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A novel infrared and visible image fusion method in a multilevel low-rank decomposition framework based on guided filtering
and feature extraction is proposed to address the lack of edge information and blurred details in fused images. Based on
multilevel low-rank decomposition, the fusion strategy of base part and detail contents has been improved. Firstly, the source
infrared and visible images are decomposed to the base part coefficients and n-level detail content coefficients by multilevel
low-rank decomposition. Secondly, the base part coefficients are learned by the VGG-19 network to get the weight map, and
then, the improved weight map is obtained by guided filtering, and the coeflicients of the base part are fused to acquire the
fused base part coefficients. The n-level detail content coefficients are fused using the rule of dynamic level measurement with
maximum value and then reconstructed to obtain the final fused detail content coeflicients. Finally, the fused base part and
detailed content information are superimposed to get the final fusion result. The results show that the fusion algorithm can
effectively preserve the edge and detail features of the source image. Compared with other state-of-the-art fusion methods, the
proposed method performs better in objective assessment and visual quality. The average value of evaluation metrics EN and

MI have been improved by 0.5337 and 1.0673 on the six pair images.

1. Introduction

Image fusion is an enhancement technology. Image fusion is
aimed at combining different images to generate a steady
and informative image, which can facilitate subsequent pro-
cessing and help in decision making. Recently, many fusion
methods have been proposed to fuse the features in infrared
and visible images into a single image [1]. The visible images
usually have high spatial resolution and large detail contrast
but are easily affected by harsh environments and climatic
conditions. Infrared images depict the temperature or radia-
tion of an object, which is not easily affected by the environ-
ment and climatic conditions. However, infrared images
contain a few shortcomings, such as inconspicuous texture
details and poor resolution. So we can make full use of dif-

ferent modalities to convey complementary information. It
applies in a lot of applications, such as surveillance [2],
object detection, and target recognition [3-5]. The methods
of multiscale transforms [6, 7] and representation learning
[8] are generally used in image fusion field.

The traditional multiscale transformation method
decomposes the source images into base parts and detail
content at distinct dimensions. The base part mainly repre-
sents the contours and edges of the source image, and the
detail content contains more detailed texture information.
The base part and detail content are fused according to pre-
defined rules in the transform domain. Then, the final fused
image is obtained through inverse multiscale transformation
[9]. There are some typical algorithms, such as the discrete
wavelet transform (DWT) [10], contourlet transform [11,
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12], shearlet transforms [13], and multilevel decomposition
latent low-rank representation(MDLatLRR) [14]. These
decomposition methods can be consistent with human
visual characteristics but are easy to introduce artifacts.
Hence, many other approaches have attracted great atten-
tion, such as sparse representation and low-rank
representation.

In the sparse domain, the sparse representation(SR) [15]
and dictionary learning [16] are widely used in image fusion.
For instance, Li et al. [17] proposed a novel multimodal
fusion method via three-layer decomposition and SR. Also,
there are many methods that combine SR and other
approaches for image fusion, such as low-rank representa-
tion (LRR) [18]. Zhu et al. [19] proposed a novel multimo-
dality image fusion method based on image decomposition
and sparse representation in which the texture components
can be preserved well by a sparse representation based
method. In [20], Liu et al. proposed a fusion method based
on convolutional sparse representation (CSR) in which the
detail of the source image can be retained well by multilayer
features that can learn more about it in [21]. Besides, the
joint sparse representation (JSR) [22] and cosparse represen-
tation [23] are also used in sparse domain. Although SR-
based methods can improve image fusion performance,
these methods are too time-consuming in dictionary learn-
ing operations [24]. These issues have prompted a growing
study in deep learning to replace dictionary learning in SR.

In deep learning-based fusion methods, deep features of
the source images can be extracted to reconstruct the fused
images. For example, the VGG-19 [25], ResNet-50 [26],
and DenseFuse [27] network architecture are commonly
used in deep learning-based methods. Ma et al. [28, 29] pro-
posed a multimodal image fusion based on adversarial net-
works, which improves the performance of image fusion to
a large extent. Although the deep learning-based methods
have performed well in image fusion, these methods still
have some drawbacks, such as the deeper the network; the
choice of parameters can be more complex.

