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This study presented an empirical correlation to estimate the drilling rate of penetration (ROP) while drilling into a sandstone
formation. The equation developed in this study was based on the artificial neural networks (ANN) which was learned to
assess the ROP from the drilling mechanical parameters. The ANN model was trained on 630 datapoints collected from five
different wells; the suggested equation was then tested on 270 datapoints from the same training wells and then validated on
three other wells. The results showed that, for the training data, the learned ANN model predicted the ROP with an AAPE of
7.5%. The extracted equation was tested on data gathered from the same training wells where it estimated the ROP with AAPE
of 8.1%. The equation was then validated on three wells, and it determined the ROP with AAPEs of 9.0%, 10.7%, and 8.9% in
Well-A, Well-B, and Well-D, respectively. Compared with the available empirical equations, the equation developed in this
study was most accurate in estimating the ROP.

1. Introduction

Evaluation of the formation drillability is a critical process
that is highly dependent on the speed at which the drillbit
will be able to drill through the formation or what is called
the rate of penetration (ROP) [1]. Estimation and optimiz-
ing of the ROP are important since drilling with high ROP
could significantly decrease the drilling cost, but on the other
hand, the significant increase of the ROP could in many
cases lead to several problems such as hole cleaning prob-
lems and increasing the drillstring vibration, which could
lead to an increase in the nondrilling time and, therefore,
raising the drilling cost [2, 3].

Optimization of the ROP requires manipulation with
many controllable and uncontrollable parameters. Alter-
ation of uncontrollable parameters like the drilling fluid
types or drill bit size is costly; in addition, modification of

any of these parameters affects the others, which complicate
predictability of how modification of a single parameter con-
tributes to the change in ROP [4, 5].

Originally, different traditional models were optimized
to evaluate the ROP; these models were developed from
regression analysis to assess the ROP based on various
inputs, the accuracy of these models is significantly affected
by the inputs considered [6–8].

The first regression model for ROP predicted was sug-
gested by Maurer [9]; the author developed this model to esti-
mate the ROP for the tricone bit based on the DSR,WOB, and
the drill bit size only. The main limitation of this model is that
it was developed based on the assumption that the drilled cut-
ting will be lifted through the wellbore directly after the rock is
touched by the drilling bit tooth. Later, Bingham [10] con-
ducted several laboratory experiments; based on the results
of these experiments, he suggested another ROP model which
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defined the ROP as a function of only WOB and DSR, and it
neglected the WOB threshold value.

In 1974, Bourgoyne and Young [11] developed another
regression-based model which evaluates the ROP consider-
ing the effect of most of the mechanical and physical param-
eters influencing the drilling process; the effect of these
parameters is evaluated using different exponents which
are combined to form the full model. Another model to
assess the ROP while drilling with tricone bit was developed
by Warren [12]; this model evaluates the ROP by consider-
ing the optimum conditions to ensure optimum hole clean-
ing condition which satisfies the requirement that the rate of
cutting generation is the same as the rate of cuttings lifting
from the wellbore. Recently, Al-AbdulJabbar [13] developed
a regression-based ROP model which could estimate the
ROP from the drilling fluid properties in addition to the dril-
ling hydraulic and mechanical parameters. Table 1 summa-
rizes all empirical equations developed based on regression
analysis to assess the ROP.

With the recent advances in machine learning, several
researchers investigated the possibility of applying different
data-driven models to evaluate various parameters required
in different aspects related to petroleum engineering
[14–16]. Artificial neural network (ANN) is the most com-
mon technique applied in the petroleum industry, and it
approved high performance in evaluating several parameters
[17, 18]; other machine learning techniques were also suc-
cessfully applied in the petroleum industry such as support
vector regression (SVR) [19], adaptive network-based fuzzy
inference system [20], functional neural networks (FNN)
[21], and random forest (RF) [22].

