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Conventional methods of detecting packaging defects face challenges with multiobject simultaneous detection for automatic filling
and packaging of food. Targeting this issue, we propose a packaging defect detection method based on the ECA-EfficientDet
transfer learning algorithm. First, we increased the complexity in the sampled data using the mosaic data augmentation
technique. Then, we introduced a channel-importance prediction mechanism and the Mish activation function and designed
ECA-Convblock to improve the specificity in the feature extractions of the backbone network. Heterogeneous data transfer
learning was then carried out on the optimized network to improve the generalization capability of the model on a small
population of training data. We conducted performance testing and a comparative analysis of the trained model with defect
data. The results indicate that, compared with other algorithms, our method achieves higher accuracy of 99.16% with good
stability.

1. Introduction

To guarantee high-quality products from automatic packag-
ing production lines, defect inspections are indispensable.
Usually, such inspections look for defects in the caps, labels,
packaging, spraying code, etc. In particular, the cap and label
significantly affect product quality and their appearance and
inspection are therefore of great importance.

Conventional packaging defect inspections are mostly
made using equipment based on image processing tech-
niques. For instance, Toxqui-Quitl et al. [1] proposed a
PET bottle defect inspection method with self-adaptive
gamma adjustments to bottle images through a frequency
filtering technique for highly accurate inspections of the face,
wall, and bottom of bottles. Zheng et al. [2] proposed a tex-
ture area defect detection algorithm based solely on phase
change. Zhou et al. [3] combined mean squared cyclic detec-
tion and entropy partition and proposed an improved ran-
dom cyclic detection method to determine defective
regions on the bottoms of bottles. The above-mentioned
works use image processing for packaging defect inspection.
However, they require many experiments to determine the

judgment rules. In addition, they require complex inspection
environments and face challenges with simultaneous detec-
tions in multiple categories. Therefore, their advantages for
practical inspection are limited.

Simultaneously detecting defects in multiple categories
thus remains an issue to be solved. Deep learning has
recently shown potential in the field of classification and
detection and is a promising solution in the field of packag-
ing defect inspection.

The development of deep learning techniques began
with the representative convolution neural network architec-
ture, LeNet-5 [4], followed by the iconic deep learning algo-
rithm, AlexNet [5]. Later algorithms included VGG [6],
ResNet [7], MobileNet [8], and EfficientNet [9]. Zhou et al.
[10] improved the size and number of kernels on the stan-
dard LeNet5 model and integrated the PSO optimization
algorithm and proposed an improved LeNet5 model for fault
detection of liquid plunger pumps. Wang et al. [11] pro-
posed an AlexNet-based convolutional neural network
method to deal with defects from a data-driven perspective.
Zhang et al. [12] proposed a cost-sensitive residual convolu-
tional neural network for unbalanced data defect detection.
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Marques [13] proposed a convolutional neural network
diagnosis system using EfficientNet, which effectively
improved the accuracy of the medical decision-making sys-
tem. Michele et al. [14] explored the applicability of the
MobileNet V2 deep convolutional network by fine-tuning
the pretrained MobileNet neural network. The results show
that 100% classification accuracy can be achieved based on
MobileNet V2. As network architectures became more com-
plex, their feature extraction capabilities increased as well.
Deep learning networks have demonstrated outstanding
performance in the field of image identification. In particu-
lar, feature extraction networks based on deep learning have
made great progress in object detection. Object detection
falls into two categories: one- stage object detection and
two-stage object detection. One-stage object detection has a
broader range of applications, due to its superior balancing
of speed and accuracy. EfficientDet, proposed by Tan et al.
[15] from the Google Brain Team, and YOLOv4, proposed
by Bochkovskiy et al. [16], are the best-performing object
detection models. However, there is little research on the
use of object detection for packaging defect inspection. We
used EfficientDet in this study because it is more accurate
than YOLOv4.

In addition, the object detection algorithm requires a
large amount of data to build the model. However, it is dif-
ficult to obtain packaging defect samples. Therefore, to
improve the model’s generalization capability, the model
must be specifically designed and the data must be proc-
essed. Regarding the latter, data augmentation and transfer
learning are effective techniques to improve model accuracy
with small datasets. Regarding the model design, effective
channel feature importance prediction can improve the gen-
eralization capability. For example, Hu et al. [17] proposed
the squeeze-and-excitation network (SE-Net), which makes
predictions on channel importance during convolution to
improve the overall accuracy of the model. Subsequently, a
large number of scholars applied SE to some networks [18,
19]. Wang et al. [20] showed that SE-Net can also be used
for dimension reduction. To prevent any unnecessary loss
in accuracy due to dimension reduction, they designed the
effective channel attention network (ECA-Net) for improved
model accuracy.

