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The rehabilitation of stroke patients is a long-term process. To realize the automation and quantification of upper limb
rehabilitation assessment of stroke patients, an automatic prediction model of rehabilitation evaluation scale was established by
extreme learning machine (ELM) according to Fugl-Meyer motor function assessment (FMA). Four movements in the
shoulder and elbow joints of FMA were selected. Two acceleration sensors fixed on the forearm and upper arm of the
hemiplegic side were used to collect the motion data of 35 patients. After preprocessing and feature extraction, the feature
selection was carried out based on genetic algorithm and ELM, and the single-action model and comprehensive prediction
model were established, respectively. The results show that the model can accurately and automatically predict the shoulder
and elbow score of FMA, and the root mean square error of prediction is 2.16. This method breaks through the limitations of
subjectivity, time-consuming and dependence on rehabilitation doctors in the traditional evaluation. It can be easily used in
the assessment of long-term rehabilitation.

1. Introduction

With the improvement of living standards and the aging of
population, the incidence rate of stroke is on the rise and
tends to be younger. About 70% to 85% of the first stroke
patients have hemiplegia [1]. According to statistics, 2 mil-
lion 500 thousand stroke patients have added annually in
China, 1 million 200 thousand to 1 million 500 thousand
of them died from stroke-related diseases, and 7 million sur-
vived after stroke, of which 75% left with disability in vary-
ing degrees, 40% were severely disabled [2]. This high
incidence rate, high mortality rate, and high disability rate
bring heavy mental pressure and substantial financial bur-
den to society and families.

Compared with the lower limbs, the upper limb move-
ment is more refined, and the recovery is slow. Therefore,
the rehabilitation of upper limb motor function after stroke
has always been a significant problem. About one in five
stroke patients can not achieve the complete recovery of

upper limb function [3]. With the development of telemed-
icine technology, rehabilitation robot technology, and virtual
reality technology, home-based rehabilitation has attracted
more and more attention [4–8]. The literature reports that
home-based rehabilitation can achieve the same effect as
inpatient rehabilitation [9]. However, effectively monitoring
and evaluating the progress and functional status of patients’
home-based rehabilitation to help rehabilitation doctors fur-
ther formulate individualized rehabilitation treatment plans
has always been the bottleneck of the development of
home-based rehabilitation.

At present, the Fugl-Meyer scale is the most widely used
method to evaluate the motor function of stroke hemiplegia
in the clinic. It requires patients to perform a series of move-
ments. It depends on the evaluator’s unarmed operation and
observation to check the limb reflex state, flexion and exten-
sion cooperative movement, and selective separation move-
ment in different recovery stages, which belongs to
subjective evaluation. Many application studies show that
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the scale is sensitive and reliable, but many items are. The
assessment is time-consuming and requires the participation
of therapists or rehabilitation doctors, which limits its appli-
cation in home rehabilitation to a certain extent [10–12].
Therefore, the ideal evaluation method in home rehabilita-
tion treatment is simple, objective, and quantitative auto-
matic evaluation. The wireless body sensor network
composed of multiple sensor nodes can realize the automa-
tion and quantification of motor function evaluation. Many
studies abroad have used it for home monitoring of the
elderly and patients with chronic diseases. Through the
study of 169 stroke patients, Uswatte et al. [13, 14] found
that the acceleration sensor can capture the clinical informa-
tion reflecting the degree of upper limb motor dysfunction.
Patel et al. [15] used acceleration sensors to automatically
estimate the score of Wolf motor function test (WMFT-
FAS). However, there are few reports on the combination
of motion sensor and clinical evaluation scale in China.

To further automate and quantify the assessment of
home based rehabilitation, we propose a method for achiev-
ing an automated assessment of the rugl Meyer scale using
accelerometry sensors in the hope of more objectively and
quantitatively reflecting the patient’s upper extremity motor
function status. The automatic algorithm can evaluate
patients more quickly and accurately, and it is convenient
to collect relevant data in order to change the treatment plan
and make the treatment measures more active. Four move-
ments were selected from the shoulder and elbow joints of
the upper extremity Fugl-Meyer assessment (UE-FMA).
The patient’s movement data were collected with two accel-
eration sensors fixed to the forearm and upper arm of the
patient’s hemiplegic side. The automatic prediction model
of the score of the shoulder and elbow joints of UE-FMA
was established based on genetic algorithm and extreme
learning machine.