Bilgesu et al. [23] suggested the application of machine
learning for ROP prediction. They developed two models
based on the ANN to evaluate the ROP in nine formations.
Bilgesu et al. [23] optimized their first model to estimate
the ROP from the type of the formation, WOB, footage,
DSR, drilled formation, drill bit’s type, diameter, tooth, bear-

ing wear, mud circulation, and gross hours of drilling
(GHD). For their second model, the authors did not include
the bit tooth and bearing wear from the inputs. As reported
by Bilgesu et al. [23], both models accurately estimated the
ROP.

ANN model was also optimized by Bataee and Mohseni
[24] to estimate the ROP based on the bit diameter, depth,
WOB, DSR, and mud weight; the data considered in this
work were collected from Shadegan oil field. From this
study, the authors were able to establish the concepts of
the effect of each input parameter on ROP prediction, and
no empirical equation was derived from the learned ANN
model.

In 2018, another ROP model was developed using ANN;
this model assessed the ROP from the drilling fluid flowrate
(Q), plastic viscosity, and density, in addition to the stand-
pipe pressure (SPP), DSR, WOB, torque, and UCS. This
model enabled the evaluation of the ROP accurately with
an AAPE of 4%.

Later, another ANN-based model was developed by Al-
AbdulJabbar et al. [25] to predict the ROP from the inputs
used by Elkatatny [26] excluding the drilling fluid plastic vis-
cosity and density to allow for real-time prediction. The
optimized model was validated into two wells, where the
results showed that ROP was evaluated with a correlation
coefficient (R) of higher than 0.94.

Ahmed et al. [27] suggested the use of the support vector
regression (SVR) for evaluation of the ROP; they optimized
the SVR using ten parameters including drilling fluid prop-
erties and drilling mechanical parameters. Validation of this
model showed that it predicted the ROP with an AAPE of
only 2.83%. After that, another SVR-based model was devel-
oped by Gan et al. [28] to predict the ROP from the WOB,
DSR, Q, SPP, and the drilling torque. The authors reported
that their developed model is not universal, and their sug-
gested modeling process needs to be repeated whenever the
model is to be applied in a different area.

Table 1: Some of the available ROP correlations.

Reference Method Input parameters Formula

Maurer [9] Empirical
DSR, unconfined compressive strength (UCS),

bit size, and WOB
R = k

NW2

D2S2

Bingham [10] Empirical Bit size, WOB, and DSR R = k
W
db

� �a5
Nc

Bourgoyne and Young [11] Empirical
TVD, WOB, DSR, Q, MW, pore pressure, TFA,

and bit wear d
dt

Rð Þ = e
a1+〠

8

i=2
aixi

 !

Warren [12] Empirical Bit size, UCS, WOB, and DSR R =
aS2d2b
NbW2 +

c
Ndb

" #−1

Osgouei [5] Empirical
TVD, MW, WOB, pore pressure, DSR, TFA, Q,

wellbore inclination, bit wear, and its type d
dt

Rð Þ = e
a1+〠

11

i=2
aixi

 !

Al-AbdulJabbar [13] Empirical
UCS, DSR, PV, Q, WOB, bit size, torque, SPP,

and the MW ROP =
WOBa × RPM × T × SPP × GPM

d2b × ρ × PV ×UCSb

2 Journal of Sensors



In 2020, other five models for optimizing the ROP were
developed by Oyedere and Gray [29]; these models were
developed using logistic regression, linear discriminant anal-
ysis (LDA), quadratic discriminant analysis (QDA), SVR,
and RF. These models were developed based on five machine
learning classification tools to optimize the ROP based on
the WOB, DSR, Q, and UCS. Although these models showed
good results in predicting the ROP, not all the most influen-
tial parameters on ROP are considered to develop these
models, where they did not consider the effect of the torque
and SPP. Besides, these models are still black box, and no
empirical equation was extracted for future use and valida-
tion by the readers.