In summary, conventional imaging processing methods
have difficulties simultaneously detecting defects in multiple
categories. Moreover, the scarcity of defect samples renders
trained models weak in terms of generalization. Thus, we
propose a fast packaging defect detection method based on
the ECA-EfficientDet transfer learning algorithm. The con-
tributions of this study are twofold. First, we incorporated
the ECA mechanism in a backbone feature extraction net-
work and designed an ECA-Convblock convolution block
that is capable of predicting the channel importance during
convolution. This suppresses channels that carry no infor-
mation, to make specific representations of object features
and improve the defect detection accuracy. Second, we used
the mosaic augmentation technique on our sample data.
This effectively enhanced the sample complexity and there-
fore improved the generalization capability. In addition, we
adopted heterogeneous data transfer learning during the

training process and we utilized the Mish activation function
to improve the robustness of our model in complex
environments.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the structure of the Efficient-
Det algorithm. Section 3 describes the framework and design
of the packaging bottle defect detection model. In Section 4,
we describe our evaluation of the proposed method through
the analysis and comparison of simulation results. Section 5
offers conclusions.

2. EfficientDet Model Architecture

EfficientDet [21] is an object detection algorithm proposed
by the Google Brain Team at CVPR2020. It can be viewed
as an extension of EfficientNet [9], extending from classifica-
tion to object detection. EfficientDet balances efficiency and
accuracy. Its overall architecture consists of the backbone
feature extraction network, an enhanced feature extraction
network, and box/class determination.

The backbone feature extraction network for Efficient-
Net contains eight convolution layers. Except for the ordi-
nary convolution (Conv. +BN+Swish) operation in the
first layer, all the other layers are formed by piling up the
convolution block (MB_Convblock), as illustrated in
Figure 1. The overall structure is illustrated in Figure 2(c1,
I). First, the dimensions are increased through an ordinary
1 1 convolution. Then, a 3 3 or 5 5 deep separable convolu-
tion is carried out with the SE-Net channel attention mech-
anism. The remaining seven layers of the network can be
described as follows: MB_Convblock piles once in the sec-
ond and eighth layers, piles twice in the third and fourth
layers, piles three times in the fifth and sixth layers, and piles
four times in the seventh layer. The fourth, sixth, and sev-
enth layers all adopt 5 5 separable convolution (whereas
the other layers use 3 3). Therefore, the depth of the feature
extraction network increases. Finally, the fourth, sixth, and
eighth layers (P3–P7) of the backbone network are output-
ted as effective feature layers for the next stage of feature
fusion and reuse.

The enhanced feature extraction network repeatedly per-
forms upsampling and downsampling on the features
extracted by the backbone network to achieve effective
fusion and high utility of the extracted features, as illustrated
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Figure 1: MB_Convblock convolution block.
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in Figure 3. The enhanced feature extraction network is
formed by three serially connected BiFPNs. Feature layers
P6 and P7 are obtained by downsampling from P5. After
fusing the features, five feature maps with rich semantic
information are outputted for the final class and box infor-
mation detection. Two deep, separable convolution opera-
tions on the fused five feature maps are thus used to
predict the final class and box information.

3. Research on EfficientDet Optimization

The subject of our study is the detection of packaging
defects. Since there are many categories of defects but sam-
ples of defects are few, directly implementing the current
algorithms cannot meet the accuracy requirements of practi-
cal production. Since the backbone feature extraction net-
work is directly related to the feature extraction capability,
we optimize three aspects of the backbone network. First,
we utilize data augmentation to improve as much as possible
the complexity of the sample data to enhance the model’s
generalization capability. Second, we modify the structure
of the network to enhance the feature extraction capability.
And third, we conduct transfer learning on the optimized
model to improve the overall robustness of the model. Our
design of the bottle packaging defect detection model is illus-
trated in Figure 2. It consists of five parts: sample input (a),
mosaic data augmentation (b), the ECA-EfficientNet back-
bone feature extraction network (c1–c3), the BiFPN
enhanced feature extraction network (d), and the efficient
head box/class result output (e).

