperature,
humidity, water level, and soil pH. The 32,000 samples of
IoT sensor nodes over 6 months are used to build a dataset
for training. The manual data splitting methods have been
adopted in which the total number of samples is divided into

training and testing samples. The 70 : 30 ratio is chosen for
the proposed dataset, in which 70% for training and 30%
for testing as shown in Table 7.

During dataset generation, besides collected timestamps
and sensor data, other features were added to each record
based on calculations and preprocessed data from the values
of the sensor. Table 8 shows the features of each data set.
The difference between datasets is that the standard one only
has one entry for each of the features while the clustered one
has three entries for sensorID, average, value, and diff_sen,
each one regarding the three sensors used in the test.

4.2. Model Analysis. A variety of ML algorithms were used to
analyze the model to find the best one to use in our system.
For our case, we performed a total of 8 tests for each
algorithm, each with a different set of parameters, to train
the algorithms to determine which one has the highest
accuracy so that it can be applied in our system. Each test
was run using Python, the scikit-learn library [37], and the
Spyder platform. Scripts were developed for each algo-
rithm using the appropriate library for scikit-learn classifi-
cation and used the default configuration. As mentioned
earlier, 70% of the dataset was used for training, and
30% was used for testing. Table 9 shows the results of
each test, and Figure 12 shows the same results to improve
the analysis.

Table 9: Accuracy of the model.

Accuracy (%)
Model 1 2 3 4 5 6 7 8

DT 79.45 73.74 81.81 73.90 81.64 74.99 80.94 73.95

SVM 29.91 29.36 48.97 49.40 53.94 33.82 60.02 43.95

RF 76.20 69.85 80.35 73.53 80.35 73.42 80.17 74.49

XGBoost 80.45 75.20 75.74 78.82 85.06 80.36 86.71 83.64
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Figure 12: Accuracy of model.
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5. Real-Time Implementation

The hardware prototype is deployed in real-time to evaluate
the developed system for obtaining crop recommendations
based on sensor values. As shown in figure 4, the real-time
sensor values are fed to the pretrained model. Based on

received real-time sensor data, the XGBoost model has
achieved better accuracy among the other pretrained ML
models as shown in Table 9. Furthermore, the outcome of
the model is illustrated in Figures 13(a) and 13(b). In
Figure 13(a), the crop recommendation is processed based
on temperature, humidity, rain level, and soil pH. The x

Table 10: Comparisons with previous studies.

Ref Communication
Data

processing
Analytics Interference Calibration Hand-held device Security

[24] Wi-Fi

Raspberry Pi
is used for

data
processing

Decision tree
algorithm

Interference
test is not
carried out

Sensors are not
calibrated

NA, an email has
been used for alerts

Security for data
transmission is not
integrated into the

hardware

[49] LoRa + Wi-Fi Gateway
Not

implemented

Interference
between the
sensor node
and gateway

is not
mentioned

Sensors are not
calibrated

Yes

Hardware is not
empowered with
security for data
transmission

[50] Wi-Fi Gateway
Not

implemented

Wi-Fi based
on 2.4GHz
interference

is not
implemented

Sensors are not
calibrated

NA

Asymmetric
encryption for data
communication is

not available

[51] NA
Edge

computing

Deep
reinforcement

learning

Not
mentioned

Sensors are not
calibrated

NA
Security for data

transmission is not
mentioned

[52] NA
Data

aggregator

Decision
support system

(DSS)

Not
mentioned

Sensors are not
calibrated

No

Hardware is not
empowered with
security for data
transmission

[53] LoRa
LoRa

gateway
No analytics
are carried out

Not
discussed

Utilized PIR,
DTH11 and soil

moisture
sensor, but
calibration is
not carried out

No No

[54] LoRa Gateway

System is
implemented
in real-time for
testing, but no
analytics are
carried out

Interference
are not
appeared
during

transmission

Sensor
calibration is
carried out but
no discussion
about the

calibration is
available

No visualizing
device or hand-held

device

Security to the
system is

implemented with
RFID, but during
communication, no
security feature is

considered

[55] LoRa+ NB-IoT
Aggregation

node

SVM is
implemented
for detecting
the leaks based
on sensor data

NA Calibration

An android
application is
developed to

visualize the sensor
values in real time

Security between the
node to node is not

explored

Proposed
study

2.4 GHz+Wi-Fi Master node

Real-time
analytics on
sensor data

with a
pretrained
model

Interference
avoidance
algorithm
based on
frequency
agility

Sensor
calibration with

a standard
instrument to
confirm the
error-free

sensor value

Hand-held device to
receive the real-time
sensor data and crop
recommendation
based on the user

request

XXTea encryption
functions are utilized

to implement
symmetric
encryption
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-axis denotes the number of the data samples, and y-axis
denotes the range of temperature, humidity, rain level, and
soil pH. In the temperature plot, orange denotes the wheat
crop, and blue color denotes the rice crop.

