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In the series arc fault detection of a low-voltage distribution network, the features of the fault current signal are easily submerged
and arc fault features are difficult to be represented, which greatly increases the difficulty of fault arc detection based on current
signals. To solve these problems, a series arc fault detection method combining CEEMDAN decomposition and sensitive IMF
selection is proposed. In this paper, the CEEMDAN algorithm is first applied to complete decomposition of the arc current in
series faults. Then, 12 feature indicators of the arc current are defined and the frequency band division of the IMF component
is realized according to the kurtosis index and energy feature which are more sensitive. The time window-based feature
calculation method is proposed to obtain the local features of the time scale of each high-frequency IMF component. Accurate
selection of sensitive IMF components is realized by comparing feature indexes such as the variance and root mean square
value. Finally, for the current feature set, the second dimension reduction is realized by the subspace transformation algorithm
and the series arc fault detection is realized based on the SVM. The actual experiments show that the optimal detection
accuracy of the proposed method is 91.67% and the average accuracy of 10 crossvalidation experiments is 88.33%. It shows
that the proposed sensitive IMF selection method can effectively capture the fault component signals in the current and the
proposed fault feature description method has good representation and discrimination ability.

1. Introduction

In the low-voltage distribution network, arc fault is easily
caused by line insulation damage and loose terminal. Local
high temperature associated with arc fault can easily lead
to electrical fire accident. Arc faults are divided into series
arc, parallel arc, and ground arc. When a series arc fault
occurs, it is equivalent to a series of time-varying resistor
in the circuit, which will easily lead to the fault current sim-
ilar to the load current. Sometimes, the waveform character-
istics of the fault current are difficult to distinguish from the
characteristics of the nonlinear load current [1–3]. It is the
above factors that bring great difficulties to series arc detec-
tion and make it become a hot and difficult research area of
arc detection [4, 5].

Arc fault detection methods can be divided into two cat-
egories: (1) arc detection based on the physical characteris-
tics of arc light, arc sound, and temperature and (2) arc

detection based on time-frequency domain analysis of the
arc voltage or current signal [6, 7]. Due to the randomness
of the location of the arc fault, the first detection method is
mostly used in electrical switchgear and its application in
line arc fault detection is limited [8, 9]. The time-frequency
analysis method based on current and voltage signals of
monitoring points has become a research hotspot in arc fault
detection. The current detection method can protect the
downstream branch arc fault by installing the monitoring
point in the upstream of the line. Therefore, compared with
the voltage detection method [10], its applicability and flex-
ibility is stronger and more favored by researchers [11, 12].

Fourier transform is widely used in early arc fault detec-
tion [13]. The essence of this method is to decompose the
electrical signal into the superposition sum of multifre-
quency sine waves, which transform the time domain
problem into the frequency domain for analysis. Fourier
transform realizes the correlation between the time domain
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and frequency domain of electrical signals, but signal analy-
sis can only be implemented independently in the time
domain or frequency domain, not simultaneously. Due to
the sound adaptability, wavelet transform can realize multi-
scale time-frequency analysis of the signal, which has been
applied in the analysis of mechanical fault signals [14] and
arc fault signals [15, 16]. Wang et al. [17] proposed a hybrid
time and frequency analysis and fully connected neural net-
work- (HTFNN-) based method to identify the series AC arc
fault. Firstly, the samples are roughly divided into the resis-
tive category, capacitive-inductive category, and switching
category. Then, in each category, a separate fully connected
neural network is used to identify the fault and the method
achieves high identification accuracy. Chu et al. [18] pro-
posed a novel high-frequency coupling sensor for extracting
the features of low-voltage series arc faults. In the method,
high-frequency feature signals under different loads are col-
lected and transformed into two-dimensional feature gray
images, which are used to train the convolutional neural net-
work to realize series arc fault detection. Experiments show
that the method is stable and universal.

Hilbert-Huang transform (HHT) [19] is a typical non-
linear and nonstationary signal processing method, and its
key step is empirical mode decomposition (EMD). EMD
can decompose complex signals adaptively into several
intrinsic mode functions (IMF), but this method has a seri-
ous mode mixing problem, which affects the performance
of HHT [20]. Therefore, Wu and Huang [21] proposed the
ensemble empirical mode decomposition (EEMD). By intro-
ducing Gaussian white noise with uniform frequency distri-
bution into the signal to be decomposed, EEMD overcomes
the problem of intermittent signal and avoids mode mixing.
However, due to the interference of white noise, the recon-
structed signal is easy to be distorted. Cheng et al. [22] pro-
posed an enhanced periodic mode decomposition (EPMD)
algorithm for accurate extraction of periodic pulses from
rolling bearing composite fault signals, which effectively
improved the accuracy of bearing fault diagnosis.