2. Correlation Algorithm

2.1. Extreme Learning Machine. The extreme learning
machine (ELM) is a single hidden layer feedforward neural
network learning algorithm proposed by Huang et al. [16].
Its hidden layer node parameters (internal weight and bias)
are randomly selected, and the external weight of the net-
work obtains its least-squares solution by minimizing the
square loss function. The determination process of network
parameters does not need any iterative steps, which dramat-
ically improves the operation speed (Figure 1). ELM algo-
rithm is simple and easy, overcomes the disadvantages of
slow training speed, and is easy to fall into local optimization
of traditional neural network based on gradient descent
method. Its network structure and working principle are as
follows:

Given the training sample set fðxi, tiÞgNi=1 and the num-
ber of hidden layer neurons L, there is ai, bi, βi, so that:

f L xj
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Where: ai, bi are node parameters; βi represents the
external weight connecting the ith hidden layer node and
the network output, and g is the activation function.

Equation Equation (1) is written in matrix form as fol-
lows:
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H is called hidden layer output matrix.
Considering the prediction error, equation (2) can be

modified as:

Hβ = T + E ð4Þ

Define the square loss function:

J = Hβ − Tð ÞT Hβ − Tð Þ ð5Þ

In this way, the training problem of ELM network
parameters is transformed into the issue of minimizing the
square loss function. It is necessary to find a set of optimal
parameters to make J minimum. When the activation func-
tion g is infinitely differentiable, the hidden layer node
parameters can be randomly selected at the beginning of
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Figure 1: Structure diagram of single hidden layer feedforward
neural network.

2 Journal of Sensors



training, fixed in the training process. The external weight
can be obtained by solving equations (6) by the least square
method.

bβ = arg min Hβ − Tj jj j =H+T ð6Þ

2.2. Genetic Algorithm. The genetic algorithm is an adaptive
probability search method that simulates the natural genetic
mechanism and biological evolution process. It has inherent,
implicit parallelism and global optimization ability. It maps
the problem to the string space, represents a potential solu-
tion set of the problem as a population, and the problem’s
solution as a chromosome, that is, an individual in the peo-
ple, and eliminates the fittest based on the fitness function.
The genetic algorithm realizes population evolution through
a series of operators to produce new offspring. Standard
genetic operators include selection operator, crossover oper-
ator, and mutation operator. The operation flow of the
genetic algorithm consists of the following steps.

(1) Code: The solution data of solution space is
expressed as genotype string structure data of genetic
space. Different combinations of string data repre-
sent other solutions to the problem. The typical cod-
ing methods are binary coding, gray coding, and
floating-point coding

(2) Population initialization: Determine the population
size N, crossover probability Pc, mutation probability
Pm, and termination evolution criterion, randomly
generate N individuals as the initial population Xð0
Þ, set the current evolution algebra k=0 and the max-
imum evolution algebra T

(3) Calculate the fitness value: Fitness value represents
the advantages and disadvantages of individuals or
solutions. Different fitness functions are defined for

various problems and the fitness value of fxikgNi=1 of
each individual in the k generation population is cal-
culated according to the fitness function

(4) Genetic manipulation: The selection operator, cross-
over operator and mutation operator act on the cur-
rent population in turn to realize evolution

Inspection termination conditions: If the genetic algebra
satisfies the termination condition, the calculation is termi-
nated, and the best individual in the current population is
output as the final satisfactory solution; Otherwise, k = k
+1, go to step (3)

3. Materials and Methods

3.1. Experimental Design and Data Acquisition. A total of 35
stroke inpatients from the Department of Neurosurgery,
Yancheng First Peoples’ Hospital participated in the study.
The ethics committee approved the experiment of our hospi-
tal. Table 1 shows the basic data of the patients.