To preserve many of the edge and detail features of the
source image, we proposed a multilevel low-rank decompo-
sition framework based on guided filtering and feature
extraction algorithm for infrared and visible image fusion.
This solution uses the MDLatLRR method to decompose
the original images to extract the detail content coefficients.
The fused detail content coefficients can be obtained by
dynamic level measurement with maximum value. After
superimposing these detail content coefficients, the edge
and structure information of the original images will be well
retained and improve the display of the object. Then, the
VGG-19 network is used to extract the significant area,
structure, and object characteristics of the base part coeffi-
cients, and the weight maps can be produced according to
the base part’s activity level. In order to better preserve the
edge information of the base part, the improved weight
map is obtained by guided filtering. The improved weight
map and the base part coefficients then make the Hadamard
product to acquire the fused base part coefficients. Finally,
the fused base part and detailed content information are
superimposed to get the final fusion result. After the above

Journal of Sensors

fusion scheme process, the experimental results show that
the proposed method significantly outperforms the compar-
ison methods in image information retention. The signifi-
cant contributions of this paper are summarized as follows:

(1) We introduce MDLatLRR to decompose the source
images and determine the optimal number of
decomposition layers for infrared and visible image
fusion

(2) Base part fusion: to obtain more features informa-
tion, we use the VGG-19 network and guide filtering
to fuse the base part. Firstly, the base part coefficients
are learned by the VGG network to get the weight
map. The weight map obtained in this way can well
adapt the base part coefficients of the source image
with a block distribution of pixel information. And
then, the improved weight map is obtained by
guided filtering, which can effectively preserve edge
information and reduce noise in the weight map.
Finally, the fused base part coefficients are acquired
by multiplying the improved weight map and the
base part coefficients

(3) Detailed content fusion: it is well known that the
larger the detail content coefficient is, the more
information it contains. The n-level detail content
coeflicients are fused using dynamic level measure-
ment with maximum value and then reconstructed
to obtain the final fused detail content coeflicients,
which can preserve more sufficient detail content
information from the source images

(4) We first conducted ablative experiments on the
number of decomposition layers of MDLattLRR
and the number of layers of VGG-19 and finally
selected a five-layer VGG-19 network to sufficiently
extract features

The remainder of this thesis is as follows. Section 2 intro-
duces multilevel decomposition latent low-rank representa-
tion to decompose the source images. Section 3 presents
the fusion method of this paper. The base part is fused by
the VGG-19 network and guide filtering. The detail content
is fused by dynamic level measurement with maximum
value. Section 4 presents the structure of the proposed image
fusion algorithm. The experimental results are discussed and
presented in Section 5. Section 6 summarizes this paper.

2. Multilevel Decomposition Latent Low-
Rank Representation

In this section, the method of MDLatLRR is introduced. Liu
et al. [30] proposed the method of low-rank representation
(LRR) which can extract features from the input data. LRR
is a method to explore the structure of data multisubspace
by finding the lowest rank representation among the data.
However, this method can not work well when the input
data is inadequate and damaged. In order to obtain good
performance, the latent low-rank representation (LatLRR)
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of theory [31] is proposed. The method utilizes more data to
acquire the dictionary. In addition, the salient features can
be extracted from the source data [31] by using the method
of LatLRR. More specially, the single-level decomposition
LatLRR (DLatLRR) problem is formulated as

Va=$-Q(I), (1)
I,=R(V,), (2)
I,=1-1, (3)

where I is the source image. Q(-) represents the two-stage
operator, which composes of reshuffling and the sliding win-
dow technique. S denotes the projection matrix which is
obtained by LatLRR. V; means the decomposed result of
the source image. R(-) is the operator which reconstructs
the detail image based on detail content. I; and I}, respec-
tively, signify detail content and the base part from the
source image.

Due to DLatLRR, a multilevel latent low-rank represen-
tation (MDLatLRR) [14] is formed which is able to extract
saliency features from the source image. The method of
MDLatLRR is formulated as

Vi=S-Q(Ih), (4)
I =R(VY), (5)
=D -, 19=1i=(1,2,-7], (6)

where i and r represent the present and the highest decompo-
sition layers, respectively. V', means the ith-level decomposi-
tion result of the source image. I'; and I}, respectively, signify
the ith-level detail content the base part the source image. I
indicates the source image. In the end, a base part and r detail
contents are obtained in different decomposition levels.