In 2011, Torres et al. [23] proposed the complete
ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), which further improves the accuracy
and completeness of decomposition signals and effectively
overcomes the problem of mode mixing. However, the
CEEMDAN algorithm has not been applied in arc current sig-
nal analysis. CEEMDAN can achieve complete signal decom-
position, but in arc fault detection, usually, only a few IMF
components are sensitive to the arc fault and can reflect the
characteristics of the fault arc. Most of the other IMF compo-
nents are invalid for arc detection and even contain more
interference information. Therefore, it is extremely difficult
to extract fault identification features from all IMF compo-
nents obtained by CEEMDAN decomposition and the inter-
ference features easily affect the accuracy of arc fault detection.

Based on the above analysis, in this paper, a series arc
fault detection method based on CEEMDAN decomposition
and sensitive IMF selection is proposed. The CEEMDAN
algorithm is used to decompose the current signal and
obtain the complete IMF components. Then, this paper pro-
poses a strategy to automatically select the sensitive IMF

from the all IMF components. In this strategy, the kurtosis
index and energy feature are taken as the basis to determine
the fundamental frequency boundary and achieve frequency
division. For high-frequency IMF, we design a local feature
extraction method based on the time window. Using the
number of fundamental frequency periods as the interval,
IMF in the high-frequency band is divided into some non-
overlapping time windows and the feature indexes of the sig-
nal are calculated in each time window. The sensitive IMF
component with the strongest discriminability is selected
adaptively based on the feature indexes such as variance
and root-mean-square amplitude. After sensitive IMF selec-
tion, the local features of the best IMF component are used
as the feature description of the current signal, which can
be used to construct the current feature database. Finally,
the subspace transformation algorithm is used to implement
secondary dimension reduction for current features and the
support vector machine (SVM) is used to the series arc fault
detection. Experimental results show that the combination
of CEEMDAN decomposition and sensitive IMF selection
strategy, as well as the local feature construction method
based on the time window, can effectively capture the dis-
criminant features of the series arc, which realize the reliable
detection of the arc fault.

The main highlights of the proposed method are gener-
alized as follows:

(1) To obtain complete decomposition results of fault
current signals, the CEEMDAN decomposition algo-
rithm is first applied to current signal decomposition

(2) To extract the strongest discriminative IMF compo-
nent, a method of frequency division and an accurate
selection method of sensitive IMF are proposed

(3) To overcome the difficulty in fault feature represen-
tation, a local feature calculation method based on
the time window is proposed and 12 feature indexes
are defined to express fault features

(4) To better improve the effectiveness of series arc fault
features and fault detection accuracy, this paper
adopts subspace transformation for feature compres-
sion and SVM for fault detection

The remainder of this paper is structured as follows: in
Section 2, the CEEMDAN algorithm is described. The fea-
ture calculation methods of the current signal are illustrated
in Section 3. In Section 4, the selection method of the sensi-
tive IMF component and the series arc fault detection
method are proposed. Detailed experiments and analyses
are performed in Section 5. In Section 6, the conclusions
are drawn.

2. CEEMDAN Algorithm

Mode mixing refers to the phenomenon that a single IMF
component contains multiple components with different fre-
quencies or the same frequency component is decomposed
into different IMF components. Mode mixing is usually
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caused by the intermittency of the signal. Therefore, the
EEMD algorithm introduces Gaussian white noise into the
signal to be decomposed, which makes the signal become
continuous at different scales and alleviates the mode mixing
problem. However, the EEMD algorithm cannot completely
eliminate the introduced noise interference, which makes
the reconstructed signal distortion. In each stage of EMD
decomposition of signals, the CEEMDAN algorithm adap-
tively adjusts the noise coefficient to generate Gaussian
noises with different SNR introduced into the signals to be
decomposed, which can avoid mode mixing and eliminate
the interference of false information. The algorithm steps
are as follows:

(1) Gaussian white noise niðtÞ is added to the original
signal xðtÞ. The signal with added noise is xðtÞ + γ0
niðtÞ, where γ0 is the noise coefficient. EMD is used
to perform I decomposition for the signal with noise.
The first IMF component IMF1ðtÞ and the corre-
sponding residual component r1ðtÞ of CEEMDAN
are obtained through integration averaging:

IMF1 tð Þ = 1
I
〠
I

i=1
IMFi1 tð Þ,

r1 tð Þ = x tð Þ − IMF1 tð Þ,
ð1Þ

where I is the number of decomposition

(2) Assume that EMDjð⋅Þ is the j th mode function of
EMD decomposition. Decompose the signal r1ðtÞ + γ1
⋅ EMD1½niðtÞ� to obtain the second IMF component
of CEEMDAN:

IMF2 tð Þ = 1
I
〠
I

i=1
EMD1 r1 tð Þ + γ1 ⋅ EMD1 ni tð Þ½ �ð Þ ð2Þ

(3) Calculate the k-order residual component:

rk tð Þ = rk−1 tð Þ − IMFk tð Þ, ð3Þ

where IMFkðtÞ is the kth IMF component. EMD decomposi-
tion is performed for the k th signal rkðtÞ + γkEMDkðniðtÞÞ
until the first IMF component is obtained. On this basis,
the ðk + 1Þth IMF component of CEEMDAN is calculated:

IMFk+1 tð Þ = 1
I
〠
I

i=1
EMD1 rk tð Þ + γk ⋅ EMDk ni tð Þ½ �ð Þ ð4Þ

(4) The above calculation steps are repeated until the
residual components can no longer be decomposed

and all K IMF components of CEEMDAN are
obtained; the remaining residual RðtÞ is

R tð Þ = x tð Þ − 〠
K

k=1
IMFk tð Þ: ð5Þ

Therefore, after decomposition, the initial signal can be
expressed as

x tð Þ = 〠
K

k=1
IMFk tð Þ + R tð Þ: ð6Þ

The CEEMDAN method can realize complete recon-
struction of the original signal based on noise-assisted
analysis. Gaussian noises with different SNR are adjusted
adaptively by noise coefficient and introduced into the signal
to be decomposed, which improves the decomposition effect
of EMD effectively

3. Feature Calculation of the Current Signal

Learn from the feature calculation method commonly used
in mechanical fault diagnosis [24, 25], for each IMF compo-
nent of the current signal; this paper defines 9 statistical fea-
ture indicators, as well as the energy feature, entropy feature,
and energy entropy feature to form a 12-dimensional current
feature vector. Assume that K IMF components are obtained
after CEEMDAN decomposition and each component
sequence contains N sampling points, i.e., x1, x2,⋯, xi,⋯xN ,
where i represents the ith sampling point. The 12 feature
indicators are defined as follows:

The mean value is

�X = 1
N
〠
N

i=1
xi: ð7Þ

The variance is

σ2 = 1
N‐1〠

N

i=1
xi − �X
� �2 ð8Þ

The root-mean-square value is

XRMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xið Þ2

vuut ð9Þ

The root amplitude is

Xr =
1
N
〠
N

i=1
xij j

 !2

ð10Þ
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The average amplitude is

�Xa =
1
N
〠
N

i=1
xij j ð11Þ

The peak is

Xp =max xij jð Þ ð12Þ

The kurtosis is

K = 1
N − 1〠

N

i=1

xi − �X
� �4

σ4 ð13Þ

The kurtosis index is

Kf =
K

X4
RMS

: ð14Þ

The margin index is

Lf =
Xp

Xr
: ð15Þ

The energy feature is

E = 〠
N

i=1
xið Þ2: ð16Þ

The entropy feature is

H = −〠
N

i=1
P xið Þ lg P xið Þ, ð17Þ

where Pð⋅Þ is the probability.
The energy entropy features are

HEN = −〠
N

i=1
Pi lg Pi, ð18Þ

where Pi = Ei/∑K
i=1Ei and Ei represents the energy of the ith

IMF component.
After the above calculation, each IMF component

containing N sampling points is transformed into a
12-dimensional eigenvector, which reflects the overall state
of the signal sequence.

4. Selection of the Sensitive IMF Component
and Series Arc Fault Detection

4.1. Fundamental Frequency Determination and Frequency
Division. The 12 feature indexes defined in this paper reflect
the characteristics of IMF components at different frequen-
cies, among which the kurtosis index and energy feature
have strong sensitivity to current signal fluctuations. There-
fore, based on these two indicators, this paper divides the

frequency bands for all IMF components. In our study, it
is found that when the kurtosis index is the minimum value
and the energy feature is the maximum value, the corre-
sponding IMF component has the smallest fluctuation range
and contains the most information. This component is the
fundamental frequency component of the arc current signal,
which is selected as the boundary of division. Therefore, the
IMF component above this frequency is the high-frequency
signal and the IMF component below this frequency is the
low-frequency signal.

Since the current that causes the arc fault is usually a
high-frequency signal, so after frequency division, feature
index calculation and feature extraction only need to be car-
ried out for the initially selected high-frequency signals. It
can not only reduce the complexity of feature index calcula-
tion, feature extraction, and fault detection but also avoid the
interference of low-frequency signals and improve the accu-
racy of arc detection.