The detection flow can be generally described as follows.
First, before training, we perform random mosaic data aug-
mentation. Then, we feed the augmented data into the opti-

mized ECA-EfficientNet backbone network for multiscale
feature extraction. Five feature maps (P3–P7) of different
scales are obtained as a result. Next, we input the acquired
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Figure 3: BiFPN-enhanced feature extraction network.
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feature maps into the enhanced feature extraction network,
which is formed by three BiFPN modules concatenated seri-
ally for feature fusion and reuse. Finally, we conduct deep
separable convolution on the five fused feature maps to
detect the box and class information of the defect samples.

3.1. Mosaic Data Augmentation Structure. Mosaic data aug-
mentation [16] is a new type of data augmentation scheme
proposed at the same time as the YOLOv4 algorithm. It
was developed from CutMix augmentation [22] and is capa-
ble of improving the image background complexity with a
small population of samples to improve the generalization
capability of models. Therefore, we adopted mosaic augmen-
tation in this study. Considering that EfficientDet is an end-
to-end network, we also adopted an end-to-end network and
embedded data augmentation into model training. The pro-
cedures are illustrated in Figure 4.

First, we select a batch from the defect sample set. Next,
we randomly pick four images from the batch and generate a
new image by stitching the top-left, top-right, bottom-left,
and bottom-right sections of the four selected images. This
step is repeated until a new batch is created. Finally, the
newly generated batch and previous samples are fed to the
model for training. Notice that the total number of samples
used for training does not change, which enables the net-
work to perform data augmentation before training in an
end-to-end manner.

3.2. Reconstruction of the Backbone Feature
Extraction Network

3.2.1. Design of the ECA-Convblock Convolution Block. The
backbone network of EfficientDet is EfficientNet, which is
described above. The backbone network is all piled from
the MB_Convblock convolution block, as illustrated in
Figure 1. In terms of algorithm design, EfficientNet adopts
deep, separable convolution to decrease the number of
parameters in the model. To avoid insufficiency in feature
extraction, the authors of the algorithm utilized the SE-Net
[17] channel attention mechanism after layer-by-layer con-
volution to improve the specificity in the extracted features
by predicting channel importance during the convolution.
However, according to the structural principles of SE-Net,

there is a reduction in feature dimensions when applying
the attention mechanism, resulting in a loss in model accu-
racy. To avoid this, we introduce an ECA_Convblock convo-
lution block as illustrated in Figure 5 to prevent accuracy
loss due to the dimension reduction when applying SE-Net.

The structure of the ECA_Convblock convolution block
is very similar to that of MB_Convblock. The major differ-
ence is that there is no dimension reduction in the ECA
channel importance prediction. Instead, the weighted chan-
nel is obtained from a 1D convolution of size k, avoiding loss
in accuracy due to dimension reduction. Here, k is obtained
self-adaptively from the number of input feature map chan-
nels. The equation can be written as follows [20].

k = ψ Cð Þ = log2 Cð Þ
γ

+
b
γ

����
����
odd

, ð1Þ

where C is the number of input sample channels, odd means
taking the odd integer number of the input, and b and γ are
heuristic parameters, which are set to b = 2 and γ = 1, per the
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values provided by the ECA authors. We maintain the out-
most residual edge, which many researchers have shown is
beneficial for stability when updating weights.

3.2.2. Introduction of the Mish Activation Function. After
showing the ECA’s improvement in model’s accuracy, we
proceed to discuss the impact of the activation function on
model accuracy. EfficientNet adopts Swish as the activation
function [23]. Based on the backbone feature extraction net-
work, we experimented with three other activation func-
tions: the hard-Swish function [24], the LeakyReLU
function [25], and the Mish function [26], as illustrated in
Figure 6.

Figure 6 shows that all four activation functions make
adjustments in the negative value region. These are benefi-
cial for preventing some of the weights from losing gradients
during model training. However, the excessive dispersion of
LeakyReLU in the negative value region makes updating the
weights unstable. The hard-Swish function, on the other
hand, has poor gradient flow during weight updating, since
it utilizes a hard zero boundary. Only the Mish function,
similar to the Swish function, avoids saturation by clipping
the positive value region and smoothly processing the nega-
tive value region, stabilizing weight updating during the iter-
ations to achieve good generalization capability. Therefore,
we adopted the Mish activation function in our model.
Through comparison, we found that the Mish function’s
performance is excellent.