The self-adaptive differential evolution algorithm was
applied by Al-AbdulJabbar et al. [30] to optimize the perfor-
mance of the ANN model for assessment of the ROP during
horizontal drilling of carbonate reservoir. The inputs consid-
ered to optimize this model include petrophysical and dril-
ling mechanical parameters. The results showed high
accuracy for this model which enabled evaluation of the
ROIP with an R of 0.96.

In another study, Al-AbdulJabbar et al. [31] learned the
ANN to determine the ROP in real-time during horizontally
drilling a natural gas-bearing sandstone formation. To allow
for ROP prediction in real-time, the ANN model was
learned on real-time measurable parameters of Q, DSR, tor-
que, WOB, and SSP. The optimized model was converted
into empirical correlation which evaluated the ROP in real-
time with R of 0.954, AAPE of 8.85%, and RMSE of 0.44 ft/
hr for the validation data.

Recently, Alali et al. [32] proposed a two-phase integrated
and data-driven ROP optimization system. The authors devel-
oped a heatmap function for identifying the optimal ROP
based on the Q, DSR, and WOB; they also extracted an equa-
tion from their optimized ANNmodel for predicting the ROP
in real-time. The main limitation for the developed models is
that they did not consider most of the parameters influencing
the ROP such as the drilling torque and the SPP. Table 2 com-
pares the inputs and the accuracy for some of the developed
machine learning models for ROP estimation.

The goal of this work is to develop an equation that
could be used to estimate the ROP into a vertical sandstone
formation from the drilling data such as WOB, DSR, torque,
Q, and SPP recorded on time. Conversion of the optimized
ANN model to an empirical equation, which is a function
of the drilling data only, will allow for real-time prediction.

2. Methodology

For the purpose of this study, drilling mechanical parame-
ters of the WOB, DSR, torque, Q, and SPP gathered from
eight wells drilled in the same reservoir were considered to
learn the ANN model. All inputs are possible to obtain in
real-time from the surface sensors. To ensure that only valid
and representative data are used, all inputs were prepro-
cessed through data quality assurance (QA), quality control
(QC), and data analytics processes.

2.1. Data Preprocessing. Before preprocessing the data, the
input data and their corresponding ROP collected from
some wells exceeded 50,000 datasets. Firstly, based on

Table 3: The ROP duplicates along the drilled wellbore with the
increase in the depth.

Depth ROP (ft/h) SPP (psi) Torque (kft.lbf) WOB (klbf)

XXX1.39 4.3253 2863.6 4.22 19.99

XXX1.42 4.3253 2865.1 5.17 32.78

XXX1.52 12.0027 2860.2 4.49 28.75

XXX1.55 12.0027 2858.9 4.15 25.55

XXX1.59 12.0027 2863.5 3.95 23.91

XXX1.60 12.0027 2858.6 3.68 22.72

XXX2.31 12.1049 2859.0 3.68 21.19

XXX2.32 12.1049 2861.2 3.34 20.44

XXX2.32 12.1049 2862.6 3.34 19.53

XXX2.33 12.1049 2853.1 3.27 17.96

XXX3.45 12.5975 2855.2 3.68 21.55

XXX3.46 12.5975 2856.6 4.15 26.21

Table 2: Some of the developed data-driven models for ROP prediction.

Reference Machine learning models Input parameters Remarks

Bilgesu et al. [23] ANN
Type of the formation, WOB, footage, DSR, drilled

formation, drill bit’s type, diameter, tooth, and bearing
wear, mud circulation, and GHD

—

Bataee and Mohseni [24] ANN Bit diameter, depth, WOB, DSR, and mud weight —

Elkatatny [26] ANN Q, MW, PV, SPP, torque, WOB, and DSR AAPE of 4.0%

Al-AbdulJabbar et al. [25] ANN WOB, DSR, SPP, Q, torque R of 0.96

Ahmed et al. [27] SVR Q, MFV, MW, SPP, WOB, DSR, torque, SV, YP, and PV AAPE is 2.83%