The framework of MDLatLRR is described in Figure 1.
The source image I is decomposed base part I}, and detail con-
tent I, by DLatLRR. In order to obtain more feature informa-
tion from the base part, the I} is further decomposed I} and I3
by DLatLRR. If the decomposition layer is r, it will get r detail
contents and a base part. As a result, the fused image can show
more information from the source image. Nevertheless, with
the decomposition layer increasing, the artifacts will introduce
more. An important problem was how to select a suitable
decomposition layer. The detailed description is in Section
5.1. Next, we will introduce the fusion method of the base part
and the detail content, respectively.

3. Fusion Method

The source images are decomposed base parts and detail
contents using the method of MDLatLRR. The base part
contains edge information and basic contour information.
Simonyan and Zisserman [25] employed the VGG network
for the first time to extract features from images of different
levels and obtained excellent results. As the level of decom-
position increases, the amount of information contained in

the base layer becomes less and less. Using the VGG network
to extract the base part, more helpful information will be
identified and integrated. The generated weight map will
contain more useful information. Then, in order to contain
more edge information, guided filtering [32] is used to
smooth the weight map. Finally, the fused base part can be
acquired by multiplying the refined weight and the source
of images. In contrast to the base part, the detailed content
contains more structural and textural information. The
fused detail content is obtained by using the rule of taking
the maximum for dynamic measurement [33].

3.1. Fusion of Base Parts. VGG-19 is a convolutional neural
network with 19 layers, including 16 convolutional layers
and three fully connected layers [34]. The structure of
VGGNet is straightforward, using the same size convolu-
tional kernel size (3 x 3) and maximum pooling size (2 x 2)
for the whole network. The performance can be improved
by continuously deepening the network structure. The struc-
ture diagram is shown in Figure 2. For the fused base part to
contain more information, a five-layer VGG-19 network is
used to extract the base part to form the feature map.

For the base part I}, and I1,, {¢""}.12 and {¢7'}’"%, indi-
cate the deep features extracted from base part by the fifth con-
volutional level of VGG-19. As shown in Figure 2, the 5th
convolutional layer is conv3-512, so there are 512 deep features
in the each base part. In addition, the pooling process will resize
the the feature map, which is 1/2° times of the original size.

Impacted by [18], the /;-norm of {¢!"} %, (x,y)} can trans-
form into the activity level survey of the original detail content,

where k € {1, 2}. Hence, the activity level map C} is shown in
c _ |l pm512 -
() = )| )

The soft-max operator is used to obtain the initial weight
maps Wk, which is shown in

_ Cy(x,
Wyoy)= o2 (5)
n=1 Cn (x’ Y )
where j is the amount of weight map, which is set to j=2. W
denotes the value of the weight map.

Using the upsampling operator, the final weight map is
obtained that is consistent with the size of the detail content.
The final weight is shown in

Wi(x,y) = Wi(x+p,y+q)p,q€{0, 1,2, 15}, (9)

In order to retain more edge information in the base
part, guided filtering is used to smooth the final weight
map W,. The detailed calculation procedure for the guided
filtering is described in [32]. First, W, is processed to obtain
the binary image, which is calculated by

1,if W7 = max (W7, W%),
R AT

0, others,
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FIGUrg 1: MDLatLRR decomposition diagram.

where P} denotes the value of the nth pixel of the kth image
in the binary image, and W} means the value of the nth pixel
of the kth image in the weight image.

Then, using the source image I; and I, as guided image,
the guided filtering is applied to P, and P,, as shown in

leGr,e(Pl’Il)’ (11)

W2=Gr,£<P2’IZ)’ (12)

where W, and W, denotes the refined weight map, which is
smoothed by the guided filtering. G is the guided filtering
function. r and € represent the parameters of guided filter-
ing. If it is too smooth, it will cause the image of the edge
and feature to be inconspicuous. The values of r and &
parameters are set in the experimental Section 5.1.

The fused base part I, is calculated by

Ibf=W1‘121+W2‘122- (13)

3.2. Fusion of Detail Content. In general, the greater the level
of coefficient activity, the more information is contained in
the image. To make the fused image include rich informa-
tion, we use a fusion method called the dynamic level mea-

surement with maximum value to fuse the detail content.
The variance of each image patch over 3x3 or 5x5 win-
dows is calculated as a measure of activity. The activity
measure is associated with the pixel in the center of that
window. The active measurements at the corresponding
position are either taken as the maximum or the average,
which is closed to each other. Since the activity measure
in [35] corresponds to the cascading of a linear high-
pass filter with a nonlinear high-pass filter, it has no clear
physical meaning. In our implementation, we use the max-
imum absolute value within the window as the activity
measure associated with the center pixel. Consistency ver-
ification can be understood as a switch to image B in the
transform domain if the central pixel value is from image
A and most of the surrounding pixel values are from
image B. The fusion strategy diagram of the detailed con-
tent matrices is shown in Figure 3.

