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In order to improve the visual navigation performance in complex environment, a robust visual navigation method for substation
inspection robot is proposed in this paper. Based on the robustness of hexagonal cone model to light changes, this method can
solve the squeezing problem of navigation path in complex environment and reduce the interference caused by external light
factors. Based on HM preprocessed images, semantic segmentation is carried out with deep convolutional neural network to
obtain global features, local features, and multiscale information of images, so as to effectively improve the network recognition
accuracy. The results show that the images after HM color space transformation and grayscale reconstruction can compress
the color space while preserving the edge details, which is beneficial to the semantic segmentation network for further scene
road recognition. Because the original structure of the network is not adjusted and the corresponding preprocessing layer is
added, the size of the network model is relatively increased, but the reasoning speed of the original network is significantly
improved, which is 16.4% on average.

1. Introduction

As a direction for the development of future energy net-
works, smart grids have been extended to existing power
grid control networks [1]. Intelligent and efficient manage-
ment technologies will be used to implement automation,
integration, centralization, and intelligence in power grid
management, such as power generation, transmission, distri-
bution, and energy consumption [2]. As an important con-
nection hub in the power supply network, the substation
needs regular inspection in order to find potential problems
in time and maintain them in time to ensure the safe
operation of the power grid [3]. As an important carrier of
automatic monitoring of substation operation, robot can be
widely used in the automatic monitoring of substation
environment [4]. The magnetic path navigation method is
simple and reliable and has high navigation accuracy, but
this method uses a magnetic path for navigation, which
requires a change in the layout of the substation. There are
cargo and potential safety hazards during actual work [5].

Inertial navigation and wireless positioning methods require
the installation of wireless devices for signal transmission
and reception in the work environment. Although the instal-
lation is convenient, the decentralized wireless devices lead
to poor recognition stability and adaptability and are prone
to cumulative errors [6, 7]. Although GPS navigation
method can work without adjusting the working scene, it
has poor accuracy and low accuracy. In particular, in the
power system environment, electromagnetic interference is
particularly strong, and the well cannot meet the accuracy
requirements of substation patrol inspection [8]. Figure 1
shows a manufacturing technology of inspection robot based
on improved LSTM+CNN algorithm.

2. Literature Review

The inspection system of electric power inspection robot is a
scientific and technological achievement integrating multi-
ple disciplines. In addition to the traditional and relatively
perfect technologies such as machinery, electricians and
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electronics, communication, automation, and sensors, it also
adds deep learning neural network to improve the ability of
system fault identification [9, 10]. The power inspection
robot system is mainly composed of image detection and
recognition unit, automatic obstacle avoidance unit, data
monitoring unit, and data transmission and storage unit.
The image detection system is a deep learning neural net-
work based on PyTorch framework. It uses a neural network
model similar to Yolov3 to dynamically collect image infor-
mation, extract the characteristics of the image at any time,
and judge whether there is fault information in the power
system. Using this technology, the power inspection robot
can directly warn the instrument panel, indicator lights,
open fire, smoke, and other faults. At the same time, the
video will be transmitted to the Alibaba cloud platform for
backup, which can be retrieved by the inspectors at any time.
It can also directly follow the real-time video and conduct
video remote detection synchronously with the machine
[11, 12]. Compared with the early inspection robot, the
advantage of this power inspection robot is to increase the
image detection function of convolutional neural network.
Flexible neural networks are widely used in the field of visual
target detection. Transient neural networks can automati-
cally retrieve functional information from images, learn spe-
cific information from different lesion information, and
continuously optimize their identification accuracy to effec-
tively detect substations [13, 14]. The foreground vision
device is used to capture the road image in real time, the
image processing technology is used to identify the road sur-
face to determine the position relationship between the
inspection robot and the navigation line, and then the deep
learning algorithm of the inspection robot walking and
detection task is realized through the bottom motion con-
trol, which has attracted extensive attention in the existing
visual path navigation methods [15]. Compared with other
methods mentioned above, visual navigation method not
only overcomes the disadvantages of low accuracy and poor
adaptability of these methods in power system scene but also
has the advantages of simplicity, reliability, accuracy, conve-
nient transformation, and installation [16].