Gan et al. [28] SVR WOB, DSR, Q, SPP, and the drilling torque —

Oyedere and Gray [29] LDA, QDA, SVR, and RF WOB, DSR, Q, and UCS —

Al-AbdulJabbar et al. [30] ANN DSR, WOB, torque, RHOB, GR, and DR R of 0.96

Al-AbdulJabbar et al. [31] ANN Q, torque, DSR, WOB, and SSP
R of 0.954, AAPE of
8.85%, and RMSE of

0.44 ft/hr

Alali et al. [32] ANN Q, DSR, and WOB —
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visualizing the data, all anomalies were picked up and
removed from the data. In the second stage, minimum
limits were set on the training data, all values below these
limits are considered not valid for ROP optimization since
they are very low (not economical to be used), for exam-
ple, all ROP values less than 2 ft/hr were excluded from
the training data.

It is noted that the data is dominated by many dupli-
cates. As indicated in Table 3, at several depths, the same
ROP values are repeated, and these are corresponding to dif-
ferent values of other inputs; this could lead to confusion
during the optimization process; therefore, the next stage is
to remove all duplicates from the training data.

After performing the previous processes on the training
data, these dataset counts were reduced to about 5,000 data
points as indicated in Figure 1.

Now, the changes in the ROP as a function of the well-
bore depths were investigated; as shown in Table 4, there is
a considerable change in the ROP within a small change in
the drilled depth which is not normal; this is attributed to
sensor fall, bit whirl, or most probably to the stick or slip
problems which usually associated with horizontal drilling;
therefore, all the data recorded during that time must be
removed from the input data. As indicated in Figure 2, the
problem of stick and slip also affected the DSR measure-
ment, where the recorded values experienced a considerable
variation and fluctuation.

2.2. Using the Confined Compressive Strength to Cap the
MSE. The amount of energy needed by the drilling bit to
crush the rock is represented by the mechanical specific
energy (MSE) [33]. Therefore, optimization of the MSE is
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Figure 1: The relationship between the ROP andWOB forWellWell-C data (a) before and (b) after QA/QC processing and duplicates removal.
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important especially for horizontal drilling since applying
high MSE may lead to losing that energy through vibration;
on the other hand, applying low MSE will not be enough to
optimize the drilling process [34]. According to Teale [35],
the required MSE is almost equal to the formation confined
compressive strength.

The sandstone formation considered in this study has
confined compressive strength between 25,000 to
35,000 psi, and hence, the efficient drilling is possible when
the applied MSE is in the range of 25,000 and 35,000 psi;
therefore, the training data was filtered again to neglect all
inputs with MSE outside the range required for efficient dril-
ling as explained in Figure 3.

To confirm the dependence of the drilling efficiency on
the MSE and the relationship between the different inputs
and the ROP, R between the WOB and the ROP was deter-
mined at various MSE ranges as compared in Table 5. The
results showed that the highest correlation between the
WOB and ROP was obtained when the MSE was within
the range of 25,000 and 35,000 psi.

2.3. Optimizing the Artificial Neural Network Model. The
ANN model was trained to predict the ROP using the differ-
ent input drilling mechanical parameters of the DSR, WOB,
SPP, Q, and torque. The training data was gathered from
Well-C, Well-E, Well-F, Well-G, and Well-H, and it consists
of 630 datasets which is 70% of the total data collected from
the training wells (five wells) after preprocessing (897 data-
sets). Figure 4 shows the data collected from the training
wells; these data were utilized to train and test the ANN
model.

The training data (630 datasets collected from the training
data) was investigated to evaluate their statistical features; this
is because after learning the ANN and to ensure high accuracy
when it comes to implementing the optimized ANN on new
data, it is very important to ensure that this data is with similar
statistical characteristics as the training data. The statistical
features of the training dataset are listed in Table 6. From this
table, the Q is varying between 843 to 1110gpm, DSR is in the
range between 80 and 127 rpm, the SPP is from 1832 to
3277psi, torque is between 2.9 and 13.1klbf, WOB is from
5.3 to 82.3 klbf, and ROP is between 14.8 and 93.3 ft/hr.