3.2.3. Heterogeneous Data Transfer Learning. It is well
known that transfer learning is capable of applying model
parameters and weights learned from a large amount of data
to a small dataset to improve the generalization capability
when the relevant dataset is small. Therefore, to further
improve the overall robustness of the model after structural
optimization and because the number of defect samples is
small, we adopted transfer learning to improve the model’s
generalization capability.

When training the optimized model (ECA-EfficientDet),
in the early stage, we utilized the VOC2007 dataset.
VOC2007 is a comparatively large dataset for object detec-
tion. It contains rich data types and objects. However, due
to the differences between VOC2007 and the defect sample
data, transfer learning is heterogeneous in nature. After the
first stage, we transferred the obtained weights to the second
stage of training with defect sample data, after which we
obtained the model for defect detection.

4. Experiments and Results

4.1. Source of Data. For practical packaging defect inspec-
tion, we obtained defect samples from a common produc-
tion line packaging product, namely, bottles. A total of
1200 samples were collected with cap and label defects.
Cap defects included mislocated caps, absent caps, and nor-
mal caps. Label defects included mislocated labels, absent
label, damaged labels, and normal labels. The sample of the
packaging bottle defect image is shown in Figure 7, and the
number details are summarized in Table 1.

We utilized professional labeling software, LabelImg, to
build the ground-truth from the sample data and automati-
cally generated XML files to store practical information
about the defect data, which were used together with the
samples during model training and testing.

4.2. Model Training and Evaluation Metrics. Our experimen-
tal environment was Windows 10 OS, Anaconda Python 3.7,
NVIDIA RTX 2070 GPU, CUDA 10.1, and cuDNN 7.6.5.32.
We used the Keras library for programming. For data alloca-
tion, we selected 1000 samples from the dataset for training,
among which 900 samples were used for model training and
the other 100 for crossvalidation. The remaining 200 sam-
ples were used for performance testing after model training.
In terms of the training methodology, we adopted transfer
learning for overall model training. Then, we conducted
model optimization using our own defect sample data. We

No label Misloc label Damaged label Normal label

Normal cap Misloc cap No cap

Figure 7: Sample of the packaging bottle defect dataset; the red frame is the ground-truth box.
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configured hyperparameters with 512 × 512 input data. We
enabled early-stop, such that the iterations would not con-
tinue after the model had optimally converged. To speed
up the training, we froze the backbone network during the
first 50 epochs, during which time only the enhanced feature
extraction network’s weights were updated. The batch size
was set to 8, and the initial learning rate was 0.001. In the
next 50 epochs, we unfroze the backbone network for weight
updating to optimize the global network. During this time,
the batch size was set to 4 and the initial learning rate was
0.00005.

We used two commonly used metrics for object detec-
tion model evaluation, precision (P) and recall (R) [27].

P = TP
TP + FN

,

R =
TP

TP + FP
,

ð2Þ

where TP is the number of samples that the model correctly
detected, FN is the number of samples that the model failed
to detect, and FP is the number of samples that the model
falsely detected. Considering that the precision and recall
can vary for different confidence thresholds, we also
recorded the P-R (precision-recall) to obtain the average
precision (AP) [27].

AP =
ð1
0
P Rð ÞdR: ð3Þ

The AP value is the area under the P-R curve, where P
represents precision and R represents recall. For multicate-
gory defects, it is common to use the mean average precision
(mAP) of all categories for overall evaluation.

4.3. Model Evaluation and Performance Comparison
and Analysis

4.3.1. Evaluation of Model Training. It can be observed in
Figure 8 that, in general, the loss gradually decreases as the
number of epochs increase until convergence, indicating that
the model’s prediction error gradually decreases. In addition,
there is a sudden drop in the loss curves for the crossvalida-
tion set after epoch 43. This is because the model freezes the

backbone network in the early stage of the training. In later
iterations, after unfreezing the network, the model is trained
globally and the loss of the crossvalidation set approaches

Table 1: Defect sample number by category.