Based on this, we offer a reliable method of visual
navigation for substation control robots to improve visual
navigation performance in complex environments. This
method uses the robustness of the gecko model (HM) to
change the light, which solves the problem of compressing
the navigation path in complex environments and reduces
interference caused by external lighting factors. In order to
effectively improve the accuracy of network recognition,
semantic segmentation with a deep neural network (DCNN)
based on a preprocessed image of HM is obtained, which
provides information on global features, local features, and
multiscale images.

3. Research Methods

3.1. Color Space Conversion. Good road recognition ability is
the key to the self-adaptive navigation of the substation
inspection robot. Only by controlling the inspection robot
on the basis of identifying the effective road surface can
the inspection robot effectively complete the inspection task
and avoid entering the restricted area or areas that are not
suitable for driving. Road recognition based on camera
images needs to take into account various complex situa-
tions such as strong light, shadows, and rainy days. Define
the maximum value of the three component values of R, G,
and B of each pixel ði, jÞ as max ði, jÞ and the minimum
value as min ði, jÞ, and then, there are

max i, jð Þ =max R i, jð Þ,G i, jð Þ, B i, jð Þð Þ, ð1Þ

min i, jð Þ =min R i, jð Þ,G i, jð Þ, B i, jð Þð Þ: ð2Þ

For the three components in HM, V component repre-
sents color brightness, and Vði, jÞ is expressed as

V i, jð Þ =max i, jð Þ: ð3Þ
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Figure 1: Manufacturing technology of inspection robot based on improved LSTM+CNN algorithm.
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S component represents color purity, and then, Sði, jÞ
represents

S i, jð Þ =
V i, jð Þ −min i, jð Þ

V i, jð Þ V i, jð Þ ≠ 0,

0V i, jð Þ = 0:

8
><

>:
ð4Þ

3.2. Gray Image Reconstruction. Each component of the
Hopfield Model (HM) has different characteristics. H, S,
and V components of different weights are reassembled to
restore the image to minimize the effect of lighting changes
in the image [17, 18]. In terms of features, the navigation
path properties on components H and V are essentially
opposite; the normalization method is considered to
enhance and preliminarily extract the navigation path fea-
ture information. First, inverse image processing is per-
formed on the H component, as shown in

�H i, jð Þ = 255 −H i, jð Þ: ð5Þ

Then, the inverse image �H is normalized, where the
normalized range is ½a, b�, where a is the minimum value
of H and b is the maximum value of H, and then, the corre-
sponding coefficient matrix H ′ is obtained, as shown in

H ′ i, jð Þ = �H i, jð Þ × b − að Þ
255 + a

255 : ð6Þ

This operation avoids the forced enlargement and reduc-
tion of the image in the normalization process. To recreate
the gray image, add the components to the components
and then multiply by a coefficient matrix according to

F i, jð Þ = 2 × S i, jð Þ +V i, jð Þð Þ ×H ′ i, jð Þ: ð7Þ

Analyze equation (7) and select the components of the
reconstructed gray image and double the result. Consider
effectively eliminating shadow interference in the image by
increasing the weight of the components while restoring
the gray image. This allows you to restore a gray image
without the interference of external objects such as strong
light, shadows, and surface water that highlight the road
surface [19].

3.3. Image Acquisition under Dark Light Conditions. In the
dark light environment, due to the light supplement defect
of the point light source of the ordinary light source, the
image acquisition of the inspection robot has light spots or
concentrated light points, which brings the influence of
image acquisition. Based on the HM, the image components
are decomposed and used to detect the brightness of a sim-
ple light source, and the illumination of the collected image
under the condition of dark light is appropriately adjusted. If
the average brightness in the V component is defined as VP,
then equation (8) is shown.

VP =
∑255

i=0 i × v ið Þ
∑255

i=0 v ið Þ
, ð8Þ

where i is the saturation value of component s and sðiÞ is
the number of pixels in the saturation value. Define the
average illuminance of the component as SP, followed by

SP =
∑255

i=0 i × s ið Þ
∑255

i=0 s ið Þ
, ð9Þ

where i is the saturation value in the S component and
sðiÞ is the pixel count in the saturation value. In combination
with equations (8) and (9), the conditions for judging whether
the image is too bright or too dark are (a) VP > 150 and
SP < 80 and (b) VP < 75 and SP > 60.

According to the above results, the inspection robot ana-
lyzes the brightness information in the current image and
determines whether the supplementary light intensity needs
to be adjusted so that the light intensity can reach the same
illuminance during path navigation in different road sec-
tions, so as to ensure the consistency and stability of the
image collected by the camera [20, 21].