Firstly, the energy E, and E, are calculated for the corre-
sponding local regions of the infrared and visible detail con-
tent, as shown in

(M,-1))2  (N,-1)/2 B 5
E(y)= Y Y |Viemyen)|, (14)
)2

m=—(M,~1)/2 n=—(N, -1
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FIGURE 2: The procedure of base part fusion.

where E,(x, y) denotes the magnitude of the local energy, k
€{1,2}. mxn defines the size of the local area, which is
setto m=n=3.

Then, the local area matching degree S, is calculated
by

(M,-1)/2 N,-1)/2 2
zzmzl—(Ml—l)lzzgz:l—(Nl—l)IZ Vi (x+m,y + n)V) (x +m, y + ”)‘

S(x.y) Ey(x.y) + Ey(x.y)

(15)

When the two images are strongly correlated, the
weighted average is used. Conversely, the coefficient with
higher local energy is used. The fused detail content vector

Vz( is acquired by

Vi gy =4 U ) Vi@y) + 0™ (5 ) V(%) Ei(xy) 2 Ey(x.),
dk\"™» - . i max ii
W™, y) Vi (%,9) + W (6, 9) Vb (%) Ei(%7)Ey(x9),

(16)

1 1[1-8(x,y)
2 2

D] )= 1w (),

(17)

where « is the matching threshold, which is set to 0.5 ~ 1.
w™™ and w™™ are the weighting factors.

The strategy is used to all detail content vector V. The
detailed content fusion procedure is shown in Figure 3.
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FiGUre 3: The procedure of detail content fusion.

Every detail content] fif is obtained by

where R(-) denotes the refactor operator, which is mainly
used to reorganize vectors into image blocks.

3.3. Reconstruction. The fused base part I;; and detail con-
tent I, is superposed to reconstruct the fused image I, as
shown in

I=Iy+ glj;,f. (19)

4. Structure of Fusion Algorithm

We develop a novel infrared and visible image fusion
method called a multilevel low-rank decomposition frame-
work based on guided filtering and feature extraction. The
source images are denoted as I; andf I,, which are preregis-
tered. The proposed algorithm framework in this paper is
shown in Figure 4.

The general steps of the proposed algorithm in this
paper are shown in Algorithm 1.

5. Experiments

The aim of experiment is to give a supporting evidence for
the proposed method. The experiment in this paper is com-

posed of experimental settings, ablation experiment, subjec-
tive evaluation, and objective evaluation.

5.1. Experimental Settings. In our experiment, our infrared
and visible images were collected from [36], which contains
a lot of registered infrared and visible images from a differ-
ent scene. We randomly selected six pairs of images to com-
pare the fusion results is shown in Figure 5. From left to
right, these pairs, respectively, named Men in front of house,
Bench, Bunker, Man_in_doorway, Soldier_in_trench_1I, and
Lake.

The parameter setting for GF. According to [37], the
value of r and ¢ is set to 45 and 0.3. The stride of the sliding
window is set to 1, which can decompose the source images
into patches. The window size is set to 16 x 16. The number
of decomposition layers of the MDLatLRR and the number
of network layers of the VGG-19 network to extract the base
part of the feature map will be obtained from the subsequent
ablation experiments.

Six classical infrared and visible image fusion methods
are applied to conduct the same experiment for comparison,
containing a generative adversarial network for image
fusion(FusionGAN) [28], the joint-sparse representation
model (JSR) [38], the JSR model with the method of saliency
detection(JSR_SD) [39], multilevel decomposition method
of MDLatLRR [14], two approaches based on deep learning
VGG-19 [40], and ResNet50 [41].

In order to get a quantitative comparison at different
methods, four quality metrics are used for the fused images.
These are as follows: entropy [42] measures the amount of
information contained in the fused image based on
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FIGURE 4: The proposed algorithm framework.

information theory; mutual information [43] represents a
measure of the amount of information transferred from
the source image to the fused image; Q,,, [44] indicates
the quality of edge information acquired from the source
images; MS-SSIM [45] only counts the structural informa-
tion based on the refined structural similarity. The larger
these metrics are, the better result of fusion quality will be.