A feed-forward network was considered to build the
model, where the optimum design parameters of the model
were selected based on sensitivity analysis. During this sensi-
tivity analysis, the effect of using a single, two, or three train-
ing layers and associated neurons of 3 to 30 per layer on the
performance of the ANN model was examined. The perfor-
mance of different training and transferring functions and
the optimum number of the inputs to predict the ROP was
also assessed. The results of this analysis were reported in
Tables 7–10.

As indicated in Table 7, the use of a single training layer
with 5 neurons optimized ROP prediction with AAPE of
7.5%; increasing the number of the training layers did not
lead to a decrease in the AAPE. The use of a single layer with
only five neurons is important to simplify the matrix of the
extracted weights and biases to be used for developing an
empirical correlation out of the optimized ANN model.

Out of nine training layers considered for the sensitivity
analysis, the performance of the Levenberg-Marquardt
(trainlm) function was the best for ROP evaluation with
the lowest AAPE of 7.5% as shown in Table 8.

The performance of three transferring was studied in
this stage; as shown from Table 9, the use of the pure linear
function leads to the optimize the ANN model performance
where the ROP was predicted with an AAPE of 7.5%, com-
pared with AAPEs of 7.6% and 7.7% where the tangential
sigmoid and log sigmoid functions were used, respectively.

To determine the optimum inputs to be considered, the
accuracy of the ANNmodel in estimating the ROP was com-
pared after excluding everyone of the training inputs and
considering the others to predict the ROP. The results of
Table 10 indicated that the best performance for the ANN
model was when all inputs were used to predict the ROP
where the AAPE is 7.5%, excluding the different inputs leads
to increasing the AAPE.

Regarding the number of the inputs, the results indicated
that for improving the ANN model for ROP prediction, the
use of all the five drilling mechanical parameters as inputs is
a must, the ANN model should consist of a single training
layer associated with five neurons, and the training process
will be conducted using trainlm while the data will data
transferred from the training layer to the output layer using
the pure linear function. Table 11 summarizes the optimum
design parameters for the optimized ANN model, and
Figure 5 shows a schematic of this optimized model.

2.4. Developing the Empirical Equation for ROP Estimation.
The optimized ANN model of Table 11 and Figure 5 was

Table 4: An extreme variation of the ROP as a result of the stick
and slip.

Depth ROP (ft/h)

XXX1.394 36.15

XXX1.569 63.13

XXX2.092 126.68

XXX2.161 26.83

XXX2.161 13.35

XXX2.559 29.64

XXX2.93 146.51

.

.

.

XXX2.687 99.59

XXX3.147 120.41

XXX3.713 122.39

XXX4.606 135.35

XXX4.973 102.03

XXX5.075 27.09

XXX5.33 69.51

XXX5.74 102.28

XXX5.931 15.07

XXX6.26 59.13
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then to be converted into an empirical correlation; this cor-
relation is based on the parameters listed in Table 11 and
the extracted weights and biases obtained from the opti-
mized ANN. From Table 11, the optimized ANN model
was built using the pure linear transferring function; the
generalized form of the empirical correlation representing
this model is in

y = 〠
m

j=1
wj1 〠

n

i=1
wijxi + bj

 !
+ b1

 !
, ð1Þ

where y is the targeted parameter of the output, w denotes
the extracted weights, x is the input parameters, and b rep-
resents the extracted biases.

Since the optimized ANN model has five inputs and five
neurons, substituting these parameters back into Equation
(1), it will take the form shown in

ROP = 〠
5

j=1
wj1 〠

5

i=1
wijxi + bj

 !
+ b1

 !
, ð2Þ

where the extracted w and b are listed in Table 12.
Expanding Equation (2) will lead to getting

ROP = a1GPM + a2RPM + a3SPP + a4Torque + a5WOB + c:

ð3Þ

0

100000

200000

300000

400000

500000

0 20 40 60 80 100 120

M
SE

, p
si

ROP, �/hr

RO
P

WOB

Causes and effects of founder

Whirl

Stick-slip

Figure 3: The ROP and MSE (including 25000-35000 psi) with wasted energy example.