4.2. Local Feature Calculation and Selection of Sensitive IMF
Components. The global feature obtained from all N sam-
pling points of IMF component data participating in index
calculation can reflect the overall change of signals, which
reflects the characteristics of signals of different frequency
components in a macroscopic view. In the high-frequency
band, the global features of some IMF components with sim-
ilar frequencies are almost the same and the crucial features

Current signal

CEEMDAN decomposition

Frequency division and high
frequency signal selection

Time window local feature
calculation

Sensitive IMF selection

Construction of current
feature database

Secondary feature extraction and
arc detection

Figure 1: The overall flow chart of the proposed algorithm.
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that distinguish fault current signals are easily covered up.
Therefore, from the microviewpoint that the feature indexes
need to fully reflect the local changes of the arc current sig-
nal, a calculation method of local feature indexes based on
the time window is proposed. Then, the most sensitive
IMF component is accurately selected from the high-
frequency IMF components based on the time window local
features. The algorithm steps are as follows:

(1) Determine the period numberM of the fundamental
frequency IMF

(2) According to period number M, the high-frequency
IMF components are divided intoM nonoverlapping
time windows, namely, IMFi1,IMFi2,⋯, IMFiM , where
i represents the ith IMF high-frequency component

(3) For M time windows of the ith IMF component, 12
feature values are calculated according to the index
definition formula, e.g., the feature of the jth window
Fi
j = ½�X, σ2, XRMS, Xr , �Xa, Xp, K , Kf , Lf , E,H,HEN �.

Therefore, the feature formed by the ith IMF compo-
nent is M × 12 dimensions, i.e., Fi = ½Fi

1, Fi
2,⋯,Fi

M�
(4) The variance σ2, root mean square value XRMS, root

amplitude Xr , average amplitude �Xa, energy feature
E, and energy entropy feature HEN of each time win-
dow in the IMF component are selected as the judg-
ment indexes

If the fluctuation of the above judgment indexes in the
front and back time windows (such as the jth and ðj + 1Þth
windows) is less than the threshold θ, it indicates that the
signals in each window of the IMF component are stable.
That is, the IMF does not contain the current information
causing the fault arc.

If the judgment indexes in the front and back time win-
dows (such as the jth and ðj + 1Þth windows) have obvious

jump changes and the jump amplitude is greater than or
equal to the threshold θ, it indicates that the signal in the
IMF component is not stable. That is, the IMF contains
the current information causing the fault arc.

(5) Through above calculation and comparison, the IMF
component with the largest jump amplitude is selected
from the IMF components whose jump value of the
feature indexes in the front and back time windows
exceeded the threshold θ, which is the sensitive IMF
component. So, this component has the strongest dis-
crimination in the series arc fault detection

Local features with periodicity are captured by local fea-
ture calculation based on the time window, which can
express the signal change of the time scale in more detail.
It has obvious advantages and distinct degree for analyzing
the high-frequency signal fluctuation caused by the arc fault.
Based on this work, the selected sensitive IMF component
can better describe the key features of signals and improve
the accuracy of arc fault detection.

4.3. Series Arc Fault Detection. After the CEEMDAN decom-
position, sensitive IMF selection, and local feature calcula-
tion, the feature information of the best IMF component in

Schematic diagram of series fault arc generation circuit

Load

Current transformer

Fault arc generator

220V

N

L

(a) Schematic diagram of the series fault arc generation circuit

Fault arc generator Switch

Current transformer

Load: Computer Load: Microwave ovenLoad: Electric furnace

Oscilloscope

(b) Series fault arc generation circuit

Figure 2: Series fault arc generation platform.

Table 1: Current dataset under different loads.

Load type
Normal data

(group)
Fault data
(group)

Electric furnace
(400W)

10 30

Electric furnace
(800W)

10 30

Computer 10 30

Microwave oven 10 30
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the arc current is obtained. However, these features still con-
tain a lot of redundant information, even interference infor-
mation. Therefore, to improve the discriminant ability of the
features, it is very important to perform secondary feature
extraction and dimension reduction for the preliminary arc
current features.

Subspace mapping is to map feature vectors from the
original space to the new space by mathematical transforma-
tion, and the feature vectors in the new space have lower
dimension and more significant discriminant ability. Now,
the classic subspace feature extraction methods in machine
learning include PCA, LDA, ICA, KPCA, and KLDA [26].
In this work, the linear subspace mapping PCA and LDA
algorithms and the nonlinear subspace mapping KPCA
and KLDA algorithms are used for the secondary extraction
and dimension reduction of arc current features.