3.4. HM-DCNN. For a traditional CNN extension, the
DCNN structure still consists of a circulation layer, a sam-
pling layer, a consolidation layer, and a fully connected layer.
Different from other conventional road semantic segmenta-
tion networks, HM-DCNN proposed in this paper performs
semantic segmentation of the image through deep learning
after image gray preprocessing, adding the adjustment of
different light source intensity and supplementary prepro-
cessing layer. In addition, because the preprocessed image
is more concise and unified, the complexity of the network
and the scale of target training parameters can be greatly
reduced. The specific algorithm flow of the improved HM-
DCNN is as follows. Based on the HM, complete the image
acquisition and corresponding gray image reconstruction
under the light conditions of different light sources, and
adjust the fill light intensity appropriately. Through the first
CNN, the global location is carried out to find the feature
point region of continuous features and local features, and
then, the maximum rectangular region of the target and sur-
rounding objects is output. The convolutional layer is a key
component of the HM-DCNN, and its primary function is
to calculate the multiplication of the receiving field point
and the rotation of the filter (or core) that can be studied.
After the conversion operation, a nonlinear sample is per-
formed in the aggregation layer to reduce the dimensionality
of the data [22, 23]. The most common integration strategy
is the most consolidated and average consolidation. Max
pooling takes the maximum value from the candidates, while
the average aggregation selects the average from the esti-
mated candidates. Here, the maximum aggregation method
is chosen to minimize the calculated average displacement
due to the rotation layer parameter error in order to preserve
the image structure information as much as possible. The
function map obtained after the sample below is then sent
to the activation function to process the nonlinear
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conversion. High-level grounding is done through fully con-
nected layers. Nerve cells in this layer are involved in all the
activations of the previous layer. The loss layer is usually the
last layer of the DCNN and specifies how to punish the dif-
ference between the predicted and actual label during net-
work training. Distribution points are strongly separated
by a sigmoid layer. Here, a complete circulatory neural net-
work based on the BVLC Caffe was selected to generate the
HM-DCNN. The network structure is shown in Figure 2.
There are a total of five circulation layers between the input
and output layers. The network uses the Linear Unit (ReLU)
as a function of nonlinear activation and finally identifies the
distribution points of semantic segmentation through the
sigmoid and builds the corresponding DCNN architecture.
Table 1 shows the parameters for generating the correspond-
ing circulation network according to the functional defini-
tion of the different layers of the DCNN [24].

Due to grayscale reconstruction preprocessing in the
inspection robot, global gain normalization is applied to
the processed images to further reduce the intensity changes
in the images. This gain is calculated by aligning the calcu-
lated signal envelope using the median filter. To calculate
the signal envelope, the image is filtered through a low-
pass Gaussian core. DCNN is highly resistant to lighting
changes, but the combination of image gray recovery and

normal processing makes the signal dynamic range more
uniform, which can further improve processing accuracy
and merging speed.

4. Result Analysis

4.1. HM Fill Light Experiment and Image Preprocessing. To
test the effectiveness of the proposed HM-DCNN network
application in combination with the gray reconstruction in
the actual substation scene, the substation path map
collected by the substation control robot was used to train
the network and test the network recognition accuracy.
The network was trained in stochastic gradient drop
(SGD), and the learning speed was set to 0.01, the pulse
parameter to 0.9, and the weight loss to 0.0005. In order to
make the inspection robot still run well in the dark environ-
ment, it is particularly important to supplement the light
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Figure 2: DCNN architecture.

Table 1: Network parameter settings.

Type Convolution kernel parameters Output

Convolution 1 Kernel: 3 9½ �, stride: 1 3½ �, output: 40 46 × 62 × 40
Max-pool 1 Kernel: 2 3½ �, stride: 2 23 × 31 × 40
Convolution 2 Kernel: 3 9½ �, stride: 1 3½ �, output: 40 25 × 27 × 112
Max-pool 2 Kernel: 2 3½ �, stride: 2 13 × 13 × 112
Convolution 3 Kernel: 3 3½ �, stride: 1 1½ �, output: 160 13 × 13 × 160
Convolution 4 Kernel: 3 3½ �, stride: 1 1½ �, output: 128 13 × 13 × 128
Max-pool 3 Kernel: 3 3½ �, stride: 2 6 × 6 × 128
FC 1 Output: 128 128

FC 2 Output: 128 128

Table 2: Lighting effect.