The admission criteria are: 1) the clinical diagnosis meets
the diagnostic criteria of stroke formulated by the fourth

national cerebrovascular conference of Chinese Medical
Association in 1995, and is confirmed by cranial CT or
MRI; 2) The onset time is no more than two years, and the
upper limbs on the hemiplegic side have the ability of auton-
omous movement.

The exclusion criteria were: 1) those with cognitive
impairment and unable to cooperate; 2) Accompanied by
upper limb or trunk pain and affecting active movement.

Firstly, a rehabilitation physician with many years of
clinical experience used UE-FMA to evaluate the subjects.
UE-FMA includes 33 items, with a score of 0~ 2 for each
item, 0 for incomplete, 1 for partial completion, and 2 for
smooth completion, including 15 items for shoulder and
elbow joints, with a total of 30 points. The rehabilitation
physician gives a score of 0, 1 or 2 by observing the comple-
tion of each task, and the sum of each score is the total score.
Four movements of shoulder and elbow joints were selected:
1) Forward flexion of shoulder joint; 2) Abduction of shoul-
der joint; 3) Elbow flexion, forearm pronation and supina-
tion; 4) Hand touching the lumbar spine is used as a
collection action (Figure 2). The selection of actions is based
on the clinical experience of rehabilitation doctors and the
standard examination method of bmrmstiwn six level evalu-
ation method. The simplified Fugl-Meyer scale (S-FMA)
developed by Hsieh et al. [17] is basically consistent with
the actions selected in this study. The reliability and validity
of S-FMA have been verified. This reflects the effectiveness
of action selection in this study to a certain extent.

The wireless body sensor network system composed of
two triaxial acceleration sensor nodes and one receiving
node is used for data acquisition. The sensitivity of the accel-
eration sensor is ±6 g and the sampling rate is 40Hz. During
the acquisition process, two sensor nodes were fixed on the
forearm and upper arm of the patient with hemiplegia,;
The c-axis is parallel to the arm, as shown in Figure 1. For
the four selected actions, the patient will do it for 1~ 2 times
under the guidance of the rehabilitation physician, and then
start formal collection. Each action will be repeated 3~ 5
times according to the patient’s physical condition. The
patient’s action data collected by the acceleration sensor will
be wirelessly transmitted to the PC client through ZigBee to
complete the visualization and classified storage of the data.

3.2. Fugl-Meyer Shoulder and Elbow Score Prediction Model.
After preprocessing, feature extraction, and feature selection,
the original data is input into the ELM model. Firstly, the
prediction model of a single action is established, and then
the regression relationship between the prediction result of

Table 1: General information of research object.

Information Value

Sex, M/F 19/16

Age (year) 68.6± 13.1
Hemorrhage/infarction 21/14

Hemiplegic site, L/R 11/24

Time of onset (month) 9.1± 6.7
UE-FMA 15.8± 9.2
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a single action and the score of the doctor is established to
obtain the comprehensive prediction model. Figure 3 shows
the overall process of the algorithm.

3.3. Feature Extraction. The original collected signal is fil-
tered by 9-point median filter to remove the interference
caused by clothing friction, sensor looseness and wireless
channel noise. Then, according to the experimental and the-
oretical analysis and previous experience, some statistical
features (such as amplitude, mean value, root mean square,
approximate entropy, etc.) and physical features (such as
energy features, speed and angle) are extracted from the fil-
tered signal. These features reflect the completion of the
patient’s upper limb movement to a certain extent, including
the amplitude, speed, smoothness and coordination of the
movement. All the extracted features are shown in Table 2.

AMP, RMS, JERK, MEAN and ApEn are calculated,
respectively, on 6 channels (2 nodes and 3 axes of the accel-
eration sensor), and other features are calculated separately
on each node of the acceleration sensor. The angle is the
angle between χ axis and vertical direction. The approximate
entropy is a measure of the complexity of time series, which
can reflect the irregularity of motion. The velocity is the inte-

gral of acceleration to time. The calculation formulas of
energy characteristics and root mean square value are as fol-
lows:

ENE = 〠
n

i=1
x2i + Y2

i + Z2
i

� �1/2 − 1
� �

RMS =
1
n
〠
n

i=1
X2
i

 !1/2 ð7Þ

Where n is the sequence length. X, Y and Z represent the
quantity of fractional acceleration on the three axes.