Based on the temperature, humidity, rain level, and soil
pH, the optimal crops are recommended. For example, in
the temperature plot, for the temperature range of 39°C-
45°C, the recommended crop is wheat. In case of humidity,
the minimum humidity level is recommended for the wheat
crop. Rice crop is recommended for the rain level of 3mm
and the pH value of 8, and the wheat crop is recommended.
The recommendation of the crop is delivered on the basis of
trained data, and it may vary with other location, as the
dataset is developed through the real-time data of the study
location. In case, if the hardware needed to implement in
other location, then the customized hardware with IoT sen-
sors needs to be developed for a certain period of time for
the development of dataset.

In Figure 14, the crop recommendation is processed
based on temperature, humidity, nutrients, and light inten-
sity. The x-axis denotes the number of the data samples,
and y-axis denotes the range of temperature, humidity,
nutrients, and light intensity. In the temperature plot, blue
denotes the green leaves, and violent color denotes tomatoes.
Based on the temperature, humidity, nutrients, and light
intensity, the optimal crops are recommended. In the tem-
perature plot, for the temperature range of 20°C-30°C, the
recommended crop is tomato. At the temperature of 35°C,
the plot concludes that green leaves and tomato crops are
recommended.

In case of humidity, if the range of humidity level is
between 60% and 70%, then both crops including green
leaves and tomato are recommended. The tomato crop is
recommended for the nutrients level in between 0 and 1%.
If the light intensity is at 8 candelas, then tomato crop is
highly recommended. The hand-held device based on the
cloud server also receives the crop recommendation through
the Internet based on demand. Table 10 presents the com-
parison of smart agriculture monitoring with previous stud-
ies. To validate the proposed study, the following evaluation
parameters are communication, data processing, analytics,
simulation, calibration, and hand-held device. The proposed
study offers the advantages of a communication protocol
that uses both 2.4GHz ZigBee and Wi-Fi.

The integration of these two-communication platforms
enables to obtain the data locally and also in the cloud. From
the table, it is concluded that the proposed study is having
beneficial in terms of providing the real-time data to the
users on the hand-held device through stable and reliable
communication. As seen in the previous studies, many
researchers have implemented the advanced wireless com-
munication technology like LoRa. The deployment of the
LoRa-based sensor nodes increases the infrastructure cost
as compared to ZigBee-based sensor nodes. However, LoRa
and ZigBee can be utilized combinedly in the agricultural
field monitoring in the following manner.

ZigBee-based sensor nodes can be deployed in the agri-
cultural field to monitor environmental parameters, and
the single LoRa-based node can act as supervisor node to

all the ZigBee-based sensor nodes. This LoRa-based node con-
nects to the gateway, as LoRa can transmit the data to a long
range. From there, the information of ZigBee-based sensor
node can be visualized on the cloud server. This approach
can be implemented to enhance the connectivity and minimize
infrastructure cost. This study have enhanced the hardware
with node mapping feature, frequency agility interference
avoidance, and XXTea encryption features. All these features
are logged in the hardware during the programming.

6. Conclusions

Real-time smart monitoring with intelligence has gained sig-
nificant attention for increasing crop productivity. At the
moment, IoT generates a large amount of real-time data
from sensors, actuators, and identification technologies.
However, extracting meaningful insights from data is
required for the intelligent ecosystem and portable device
for monitoring of agriculture. The current study is focused
on implementing the customized hand-held device for
assisting the farmers with crop recommendation with ML.
To realize it, first, the customized hardware is designed,
and sensors are calibrated to obtain the error free data. In
addition to this, security is also inbuilt in the customized
hardware for secure transmission of data on the cloud
server. As the real-time data is available in the cloud server,
it is utilized for forming dataset to conclude to the optimal
ML model for crop recommendation. After identifying the
optimal ML model, it has been applied on the cloud server.
Based on this, the ML model recommends the crop from
the real-time data that is generated from the customized
hardware.

Data Availability

Data will be available on request. For the data-related queries,
kindly contact to Baseem Khan, basseemk@hu.edu.et.
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