The support vector machine (SVM) [27] is a typical
binary classifier, which has unique advantages in solving
small sample, nonlinear, and high dimension pattern
recognition problems. It can mine the hidden decision
information of sample features to the maximum extent,
and it is widely used in the field of fault diagnosis. Therefore,
in this paper, the SVM is selected as the classifier of series arc
fault detection.

In summary, the overall flow of the proposed algorithm
is shown in Figure 1.

5. Experiment and Analysis

5.1. Current Signal Acquisition Platform. The circuit princi-
ple of the series fault arc generation platform is shown in
Figure 2. The input voltage is 220V and LPCT with a band-
width of 200 kHz is used as the current sensor. The arc fault

generator uses a copper electrode with a diameter of
10.0mm as the moving contact and a graphite electrode with
a diameter of 8.0mm as the reference static contact.

5.2. Current Dataset Construction. Based on the fault arc
generation circuit shown in Figure 2, the current signal is
collected by a recording device. The sampling frequency is
set to 50 kHz, and the sampling length is set to 20ms. The
current dataset constructed under different loads is shown
in Table 1.

Considering the load in the actual circuit can be divided
into three types: pure resistor load, resistor-inductance load,
and nonlinear load. The 800W electric furnace is selected as
the pure resistor load. When the furnace works at 400W, it
works in the state of half-wave rectification. Therefore,
800W and 400W electric furnaces basically cover the cur-
rent characteristics of resistor loads. A computer is a nonlin-
ear load, and its current waveform can represent most of the
switching power supply loads. A microwave oven belongs to
the nonlinear load with more inductance, which can repre-
sent the current characteristics of most resistor-inductance
loads. The above 4 kinds of loads are commonly used house-
hold appliances with higher frequency in life and can repre-
sent most loads, with typicality. In the experiment, 10
groups of normal current data and 30 groups of fault current
data are collected under each load. Figure 3 shows the com-
parison of current waveforms before and after the arc fault,
in which the first 5 periods are fault-free signals and the last
5 periods are fault signals.

5.2.1. Training Dataset. In the experiment, we randomly
select 5 groups of normal current data and 20 groups of fault
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Figure 3: Fault arc current waveforms under different loads.
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arc current data under 4 kinds of loads as training samples.
Therefore, the training sample set size is 100.

5.2.2. Test Dataset. The remaining 5 groups of normal cur-
rent and 10 groups of fault arc current under 4 kinds of loads
are taken as the test sample set, and the total number of test
samples is 60. In order to ensure reliable detection results,
the average accuracy of the proposed algorithm is evaluated
by 10 cross tests.

5.3. Decomposition Experiment of the Current Signal. In this
work, the CEEMDAN algorithm is used to decompose the
arc current signal and the results are shown in Figures 4
and 5. Figures 4(a) and 5(a) show the arc fault current wave-
form when the computer is used as the load and the micro-
wave oven is used as the load. The first 5 periods are normal
current waveform and the last 5 periods are fault current
waveform.

Experiments show that the CEEMDAN algorithm adap-
tively decomposes the current signals under computer load

and microwave load into 14 components and realizes the
detailed and complete decomposition of arc current signals
in different frequency ranges, which can effectively over-
come the mode mixing problem of the EMD decomposition
algorithm. Observing the decomposition results of
Figures 4(b) and 5(b), the component IMF10 contains 10
complete sinusoidal periodic signals whose frequency is con-
sistent with the original current signal. Therefore, IMF10
corresponds to the fundamental frequency component.
With IMF10 as the boundary, IMF1 to IMF9 are classified
as high-frequency signals, and IMF11 to IMF14 are classified
as low-frequency signals. The simple and clear division of
each frequency band indicates that the signal decomposition
is complete and no mode mixing occurs.

In addition, under computer load, high-frequency
decomposition signals show that IMF4, IMF5, and IMF6
components have significant differences in the time scale,
especially IMF5 and IMF6 which have good discrimination.
Under microwave load, the waveforms from IMF4 to IMF7
are significantly different before and after arc occurrence,
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tu

de
 (A

)

(a) Current waveform under computer load
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(b) CEEMDAN decomposition results

Figure 4: Fault arc current and decomposition results under computer load.
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especially IMF4 and IMF5 which have good differentiation
which contributes greatly to arc fault detection.

In conclusion, the CEEMDAN decomposition strategy
has a significant advantage in overcoming mode mixing
and the discriminant of decomposed component signals is
strong. Thus, it is feasible to select the CEEMDAN algorithm
for arc current signal decomposition in this paper.