All the fusion algorithms experiments are prosecuted in
MATLAB R2020a on 3.95GHz AMD(R) Ryzen(R) 5
3500X 6-Core Processor with 16 GB RAM and Win 10 64-
bit operating system. The graphics card is GeForce RTX
2070 SUPER 8G.

5.2. Ablation Experiment

5.2.1. Ablation Experiments for Decomposing Layers. To
select the best decomposition layer for the proposed method,
five pairs of images in Figure 5 are implemented in the pro-
posed algorithm in different decomposition layers. To test
the decomposition layers of MDLatLRR, the layer is set from
1 to 4. The decomposition level of fused results for five pairs

of the source image is shown in Figure 6. With the increase
of MDLatLRR decomposition level, the fused image lumi-
nance and contour are improved. However, it introduces
the artifact around the object and makes some detailed
information degradation. To obtain better fusion quality,
the fewer artifacts, the better.

The experimental results are shown in Figure 7, which is
obtained by the above quality metric. As can be seen, it is not
the case that the greater the number of layers, the greater the
value of the quality evaluation index. When the number of
decomposition layers is at the first level, the value of EN
and MI is more prominent than other layers. It suggests that
the first layer can make the fused image contain more infor-
mation from the source image. In addition, there are several
images value of Q. that is best at the second layer. That
indicates that more edge information is preserved in the
fused image with the increasing decomposition layers. As
for MS-SSIM, the first two layers show better values. It
shows that the structure of the fused image is similar to
the source image. However, when the decomposition layer
is more than two layers, the fusion performance will decline.
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Input:
The source of image I; and I,.
Output:
Fused image I;.
/# Part 1: multilevel DLatLRR decomposition. /.
1: for each K € [I;, I,]do
2: for eachi€[1,r]do
3: Run DLatLRR decomposition on K to obtain {I} , Vii}, {I},, Vi
4: end for
5: end for
[/ Part 2: fusion of base parts. */
6: for each k€ {1,2}do
7: Input image I}, is extracted by the 5th layer of VGG-19 network to acquire {¢}'}> <
8: Transform the /;-norm of {</>,’(”},5ﬂl=25 into the activity level map C; by the Equation (7);
9: Calculate the final weight map W, via Equations (8) and (9);
10:  Use the guided filtering to smooth the final weight to obtain the refined weight W, via Equations (11) and (12).
11: end for
12: Calculate the fused base parts I,,; via Equation (13).
/* Fusion of detail content.
13: for each i € {1,2,---,r}do
14:  Apply the dynamic activity level with the maximum value on {V}/, Vii} to obtain the fused vector {V}i, Vi} as Equation
(16);
15: Reconstruct the vector { V7, Vjij} to I, via Equation (18).
16: end for
/+ Reconstruction */.
17: Superpose the fused base part I, and detail content Ifzf to reconstruct the fused image I, as shown in Equation (19).

512,

ALGORITHM 1: Framework of the proposed algorithm for image fusion

FIGURE 5: Six pairs of multimodal infrared and visible images. The top is infrared images, and the bottom is visible images.
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FiGure 7: The decomposition layer is set from 1 to 4. The values of four evaluation metrics are acquired by MDLatLRR with different layers.
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FIGURE 8: The fusion results for different VGG-19 network layers.

It is because that the detailed content obtains more lumi-
nance and contour information from the base part. This
information can not be fused well by the detail content
fusion method. By the way, the larger the value of the above
evaluation index, the better the effect of fused images. On the
basis of the above analysis, the decomposition of MDLatLRR
is set one in our proposed algorithm.

5.2.2. Ablation Experiments for VGG-19 Network Layers. In
order to select an appropriate number of layers for the
VGG-19 network of the proposed method, five pairs of
images in Figure 5 are used for ablation experiments of
VGG-19 network layers. The layer is set from 1 to 5,
which represents relu_1_1, relu_2_1, relu_3_1, relu 4 1,
and relu_5_1, respectively. The fusion results for different
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FIGURE 9: The values of four evaluation metrics are acquired by VGG-19 with different network layers.

VGG-19 network layers are shown in Figure 8. As can be
seen from the Figure 8, compared with the others layers of
VGG-19 network, the fifth layers of VGG-19 network
extract more detail features and salient target information
from the source image. For example, Figure 8(t) of the
extraction of traffic sign in the fifth layer is better than
the others layers, so we choose 5-layer VGG-19 network
to extract features.