Category Count

Cap defect

No cap 263

Misloc cap 612

Normal cap 325

Label defect

No label 293

Misloc label 335

Damaged label 345

Normal label 227
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Figure 8: Model loss function.
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that of the training set, indicating a progressive improve-
ment in the model’s generalization capability.

4.3.2. Performance Testing. After model training, we
imported the files containing the learned weights into our
program and tested the model with 200 samples. The results
are illustrated in Figure 9 as P-R curves. The solid lines
denote label defects and the dashed lines denote cap defects.

From the P-R curve, the AP value for each type of defect
can be readily obtained. Overall, our method achieved a
mAP of 99.16%. For each individual defect category, except
for a slightly lower precision for mislocated labels, our
method achieved accuracy above 99% for all the other cate-
gories. This indicates that our method is capable of meeting
the practical needs of applications.

4.3.3. Performance Comparison and Analysis. In our investi-
gation, we conducted several experimental simulations to
validate the optimized model and demonstrate the advan-
tages of our method. In Tables 2–5, the results of our
method or strategy are presented in bold.

First, we investigated the impact of transfer learning and
the ECA mechanism on model performance. We compared
ECA-EfficientDet and EfficientDet with and without transfer
learning. The simulation results are summarized in Table 2.

It can be observed in Table 2 that, compared with the
model without transfer learning, the precision of the model
with transfer learning was substantially higher. This demon-
strates the effectiveness of transfer learning for small-sized
sample data and its ability to avoid hindering the model’s
generalization capability due to limited samples. In addition,
the ECA mechanism improved the model’s precision as well,
albeit at the cost of some loss in detection speed.

Next, in order to prove the necessity of the mosaic
method. We compared ECA-EfficientDet and EfficientDet
(transfer learning) with and without mosaic trick. The
results are shown in Table 3.

It can be seen from the results that the mosaic trick can
effectively improve the performance of ECA-EfficientDet
and EfficientDet. In addition, we also compared various acti-

vation functions on the ECA-EfficientDet with transfer
learning. The results are summarized in Table 4.

It can be observed in Table 4 that the Mish function has
higher precision than EfficientDet’s default activation func-
tion, Swish. However, Mish function’s detection speed is
lower than that of the others.

Because our method performs end-to-end single-stage
object detection, we compared our ECA-EfficientDet (with
Mish as the activation function) with transfer learning to
other object detection algorithms. The results are summa-
rized in Table 5.

It can be observed in Table 5 that our method achieved
higher precision (mAP = 99:16%) than the other five

Table 2: Impact of transfer learning and ECA on model performance.

Method Parameters (107) FPS Transfer learning? mAP (/%) Standard deviation (mAP)

EfficientDet 0.389 45.62
Yes 97.75 0.62

No 23.12 0.65

(Mish)ECA-EfficientDet 0.325 41.72
Yes 99.16 0.54

No 30.12 0.61

Table 3: Impact of mosaic trick on model performance.

Method Parameters (107) FPS Mosaic trick? mAP (/%) Standard deviation (mAP)

EfficientDet 0.389 45.62
Yes 97.75 0.62

No 95.45 0.59

(Mish)ECA-EfficientDet 0.325 41.72
Yes 99.16 0.54

No 97.88 0.63

Table 4: Impact of activation functions on model performance.

Method
Activation
function

mAP
(/%)

Standard deviation
(mAP)

FPS

ECA-
EfficientDet

Swish [23] 98.63 0.58 45.98

Hard-Swish
[24]

95.64 0.61 44.08

Hard-Swish
[24]

97.12 0.59 49.36

Mish [19] 99.16 0.54 41.72

Table 5: Performance of the proposed method compared with
other single-stage object detection algorithms.

Method
Parameters

(107)
mAP
(/%)

Standard deviation
(mAP)

FPS

YOLOv3
[28]

6.200 92.60 0.66 31.08

YOLOv4
[16]

6.443 97.22 0.58 22.64

YOLOv4-
tiny [16]

0.606 91.23 0.63 157.47

SSD [29] 2.628 97.55 0.71 62.56

EfficientDet
[21]

0.389 97.75 0.62 45.62

Our method 0.325 99.16 0.54 41.72
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single-stage object detection algorithms. In terms of detec-
tion speed, our method was faster than YOLOv3 and
YOLOv4 and close to EfficientDet. In addition, although
YOLOv4-tiny had the fastest detection speed, its accuracy
was the worst, rendering it disadvantageous in practical
applications.