5.4. Feature Calculation of the Arc Fault Current and
Sensitive IMF Selection. In order to make a better mathemat-
ical description of each IMF component and reduce the
complexity of the fault detection operation, we adopt statis-
tical feature indexes such as the mean and variance, as well
as the energy feature, entropy feature, and energy entropy

feature, a total of 12 feature values as the feature description
of each IMF component. Taking the decomposition results
shown in Figure 5(b) as an example, 12 features of 14 IMF
components are calculated and the feature matrix of 14 ×
12 dimension is constructed as shown in Table 2.

The data in Table 2 show that the 12 feature indexes
reflect different characteristics of multiscale IMF compo-
nents, among which the kurtosis index and energy feature
have strong discrimination. Therefore, by comparing the
kurtosis index and energy feature of each IMF component,
it can be clearly judged that IMF10 is the fundamental fre-
quency component. This component can be used as the
boundary of frequency division. IMF1–IMF9 correspond to
the high-frequency signals and IMF11–IMF14 correspond
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Figure 5: Fault arc current and decomposition results under microwave oven load.
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to the low-frequency signals. This conclusion is identical
with that obtained from the direct observation of
Figure 5(b) in Section 5.3. It further proves that the pro-
posed frequency division strategy is effective.

The current signals collected in our experiment all con-
tain 10 periods. Therefore, according to the local feature cal-
culation method of the time window, each IMF component
in the high-frequency band can be divided into 10 windows.
Then, 12 feature indexes such as the mean and variance are
calculated for each window. Table 3 shows the feature calcu-
lation results of IMF5 divided into 10 time windows in
Figure 5(b).

According to the data in Table 3, by comparing the
indexes such as the variance, root mean square, root ampli-
tude, average amplitude, energy feature, and energy entropy
feature, we can see that the index values of the first 5 periods
are significantly different from those of the last 5 periods. It
shows that this IMF component contains the information

that causes the arc fault, so this IMF component can be used
as one of the candidates of sensitive IMF components.

To accurately select the most sensitive IMF component,
in our experiment, the decomposition results under micro-
wave oven load are taken as an example. We calculate the
local features of the time window of 9 high-frequency com-
ponents including IMF1 to IMF9. After comprehensive com-
parison of all feature values, it is found that the features of
IMF4 in the first 5 periods and the last 5 periods had the largest
variation amplitude and the strongest distinguishing signifi-
cance. The feature values of other IMF components in the first
and last 5 periods also changed to some extent, but the ampli-
tude of change is lower than IMF4, and the differentiation
degree is weak. Therefore, the IMF4 component is selected as
the most sensitive component according to the principle of sig-
nificant differentiation and maximum variation amplitude.
Similarly, in the decomposition results under the computer
load in Figure 4(b), IMF6 is the most sensitive component.

Table 2: Calculation results of global eigenvalues of different IMF components.

IMF name Mean Variance Root mean square Square root amplitude Average amplitude Peak

IMF1 −1:03e − 4 4:75e − 4 0.0218 2:48e − 4 0.0157 0.3038

IMF2 −1:61e − 4 1:41e − 4 0.0119 7:45e − 5 0.0088 0.1235

IMF3 2:37e − 5 0.0027 0.0517 0.0010 0.0316 0.7145

IMF4 1:02e − 4 0.0016 0.0405 8:39e − 4 0.0290 0.3235

IMF5 1:37e − 4 0.0047 0.0682 0.0017 0.0408 0.6673

IMF6 −3:57e − 4 0.0065 0.0803 0.0028 0.0528 0.6124

IMF7 2:58e − 4 0.0090 0.0950 0.0050 0.0704 0.4450

IMF8 −2:21e − 4 0.0084 0.0918 0.0046 0.0682 0.5403

IMF9 0.0012 0.0572 0.2391 0.0369 0.1920 1.0379

IMF10 0.0129 5.1018 2.2588 4.1063 2.2064 3.5617

IMF11 −0.0034 0.0300 0.1731 0.0165 0.1286 0.5487

IMF12 9:22e − 4 0.0043 0.0653 0.0024 0.0488 0.2004

IMF13 0.0034 0.0017 0.0415 0.0012 0.0342 0.0917

IMF14 0.0160 0.0048 0.0711 0.0027 0.0520 0.2212

IMF name Kurtosis Kurtosis index Margin index Energy feature Entropy feature Energy entropy feature