The experimental results of different network layers
are shown in Figure 9. As can be seen, with the number
of network layers increases, the values of evaluation met-
rics EN and MI become larger. It represents that the
five-layer VGG-19 network can extract more feature
information from the source images. The evaluation met-
ric Qg is basically the best when the source images are

extracted using a three-layer VGG-19 network. It indi-
cates that the three-layer VGG-19 network can extract
edge information well. As for the evaluation of MS-
SSIM, the MS-SSIM values of the third and fifth pairs
are the best when using the five-layer VGG-19 network.
The MS-SSIM values of the first, second, and fourth
pairs are the best when using the three-layer VGG-19
network. To sum up the above, we select a 5-layer
VGG-19 network to extract features.

5.3. Subjective Evaluation. Figure 10 shows the subjective
fusion results of the first pair of images. Figures 10(a)
and 10(b) are the original images. The object of man in
the red box and the grass in the green box obtained by
JSR and JSR_SD are fuzzy, and the fused images obtained
by JSR and JSR_SD have significantly more the visible
components than the infrared ones. The fused images
obtained by FusionGAN have more the infrared compo-
nents than the visible ones. In addition, the fused images
obtained by MDLatLRR, VGG-19, and ResNet-ZCA are
less artifact but the detailed texture information in the
visible image is not well preserved. As shown from
Figure 10(i), the object of man in the red box and the
grass in the green box are the clearest compared with
other methods. The proposed method adds more detailed
texture information to make the same as a visible image
while containing the infrared image of thermal radiation
information. It has excellent visibility. Figure 11 shows
the subjective fusion results of the second pair of images.
Figures 11(a) and 11 (b) are the original images. It can
be seen from Figure 11(i) that the pixel consistency of
the object edge structure is the best for the fused images.
The objects of red and green boxes obtain more texture
information. Figure 12 shows the subjective fusion results
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Figure 10: Comparison of subjective fusion results using different methods in the first pair images.

of the third pair images. Figures 12(a) and 12 (b) are the
original images. In Figure 12(i) of the proposed method,
the building in the red box contrasts with its surround-
ings, and the chromatic aberration is consistent with the

visible image. The grass in the green box has more tex-
ture information. Figure 13 shows the subjective fusion
results of the fourth pair of images. Figures 13(a) and
13(b) are the original images. In Figure 13(i), the brand
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F1Gure 11: Comparison of subjective fusion results using different methods in the second pair images.

in the green box is the most recognizable compared with
the results of other methods. The object in the red box
contains more edge feature information. Besides, target
object information is lost in some images, such as

Figures 13(c), 13(d), and 13(f). The proposed method
performs well and has good visibility. Figure 14 shows
the subjective fusion results of the fifth pair images.
Figures 14(a) and 14(b) are the original images.
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F1GUure 12: Comparison of subjective fusion results using different methods in the third pair images.

Figure 15 shows the subjective fusion results of the sixth
pair of images. Figures 15(a) and 15(b) are the original
images. From the target of red boxes and the detail fea-
tures of green boxes in Figures 15(c)-15(i), the proposed

method contains more details information from the
source images compared with other methods. The pro-
posed method adds more detail texture information to
make the same as a visible image while containing the
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FIGURE 13: Comparison of subjective fusion results using different methods in the fourth pair images.

infrared image of thermal radiation information. Com-
pared with other methods, the object in the red box
and green box are more texture information, and the
contrast between light and dark details is sharp. The

structure is the most consistent with the original images.
In addition, we randomly chose 20 pairs of images from
[36] to verify the performance of the proposed method in
Figure 16.
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FiGure 15: Comparison of subjective fusion results using different methods in the sixth pair images.
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FiGure 16: The fusion results using the proposed method on the twenty pairs of images.

5.4. Objective Evaluation. For exhibiting the attractive char-
acteristic of our proposed method, four evaluation metrics
are applied to compare the fusion property of six popular
fusion methods and our proposed algorithm. In the tables,
the best values are shown in italics.