To test the model’s stability in complex environments,
we lightened and darkened the 200 test samples using the
OpenCV library, thus generating two subsets that simulated
detection in light and dark environments. We tested our
object detection algorithm with these two subsets. The
results are illustrated in Figure 10. The dark color represents
testing in a dark environment, and the light color represents
testing in a light environment.

It can be observed in Figure 10 that, compared with
other object detection algorithms, our method was more
precise in both environments and there were few differences
between the two subsets, indicating good model stability.

In summary, although our method is slightly inferior in
terms of detection speed, it shows good performance in
terms of precision and stability. Our detection speeds can
meet the needs for practical inspection. Therefore, we expect
that our method will be advantageous for applications of
packaging defect detection.

5. Conclusions

We proposed a packaging defect detection method based on
the ECA-EfficientDet object detection algorithm. We vali-
dated its effectiveness and advantages on a sample dataset
of defects. Our results show the following: (1) The proposed
method solves a challenging problem in conventional
machine vision algorithms. It can simultaneously detect
multiple defect objects, effectively reducing inspection costs

on production lines. (2) Our design of ECA-Convblock in
the backbone feature extraction network prevents dimension
reduction in model channel importance prediction and
enhances high-quality expressions of object features, effec-
tively improving the defect detection accuracy. (3) The
incorporation of Mosaic data augmentation and the Mish
activation function into the model and the adoption of
heterogeneous-data-based transfer learning for model train-
ing effectively enhance the model’s generalization capability
and improve its robustness in complex environments. It
should be pointed out that the algorithm has obvious advan-
tage in accuracy performance and algorithm stability, but it
is slightly insufficient in detection speed. Therefore, combin-
ing light weight with the model in this paper to improve the
model’s actual generation and detection will be carried out
in the follow-up research.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] C. Toxqui-Quitl, J. Cardenas-Franco, A. Padilla-vivanco, and
J. Valdiviezo-Navarro, “Bottle Inspector Based on Machine
Vision, Proc,” in Image Processing: Machine Vision Applica-
tions VI, pp. 1–10, International Society for Optics and Pho-
tonics, 2013.

[2] Y. Zheng, Y. Wang, X. Zhou, X. Jiang, Y. Peng, and Y. Liu,
“Empty bottle texture area defect detection based on POBT,”
Journal of Electronic Measurement and Instrumentation,
vol. 31, no. 4, pp. 549–558, 2017.

[3] X. Zhou, Y. Wang, Q. Zhu et al., “A surface defect detection
framework for glass bottle bottom using visual attentionmodel
and wavelet transform,” IEEE T. Ind. Inform., vol. 16, no. 4,
pp. 2189–2201, 2020.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” Communi-
cations of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[6] Z. J. Gao, Y. J. Zhang, and Y. Li, “Extracting features from
infrared images using convolutional neural networks and
transfer learning,” Infrared Physics & Technology, vol. 105,
p. 103237, 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

[8] A. G. Howard, “MobileNets: efficient convolutional neural
networks for mobile vision applications,” Computer Vision
and Pattern Recognition, 2017, arXiv: 1704.04861v1.

[9] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling
for convolutional neural networks, Proc,” in 2019

62.86

85.43 88 85.68

94.84
99.29

28.45

91.24 91.22

99.39 99.79 98.9

YOLOv3 YOLOv4 YOLOv4-
tiny

SSD Efficient
Det

Proposed
method

0

20

40

60

80

100

Pr
ec

isi
on

Algorithm

Light
Dark

Figure 10: Comparison of our method to other object detection
algorithms in light and dark environments.

8 Journal of Sensors



International Conference on Machine Learning(ICML), pp. 1–
11, 2019.

[10] Y. Zhou and G. P. Li, “Intelligent fault diagnosis of hydraulic
piston pump combining improved LeNet-5 and PSO hyper-
parameter optimization,” Applied Acoustics., vol. 183,
p. 108336, 2021.

[11] Z. J. Wang, W. L. Zhao, and W. H. Du, “Data-driven fault
diagnosis method based on the conversion of erosion opera-
tion signals into images and convolutional neural network,”
Process Safety and Environmental Protection, vol. 149,
pp. 591–601, 2021.