3.4. Feature Selection. All 42 features extracted are encoded
into a binary string with a length of 42 composed of “0”
and “1”. Each binary bit represents a feature in the feature
set, and this bit is 1, which represents the corresponding fea-
ture subset, 0 indicates that the corresponding feature is not
in the selected feature subset. Set the initial population size
N=50, the maximum number of iterations T=100, the
crossover probability Pc=0.6, and the mutation probability
Pm=0.01. ELM learning algorithm is introduced into the
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Figure 2: Brunnstrom eva luation action. A: forward flexion of shoulder joint. B: Abduction of shoulder joint. C: Elbow flexion, forearm
pronation and supination. D: Hand touching the lumbar spine.
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design of fitness function; The ELM prediction model is
established based on the feature subset corresponding toxik.
The prediction error of the model is an important evaluation
index of the individual fitness in the population. The smaller
the prediction error, the higher the individual fitness value.
10 fold cross validation is used to estimate the prediction
error. The design of fitness function is as follows:

fitness xik
� �

= 1/Error xik
� � ð8Þ

Where ErrorðxikÞ represents the result of 10 fold cross
validation of prediction error of ELM model established for
the feature subset corresponding to individual xik. After the
fitness function is determined, the evolution process is car-
ried out according to the fitness value of each individual in
the population. After repeated iterations of “selection, cross-
over and variation”, individuals with large fitness value are
continuously found until the termination condition is met,
as shown in Figure 4. In genetic algorithm, the strategy of

retaining the optimal fitness individual is adopted, that is,
the individual with the highest fitness value is directly incor-
porated into the next generation population without “selec-
tion, crossover and mutation” operation.

4. Results and Discussion

The optimal feature set selected for each action is the inde-
pendent variable, and the corresponding score is the depen-
dent variable. After normalization, it is input into the ELM
model. The sigmoidal function is selected as the activation
function, and the number of hidden layer nodes is set to
10. First, use a single action to predict Fugl-Meyer’s shoulder
and elbow joints score, and then consider that Fugl-Meyer
scale is a standard scale that has been clinically verified for
many years, and there is not much correlation between its
actions. Using the data of one action to predict the total
score is bound to bring large errors, and the weighted aver-
age of the predicted results of the four movements alone can
predict the shoulder and elbow score of UE-FMA more
accurately. Therefore, for each patient, a regression relation-
ship is established between the single action prediction
results and the doctor’s score to obtain the final comprehen-
sive prediction model, and the comprehensive prediction
results are compared with the single action prediction
results. Figure 5 shows the prediction results of single action
model and comprehensive model for 35 patients using leave
one subject out cross validation (i.e. taking one patient as the
test set and the rest as the training set in turn). It can be seen
that the error of comprehensive prediction is relatively small
and concentrated compared with single action prediction.
Table 3 lists the root mean square error (RMSE) and stan-
dard deviation (STD) of the prediction errors of 35 patients.
The RMSE values predicted by the four singl actions were
nearly 10% of the total score (30 points). With the compre-
hensive prediction model, the predicted RMSE value can be
reduced to 2.6 points, accounting for 7.2% of the total score,

Preprocessing

Feature extraction

Feature selection

ELM modle 1

Preprocessing Preprocessing

Feature extraction Feature extraction

Feature selection Feature selection

ELM modle 2

Single action model

Comprehensive model

FMA scores

ELM modle 3

Figure 3: Flow chart based on genetic algorithm and extreme learning machine.

Table 2: Feature list of upper limb movement.