Table 5: The correlation coefficient between the WOB and ROP
for Well-B data, at various ranges of the MSE.

MSE range R

Entire data -0.61 (negative)

10,000–35,000 -0.24 (negative)

10,000–20,000 0.22

20,000–25,000 0.14

25,000–35,000 0.31

60

70

80

90

100

110

120

0 500 1000 1500 2000 2500 3000 3500

D
SR

 (r
pm

)

Data count

Actual noisy DSR
Efficient drilling DSR

Figure 2: Example of the fluctuation of the DSR caused by the stick and slip.
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The coefficients a1 to a5 needed for Equation (3) could
be evaluated as a function of the weights associated with
training and output layers, while the constant c was calcu-
lated as a function of the matrix of the output layer weights,
the matrix of the training layer biases, and the output layer
bias as explained in the Appendix.

Substituting for the coefficients a1 to a5 and the constant
c obtained in the Appendix into Equation (3) leads to the
final ROP equation in

ROP = 0:0049GPM + 0:2292 RPM + 0:0083 SPP − 0:7577T
− 0:0884WOB − 0:0341:

ð4Þ

2.5. Testing and Validating the Developed Equation. 270
datasets of the data collected from the five training wells
were considered to test Equation (4); the testing data repre-
sents 30% of the data collected from the training wells. Other
unseen data of 280 datapoints from Well-A, 272 data points
from Well-B, and 428 datapoints from Well-D were consid-
ered to validate in Equation (4).

2.6. Comparing the Performance of Equation (4) to Available
Equations. The performance of four previously available
equations in estimating the ROP for the 280 datasets of
Well-A was compared with that of Equation (4); the four
equations compared with Equation (4) were developed by
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Figure 4: The data combination of the data collected from the training wells; these data were utilized to train and test the ANN model.

Table 6: The statistical feature of the training data.

Q (gpm) DSR (rpm) SPP (psi) Torque (kft.lbf) WOB (klbf) ROP (ft/hr)

Minimum 843 80 1832 2.9 5.3 14.8

Maximum 1110 127 3277 13.1 82.3 93.3

Range 267 47 1445 10.2 77.0 78.5

Standard deviation 76.31 10.7 289.5 1.71 14.4 13.2

Sample variance 5829 114.5 83924 2.93 208.7 175.4
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Maurer [9], Bingham [10], Bourgoyne and Young [11], and
Al-AbdulJabbar [13] which are listed in Table 1.

3. Results and Discussion

3.1. Training the ANN Model. Figure 6 compares the actual
and estimated ROP for the training data collected from the
five training wells (630 datasets). The result in Figure 6 indi-
cates the high accuracy of the trained ANN model in pre-
dicting the ROP with a high correlation coefficient (R) of
0.94 and an average absolute percentage error (AAPE) of

7.5%. Comparing the plots of actual and estimated ROP also
indicated the high machining between the two plots which
confirmed the high accuracy of the ANN model.

3.2. Testing the Developed ROP Equation. Equation (4) was
tested on 270 datasets collected from the same training wells.
As indicated in Figure 7, the ROP for the testing data was pre-
dicted with high accuracy using Equation (4), as confirmed by
the good matching of the predicted ROP with the actual ROP
curve, and the high R of 0.93 and AAPE of 8.1%.

3.3. Validating the Developed ROP Equation. Now, Equation
(4) is ready to be validated on unseen data to confirm its
ability to be applied for future assessment of the ROP. The
validation data collected from Well-A, Well-B, and Well-D
were only processed to remove all data with MSE outside
the range of 25,000-35,000 psi; QA/QC processes were not
performed on this to evaluate if Equation (4) could be
applied for future predictions on the fly.

The results of the validation are compared in Figure 8
which confirmed the high accuracy of Equation (4). ROP
was predicted in Well-A with R and AAPE of 0.95 and

Table 7: Sensitivity analysis for the number of training layers and
neurons.