Scene VP SP Effect

A 160.2 30.4 Normal

B 94.6 65 Suitable

C 60.2 103.5 Dark
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appropriately. Scene A is the road condition during the day,
scene B is the adaptive fill light condition, and scene C is the
nonfill light condition. The calculation results of VP and SP
are shown in Table 2.

From the results in Table 2, it can be seen that the differ-
ences between the VP and SP components are clear in differ-
ent lighting conditions. According to different difference
values, setting the corresponding threshold can achieve
appropriate light compensation. In order to analyze the
influence of HM on the network recognition effect in the
scene, the traditional edge extraction processing alone has
poor adaptability in the case of high illumination difference
and scene feature brightness and will lose a lot of details.
The image after HM color space conversion and gray recon-
struction can compress the color space and greatly retain the
edge detail features, which is conducive to further scene
pavement recognition by semantic segmentation network.

4.2. HM-DCNN Semantic Segmentation Experiment. In the
preparation process of HM-DCNN training samples, in order
to avoid the overfitting of training, improve the robustness of
the network, and better extract the core features, a series of
adjustments are made to the sample data, including illumina-
tion, color saturation, rotation, and clipping.

As a user-defined layer of other reasoning network pre-
processing, HM can be combined with a variety of semantic
segmentation networks. The processed image is used for
gray reconstruction, which is used as the input of each com-
parison network and compared with the network results
trained with the original image directly as the input. The
effects of different illumination conditions on the experi-
mental results are shown in Table 3.

As shown in Figure 3, the recognition effects of several
commonly used semantic segmentation networks are com-
pared and analyzed through experiments. Under normal
illumination, DCNN has high recognition effect, but under
dim illumination and supplementary illumination, the rec-
ognition effect decreases significantly. Through the compar-
ison of each network after adding HM treatment, although
the improvement effect under normal light is not significant,
the recognition rate of the dark environment of the original
network has been greatly improved, especially when com-
bined with DCNN.

As shown in Table 4, the original structure of the net-
work is not adjusted and the corresponding preprocessing
layer is added, which makes the size of the network model
increase relatively, but the reasoning speed of the original
network is significantly improved, with an average of 16.4%.

5. Conclusion

This document proposes a new method of reliable visual
navigation of substation control robots in complex road
environments, which has the advantages of strong anti-
interference ability, simple operation, high precision, and
good stability. This method fully considers the road charac-
teristics and working conditions of the substation and uses
the insensitivity of HM color space to light change, shadow,
and interference to reconstruct the gray image of the col-
lected image; therefore, the specifics of the navigation path
are reflected in more detail. In addition, DCNN is used to
train and recognize images processed on a grayscale to
improve network recognition accuracy. Because the HM
reduces the amount of color space, the first-ever DCNN

Table 3: Influence of different light intensity and light supplement
on detection accuracy.

Algorithm
Average coverage

accuracy of
normal light

Average
accuracy of
dim light

Under fill
light

condition

VGG 0.863 0.832 0.846

HM-VGG 0.87 0.860 0.860

SCNN 0.940 0.886 0.910

HM-SCNN 0.941 0.910 0.915

BiseNet 0.935 0.900 0.920

HM-BiseNet 0.930 0.916 0.914

DCNN 0.950 0.878 0.900

HM-DCNN 0.952 0.942 0.948
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Figure 3: Influence of different light intensity and light supplement
on detection accuracy.

Table 4: Comparison of model size and reasoning speed of
different recognition networks.

Algorithm
Model

size (MB)
Average
error (%)

Embedded
reasoning
time (ms)

VGG 400 84.7 300

SCNN 157 91.2 160

HM-SCNN 158 92.2 120

BiseNet 55 91.8 110

HM-BiseNet 57 92.0 98

DCNN 45 90.9 90

HM-DCNN 47 94.7 78
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can be used in substation control robots with poor process-
ing capabilities. The results of the experiment show that the
network recognition results show a clear advantage in
combination with the HM gray reconstruction compared
to the existing pure training network. At the same time,
the HM-DCNN method proposed in this paper can stabilize
the average processing accuracy of DCNN from 91% to 93%,
have the best effect on the entire network, and fully meet the
actual needs of the substation situation.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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