Description Number

Acceleration amplitude AMP 2×3
Root mean square value of acceleration RMS 2×3
Root mean square value of reciprocal acceleration JERK 2×3
MEAN acceleration MEAN 2×3
Acceleration approximate entropy ApEn 2×3
Energy characteristic ENE 2

Maximum speed Vmax 2

Speed average Vmean 2

Standard deviation of speed Vstd 2

Velocity approximate entropy VapEn 2

Angle max anglemax 2
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which is less than the prediction error of any single action.
The standard deviation of the comprehensive prediction
error is also the smallest, indicating that the comprehensive
prediction model is more stable, which is consistent with
Figure 5.

Hsueh et al. [18] determined that the minimum detect-
able change (MDC) of Fugl-Meyer upper limb motor func-
tion rating scale was 7.2 points, accounting for 10.9% of
the total score. MDC is the minimum threshold to identify
whether the change exceeds the random test error, and the
random error is often caused by different evaluators’ differ-
ent understanding of the evaluation standard or different
evaluation time and space. MDC reflects the allowable range
of evaluation error of clinical application scale to a certain
extent. The prediction error of the comprehensive prediction
model proposed in this paper for the shoulder and elbow
score of UE-FMA is 2.16 points, accounting for 7.2% of
the total score. Within this range, it shows that the result is
clinically acceptable.

Patel team [15, 19] has done a lot of research on the use
of motion sensors in clinical evaluation, but they mainly
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ELM Training test,
calculation of
adaptive value

Genetic
manipulationSelection

crossover mutation

Meet termination
conditions?

Output optimal
feature subset
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New generation
population
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Figure 4: Feature selection process based on genetic algorithm and ELM.
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Figure 5: Single action prediction and comprehensive prediction results.

Table 3: Comparison between single and comprehensive
prediction.

Prediction model RMSE RMSE/total STD

Action 1 individual prediction 2.64 8.8 2.64

Action 2 individual prediction 2.83 9.4 3.32

Action 3 individual prediction 4.72 15.7 5.13

Action 4 individual prediction 3.89 13.0 4.24

Composive prediction 2.16 7.2 2.15
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focus on the Wolf motor function test (WMFT); They uses
six acceleration nodes to collect data, selects a single WMFT
action, and establishes a multiple linear regression model to
predict the shoulder and elbow score of Fugl-Meyer scale.
The minimum prediction error is 2.35 points. The same
acquisition device was used to select 8 WMFT actions to
automatically predict the score of Fugl-Meyer scale. How-
ever, WMFT often requires high motor coordination ability,
and needs specific tools to complete the test. It is rarely used
in clinical practice in China, and it is difficult for patients to
complete home rehabilitation. Our study directly selects
actions from Fugl-Meyer scale, uses fewer sensor nodes to
predict the shoulder and elbow score of Fugl-Meyer scale,
and obtains more accurate prediction results. Compared
with WMFT, the actions selected from Fugl-Meyer scale
can be completed directly by patients without any additional
experimental conditions, which is easier to realize in home
rehabilitation evaluation.

In home rehabilitation or community rehabilitation,
patients can accurately record the actual situation of upper
limb motor function during training by wearing acceleration
sensors, and feed back to remote rehabilitation doctors to
help doctors formulate individualized and professional reha-
bilitation treatment plans, so as to maximize the recovery of
upper limb motor function. It can also be used to evaluate
the efficacy of different rehabilitation treatment techniques.
However, there is still a lack of evaluation of wrist and hand
function. In future work, sensors that can reflect the wrist
and hand function state (such as bending sensor) will be
used to collect wrist and hand movement data, and a model
will be established to predict the score of Fugl-Meyer wrist
and hand part, so as to more comprehensively and carefully
reflect the whole upper limb movement function of the
patient. In the future, other deep learning models will be
used [20, 21].

5. Conclusions

This study combines the motion sensor with the clinical
evaluation scale, and uses four actions to accurately and
automatically predict the shoulder and elbow joints score
of UE-FMA, breaking through the limitations of subjectivity
and time-consuming in the traditional evaluation and the
dependence on rehabilitation doctors or therapists. It was
initially shown that the acceleration sensor can be used to
automatically predict shoulder and elbow scores on the
Fugl-Meyer upper extremity motor function rating scale,
enabling automation, objectification, and quantitation of
rehabilitation assessments.
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