No. of layers No. of neurons R AAPE (%)

1 5 0.9341 7.51

2 5 0.933 7.6

2 10 0.932 7.7

3 5 0.933 7.6

3 10 0.931 7.9
1Optimum result.

Table 8: Selection of the training function.

Training function R AAPE (%)

trainlm 0.9341 7.51

trainbfg 0.933 7.7

trainrp 0.932 7.9

trainscg 0.933 7.7

traincgb 0.932 7.8

traincgf 0.933 7.7

traincgp 0.931 7.9

trainoss 0.933 7.7

traingdx 0.933 7.7
1Optimum result.

Table 9: Selection of the transferring functions.

Transfer function R AAPE (%)

Tangential sigmoid 0.933 7.61

Log sigmoid 0.932 7.7

Pure linear 0.9341 7.51

1Optimum result.

Table 10: Selection of the number of inputs.

Inputs R AAPE (%)

All 0.9341 7.51

No Q 0.932 7.7

No DSR 0.90 9.6

No SPP 0.932 7.7

No torque 0.78 13.6

No WOB 0.93 7.9
1Optimum result.

Table 11: The optimized design parameters of the ANN model.

Parameter Value

Training function Levenberg-Marquardt

Transferring function Pure linear

Learning layers (neurons) 1 (5)

Torque

WOB

Q

DSR

SPP
ROP

b

b

Input layer
(5 Neurons)

Single hidden layer
(Neurons)

Output layer
(Single neuron)

Figure 5: Schematic of the optimized ANN model.
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Table 12: w and b required for Equation (2).

Training layer Output layer
Weight (w1)

Biases (b1) Weights (w2) Bias (b2)
i = 1 i = 2 i = 3 i = 4 i = 5

No. of neurons

j = 1 0.718 -0.740 -0.593 -0.594 0.310 0.476 -0.016 0.564

j = 2 0.077 -0.408 0.556 -1.132 -0.777 0.582 -0.407

j = 3 -0.947 0.059 0.778 0.565 0.728 -0.175 -0.095

j = 4 0.276 0.893 -0.351 -0.148 0.969 0.399 -0.319

j = 5 0.107 0.797 0.436 0.686 0.362 -0.566 0.429
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Figure 6: Plots of the real and estimated ROP for the training
dataset.
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Figure 7: Plots of the actual and predicted ROP for the testing
dataset.
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9.0%, respectively; the ROP for Well-B was predicted with R
of 0.96 and AAPE of 10.7%, while the ROP was estimated in
Well-D with R of 0.85 and AAPE of 10.6%.

3.4. Comparing the Developed Equation for Predicting the
ROP. In this section, the performance of Equation (4) was
compared with four previously available equations devel-
oped by Maurer [9], Bingham [10], Bourgoyne and Young
[11], and Al-AbdulJabbar [13] for estimating the ROP in
Well-A.

The constants required for all these correlations were
calculated in this study based on regression analysis and as
a function of the formation properties and drilling parame-
ters. For Maurer’s model, the constant k was found to be
10146000. For Bingham’s model, the constants k, a5, and c
were found to be 0.339, -0.269, and 0.636, respectively. For
Bourgoyne and Young correlation, the parameters a1, a2,
a3, a4, a5, a6, a7, and a8 were found based on the formation

type and drilling parameters to be 6.534, 0.0032, -0.0022,
0.0002, -0.4789, 0.9349, 0, and 0.3314, respectively. For Al-
AbdulJabbar model, the constants a and b were found to
be equal to 0.632 and 0.760, respectively.

The result of comparing Equation (4) with other equa-
tions is presented in Figure 9. This result indicated the high
accuracy of Equation (4) was able to estimate the ROP with
accuracy higher than the available correlations where the R
and AAPE for the ROP estimated with Equation (4) are
0.95 and 9.0%, respectively.