IMF1 19.441 8:6e + 7 1:23e + 3 4.754 1.099 0.000841

IMF2 11.857 5:99e + 8 1:59e + 3 1.407 1.211 0.00028

IMF3 45.485 6:37e + 6 713.93 26.72 0.731 0.00376

IMF4 10.377 3:85e + 6 385.19 16.408 1.516 0.00263

IMF5 27.132 1:25e + 6 401.82 46.523 1.046 0.00626

IMF6 13.898 3:34e + 5 219.92 64.537 1.438 0.00828

IMF7 5.347 6:57e + 4 89.717 90.227 2.199 0.01071

IMF8 6.987 9:85e + 4 116.22 84.25 1.954 0.00986

IMF9 4.039 1:243 + 3 28.16 571.788 2.336 0.04906

IMF10 1.539 0.0591 0.8674 5:102e + 4 3.264 0.02517

IMF11 3.99 4:44e + 3 33.18 299.706 2.796 0.03512

IMF12 3.847 2:11e + 5 84.24 42.66 2.691 0.00541

IMF13 2.323 7:82e + 5 78.51 17.23 3.104 0.00095

IMF14 4.5012 1:76e + 5 81.89 50.51 2.548 0.00336
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In summary, in this paper, we accurately select the most
discriminating sensitive IMF component, and then, the fault
arc current signal is characterized by 10 time windows and
12 feature indexes. Thus, the original current signal with
each set of 10,000 sampling points is converted into a vector
with 120 feature values. After local feature extraction of the

time window, 160 groups of normal current and fault arc
current data under 4 load types finally form a current feature
database with a scale of 160 × 120.

5.5. Fault Arc Detection Experiment. The 160 × 120 dimen-
sion current feature database still contains some redundant

Table 3: Calculation results of local eigenvalues of IMF5 components in the time window.

Window Mean Variance Root mean square Square root amplitude Average amplitude Peak

Window 1 −5:96e − 4 0.0014 0.0372 0.00084 0.029 0.1433

Window 2 −1:49e − 4 0.0017 0.0416 0.0011 0.033 0.1155

Window 3 1:98e − 4 0.0015 0.0390 0.00097 0.0312 0.1363

Window 4 3:05e − 4 0.0017 0.0416 0.0011 0.0335 0.1367

Window 5 3:53e − 4 0.0014 0.0381 0.00092 0.0303 0.1157

Window 6 9:08e − 4 0.0046 0.0681 0.0021 0.0475 0.3939

Window 7 1:98e − 4 0.0079 0.0866 0.0031 0.0556 0.4836

Window 8 −2:20e − 6 0.0090 0.0947 0.0025 0.0503 0.6613

Window 9 5:45e − 6 0.0085 0.0924 0.0024 0.0493 0.6673

Window 10 1:47e − 4 0.0087 0.0933 0.0025 0.0499 0.6508

Window Kurtosis Kurtosis index Margin index Energy feature Entropy feature Energy entropy feature

Window 1 3.127 1:795e + 6 170.022 1.382 2.616 0.1045

Window 2 2.839 0:951e + 6 136.19 1.728 2.951 0.1223

Window 3 2.989 1:292e + 6 140.39 1.521 2.721 0.1118

Window 4 2.967 0:991e + 6 121.95 1.7306 2.767 0.1224

Window 5 2.900 1:38e + 6 125.75 1.4501 2.792 0.1081

Window 6 9.207 3:821e + 5 166.12 4.634 1.868 0.2597

Window 7 11.549 1:873e + 5 156.64 7.851 1.815 0.3003

Window 8 21.454 2:66e + 5 261.49 8.974 1.277 0.3174

Window 9 22.105 3:03e + 5 274.82 8.541 1.208 0.3120

Window 10 21.142 1:783e + 5 261.49 8.709 1.195 0.3126
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Figure 6: The influence of PCA and LDA feature dimensions on detection accuracy.
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Figure 7: Detection accuracy of KPCA and KLDA under different parameters.
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information and interference information, which not only
increases the complexity of arc fault detection but also affects
the accuracy of detection. Therefore, to mine the features with
higher discrimination, the subspace transformation method is
used to perform secondary feature extraction for the current
feature. The subspace transformation methods adopted in this
paper include linear subspace methods PCA and LDA and
nonlinear subspace methods KPCA and KLDA.

Series fault arc detection is a binary classification prob-
lem and the SVM is used as the fault detector in this paper.
In the experiment, Gaussian kernel is used in the kernel
function of the SVM and the optimal penalty factor of the
SVM is determined to be 10 and the adjustable parameter
of kernel function is determined to be 0.55 through the cross
verification grid search method.

The main influencing factor of PCA and LDA is the
retained feature dimension d during feature extraction. The
influence factors of KPCA and KLDA include reserved fea-
ture dimension d and adjustable parameter σ in kernel func-
tion. Therefore, comparison experiments are performed to
determine the parameter settings for optimal performance of
each algorithm. Figure 6 shows the influence of PCA and
LDA feature dimensions on detection accuracy in a cross
experiment. Figure 7 shows the influence of KPCA and KLDA
feature dimensions and the kernel function adjustable param-
eter on detection accuracy in a cross experiment.