[12] H. Zhang, L. X. Jiang, and C. Li, “CS-ResNet: cost-sensitive
residual convolutional neural network for PCB cosmetic defect
detection,” Expert Systems With Applications, vol. 185,
p. 115673, 2021.

[13] G. Marques, “Automated medical diagnosis of COVID-19
through EfficientNet convolutional neural network,” Applied
Soft Computing Journal, vol. 96, 2020.

[14] A. Michele, V. Colin, and D. D. Santika, “MobileNet convolu-
tional neural networks and support vector machines for palm-
print recognition,” in 4th International Conference on
Computer Science and Computational Intelligence, vol. 157,
pp. 110–117, 2019.

[15] TM P R, “Efficient Det: scalable and efficient object detection,”
in Proc. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10778–10787, 2020.

[16] A. Bochkovskiy, C. Wang, and H. Liao, “YOLOv4: optimal
speed and accuracy of object detection,” 2020, arXiv preprint,
arXiv: 2004.10934v1.

[17] J. Hu, L. Shen, G. Sun, and S. Albanie, “Squeeze-and-excitation
networks,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 42, no. 8, 2020.

[18] X. Li, X. Shen, Y. Zhou, X. Wang, and T. Q. Li, “Classification
of breast cancer histopathological images using interleaved
DenseNet with SENet (IDSNet),” PloS one, vol. 15, no. 5, 2020.

[19] Z. Li, K. Jiang, S. Qin, Y. Zhong, and A. Elofsson, “GCSENet: A
GCN, CNN and SENet ensemble model for microRNA-
disease association prediction,” PLOS Computational Biology,
vol. 17, no. 6, p. e1009048, 2021.

[20] Q. Wang, B. Wu, P. Zhu, P. Li, and Q. Hu, “ECA-net: efficient
channel attention for deep convolutional neural networks,” in
Proc. 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 11531–11539, 2020.

[21] M. T. R. Pang and Q. V. Le, “EfficientDet: scalable and efficient
object detection,” in Proc. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 10778–
10787, 2020.

[22] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cut-
Mix: regularization strategy to train strong classifiers with
localizable features,” 2019, arXiv preprint, arXiv:
1905.04899v1.

[23] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated
activation function,” 2017, arXiv preprint arXiv:1710.05941v1.

[24] A. Howard, “Searching for MobileNetV3,” in Proc. 2019 IEEE/
CVF International Conference on Computer Vision (ICCV),
pp. 1314–1324, 2020.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinear-
ities improve neural network acoustic models, proc,” in Pro-
ceedings of the 30th International Conference on Machine
Learning, pp. 1–6, 2013.

[26] D. Misra, “Mish: a self regularized non-monotonic neural acti-
vation function,” 2019, arXiv preprint arXiv:1908.08681v1.

[27] K. Li and L. Cao, “A review of object detection techniques,” in
Proc. 2020 5th International Conference on Electromechanical
Control Technology and Transportation (ICECTT), pp. 385–
390, 2020.

[28] J. Redmon and A. Farhadi, “YOLOv3: an incremental
improvement,” Computer Vision and Pattern Recognition,
2018, arXiv: 1804.02767v1.

[29] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot multi
box detector,” in Proc. 14th European Conference on Computer
Vision (ECCV), pp. 21–37, Springer International Publishing,
2016.

9Journal of Sensors


	Fast Method of Detecting Packaging Bottle Defects Based on ECA-EfficientDet
	1. Introduction
	2. EfficientDet Model Architecture
	3. Research on EfficientDet Optimization
	3.1. Mosaic Data Augmentation Structure
	3.2. Reconstruction of the Backbone Feature Extraction Network
	3.2.1. Design of the ECA-Convblock Convolution Block
	3.2.2. Introduction of the Mish Activation Function
	3.2.3. Heterogeneous Data Transfer Learning


	4. Experiments and Results
	4.1. Source of Data
	4.2. Model Training and Evaluation Metrics
	4.3. Model Evaluation and Performance Comparison and Analysis
	4.3.1. Evaluation of Model Training
	4.3.2. Performance Testing
	4.3.3. Performance Comparison and Analysis


	5. Conclusions
	Data Availability
	Conflicts of Interest