Comparing the available correlations, Al-AbdulJabbar’s
model predicted the ROP with the highest R of 0.81 and
the lowest AAPE of 14.5% as indicated in Figures 9 and 10.
Bingham’s model was the second accurate correlation which
estimated the ROP with R and AAPE of 0.71 and 15.4%,
respectively, followed by Bourgoyne and Young’s model
which assessed the ROP with R of 0.73 only and AAPE of
17.2%, while Maurer’s model is considered the least accurate,
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Figure 8: Plots of the actual and predicted ROP for the validation datasets.
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Figure 9: Comparison of predictability of Equation (4) and the other ROP models.
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and it predicted the ROP with a low R of 0.69 and a high
AAPE of 30.9%.

These results of this comparison approved that Equation
(4) is highly accurate compared with the other available cor-
relations in assessing the ROP while drilling sandstone
formations.

4. Conclusions

This study introduced an empirical equation for predicting
the ROP in real time while drilling through sandstone for-
mation; the developed equation was based on the optimized
ANN model, and it evaluated the ROP from the drilling
mechanical parameters which are measurable at the surface.
The results of this study showed that:

(i) For the training data, the learned ANN model pre-
dicted the ROP with an AAPE of 7.5%

(ii) The extracted equation was tested on data gathered
from the same training wells where it estimated the
ROP with AAPE of 8.1%

(iii) The equation was then validated on three wells,
and it assessed the ROP with AAPE’s of 9.0%,
10.7%, and 8.9% in Well-A, Well-B, and Well-D,
respectively

(iv) Compared with the available empirical equations,
the equation developed in this study was most accu-
rate in estimating the ROP

Appendix

Determination of the Coefficients a1 to a5 and
the Constant c

Firstly, to determine the values of the coefficients a1 to a5,
the weights of the output and training layers neurons listed
in Table 12 are transformed into matrices with sizes of [1,
5] and [5] and multiplied by each other as explained in
Equation (A.1). This multiplication leads to a matrix of [1,
5]; the five components of this matrix in the R.H.S of Equa-
tion (A.1) are the coefficients a1 to a5.

−0:0158 − 0:4067 − 0:0948 − 0:3190 0:4293ð Þ

×

0:718 − 0:740 −0:593 −0:594 0:310

0:077 −0:408 0:556 −1:132 −0:777

−0:947

0:276

0:107

0:059

0:893

0:797

0:778

−0:351

0:436

0:565

−0:148

0:686

0:728

0:969

0:362

0
BBBBBBBBB@

1
CCCCCCCCCA

=

0:0049

0:2292

0:0083

0:7577

0:0884

1
CCCCCCCCCA

0
BBBBBBBBB@

:

ðA:1Þ

Secondly, to determine the constant c, the output layer
matrix with the size of [1, 5] was multiplied by the training
layer biases matrix with the size of [1, 5]; the values used
in these matrices are extracted from Table 12. The result of
this multiplication was then added to the output layer bias
of 0.564 as shown in Equation (A.1). The bias of 0.564 is
extracted from Table 12.

0:0158 − 0:4067 − 0:0948 − 0:3190 0:4293ð Þ

×

0:4761

0:5817

−0:1745

0:3991

−0:5657

0
BBBBBBBBB@

1
CCCCCCCCCA

+ 0:5637ð Þ = −0:0341:
ðA:2Þ

Nomenclature

AAPE: Average absolute percentage error
ANN: Artificial neural networks
DSR: Drillstring rotation
FNN: Functional neural networks
LDA: Linear discriminant analysis
MW: Mud weight
PV: Drilling fluid plastic viscosity
Q: Drilling fluid flowrate
QDA: Quadratic discriminant analysis
R: Correlation coefficient
RF: Random forest
ROP: Rate of penetration
SPP: Standpipe pressure
SVR: Support vector regression
TVD: True vertical depth
UCS: Unconfined compressive strength
WOB: Weight on bit
YP: Drilling fluid yield point.

Data Availability

Most of the data are available in the manuscript. A detailed
sample will be provided upon request.
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