As shown in Figure 6, the curves of arc fault detection
accuracy have similar trends. When the dimension is lower
than 25, the detection accuracy is generally low. At this
stage, as the dimension gradually increases, the effective
information contained in the feature gradually increases, so

the detection accuracy increases rapidly. When the dimen-
sion is 30–45, the detection accuracy reaches a high value
but there is a small fluctuation affected by the validity of
the feature. When the dimension exceeds 45, interference
information will be introduced into retained features, so
the detection accuracy will decrease slightly. At this stage,
as the dimension continues to increase, the detection accu-
racy is generally stable, remaining at around 80%.

In addition, because LDA is a supervised algorithm,
while PCA is an unsupervised feature extraction algorithm,
LDA is easier for capturing strong discriminant features
than PCA. Therefore, LDA shows more excellent detection
performance. In this experiment, when the feature dimen-
sion is 34, the optimal detection accuracy of PCA-SVM is
85%. When the feature dimension is 35, the optimal
detection accuracy of LDA-SVM is 88.33%. After 10 crossva-
lidation experiments, the average detection accuracy of
PCA-SVM is 77.2%. The average detection accuracy of the
LDA-SVM algorithm is 81.5%.

Figure 7 shows the influence of feature dimensions on
detection accuracy when the kernel function adjustable
parameter has different values. It is found that the effect of
the feature-retained dimension on detection accuracy is sim-
ilar to that of the linear subspace algorithm. The adjustable
parameter of kernel function plays a key role in improving
the detection accuracy. As shown in Figure 7, the optimal
value of the adjustable parameter of the KPCA algorithm is
0.4 and the optimal feature-retained dimension is 30 and
the highest detection accuracy is 88.33%. The optimal value
range of the adjustable parameter of the KLDA algorithm is
0.3-0.4, and the optimal feature-retained dimension is 30,
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Figure 8: The detection accuracy of crossvalidation experiments.
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and the highest detection accuracy reaches 91.67%. After
comprehensive analysis, the kernel function adjustable
parameter of the KLDA algorithm is set to 0.35. The optimal
feature dimension of both algorithms is 30.

In order to prove the reliability and effectiveness of the
proposed algorithm, 10 crossvalidation experiments are per-
formed and the average detection accuracy of all experi-
ments is calculated as the final performance evaluation.
The results and average accuracy of 10 crossvalidation
experiments are shown in Figure 8.

In general, the performance of the nonlinear subspace
transformation algorithm is better than that of the linear algo-
rithm. Although the detection performance of the LDA-SVM
algorithm is better than the KPCA-SVM algorithm in the 1st,
9th, and 10th experiments, the overall average detection accu-
racy of KPCA-SVM is 82.7%, which is better than that of
LDA-SVM 81.5%. It shows that the feature extraction ability
of nonlinear subspace transformation is better than that of lin-
ear subspace transformation and the feature set contains more
nonlinear information. In addition, the KLDA-SVM algo-
rithm has the highest average detection accuracy of 88.33%.
The advantage of the KLDA algorithm lies in the guidance
of supervision information. Under the same condition of
retaining 30-dimensional features, the KLDA algorithm can
capture features with more significant discrimination and
stronger classification ability. Therefore, compared with the
KPCA-SVM algorithm, the detection accuracy of the KLDA-
SVM improved by about 5%.

6. Conclusions

In order to realize arc detection of series faults accurately
and efficiently, a detection algorithm based on CEEMDAN
decomposition and sensitive IMF selection is proposed. In
this paper, a series arc generation platform is built and the
current data of four kinds of loads are collected. Based on
the CEEMDAN algorithm, arc current decomposition is
implemented and a frequency division strategy is proposed
to realize high-frequency signal rough selection. Then, an
accurate selection strategy for the sensitive IMF component
is proposed, which eliminates the interference of invalid
IMF components and reduces the complexity of fault detec-
tion. A local feature construction method based on the time
window is proposed to realize local feature extraction of the
sensitive IMF component and enhance the contrast and dis-
crimination of arc current features. Subspace transformation
is used to extract secondary feature and the reduce dimen-
sion, and the support vector machine is used to detect the
series fault arc. The optimal average detection accuracy of
the proposed algorithm is 88.33%, which proves the effective-
ness of the proposed algorithm and provides an important ref-
erence for fault arc detection technology and device design.

Data Availability
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tacting the corresponding author.
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