In Table 1, the evaluation metrics EN, ML, and Qg

are the best. It indicates that the proposed method con-
tains more detailed information from the original images
and edge information. In addition, the MS-SSIM is not
the best, but the gap between the proposed method of
MS-SSIM and the best value by MDLatLRR is tiny. As
mentioned in Section 5.1, EN and MI measure the amount
of information from the source image in the fused image.
But EN is susceptible to noise. As shown in Figure 12(d),
the object of the JSR_SD fusion image is distorted and has
apparent artifacts. That is why EN and MI perform unde-
niable advantages in the third pair images. MS-SSIM
counts the structural information based on the refined
structural similarity, and the artifacts and the distortion
of image structure will lower this metric. That will result
in poor visibility. The proposed method has obvious
advantages in the MS-SSIM index, which contains little
noise and distortion of the structure. It is crucial for infra-
red and visible images. In Tables 2-5, the proposed
method mostly performs the best in EN, MI, and MS-
SSIM index. It shows that our algorithm makes the fused
image contain more information from the source image
and the structure of the fused image is similar to the
source image. In addition, for objective evaluation, we pro-
vide Table 6 which contains the average values of all test
images on different metrics. The evaluation metrics
obtained by the proposed method are the best except the
values of t/s. It indicates that our proposed method con-
tains more feature information from the source image.

TaBLE 1: Objective fusion results on the first pair images when
using different algorithms.

Fusion algorithm  EN MI Qupy  MS-SSIM t/s

Proposed method 6.7289 13.4578 0.4735 0.8586  18.1600
FusionGAN 6.4955 12.9910 0.2303  0.7476 3.3096
JSR 6.1779 12.3558 0.2953  0.8146 2.1414
JSR_SD 6.4545 129090 0.2866 0.7746  130.4739
MDLatLRR 6.4837 129675 0.4261 0.8907  74.0113
VGG-19 6.4450 12.8901 0.3526  0.8700 7.2790
ResNet-ZCA 6.5132 13.0264 0.3640  0.8758 4.1634

TaBLE 2: Objective fusion results on the third pair images when
using different algorithms.

Fusion algorithm  EN MI Quy  MS-SSIM t/s

Proposed method 7.3758 14.7516 0.4807 0.9295  17.6002
FusionGAN 6.4505 129010 0.1658  0.4494 3.1953
JSR 6.5060 13.0121 0.3221 0.8279 2.1392
JSR_SD 7.0878 14.1756 0.3023 0.8210  129.8800
MDLatLRR 6.7717 13.5433 0.4630 0.8631 73.3203
VGG-19 6.7090 13.4181 0.3185 0.8070 7.4550
ResNet-ZCA 6.7676 13.5352 0.3522  0.8280 4.1687

And the structure of the fused image is similar to the
source image, better than the others compared methods.
Among all the compared methods, the proposed method
is in the middle level in terms of time consumption in
Tables 1-6. Based on the above analysis, our fusion
algorithm is effective.
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TaBLE 3: Objective fusion results on the fourth pair images when
using different algorithms.
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TaBLE 7: Objective fusion results on the second pair images when
using different algorithms.

Fusion algorithm  EN MI Quy  MS-SSIM t/s

Fusion algorithm  EN MI Quy MS-SSIM  t/s

Proposed method 7.3181 14.6363 0.4857 0.8551  17.5412
FusionGAN 6.8485 13.6971 0.2294  0.6862 3.2032
JSR 5.5820 11.1640 0.2739 0.7258 2.1193
JSR_SD 6.4993 12.9987 0.2803 0.7439  129.8348
MDLatLRR 6.8080 13.6160 0.4395 0.8770  73.2556
VGG-19 6.7667 13.5333 0.3614 0.8516 8.1230
ResNet-ZCA 6.7676 13.5352 0.3522  0.8280 4.2020

Proposed method 7.3155 14.6310 0.6220 0.8875  3.1809
FusionGAN 6.4838 12.9677 0.2200 0.5777  0.6088
JSR 7.1251 14.2502 0.4546  0.8122 0.3714
JSR_SD 7.3270 14.6541 0.4292  0.7303  22.2860
MDLatLRR 6.6527 13.3053 0.5512  0.8494  12.6757
VGG-19 6.5654 13.1307 0.4109 0.8066  2.2384
ResNet-ZCA 6.5488 13.0976 0.3711  0.7990 1.0481

TaBLE 4: Objective fusion results on the fifth pair images when
using different algorithms.

Fusion algorithm  EN MI Qupy  MS-SSIM t/s

Proposed method 7.1776 14.3552 0.4494 0.9082  17.5217
FusionGAN 6.3209 12.6418 0.2147 0.7218 3.2608
JSR 5.8003 11.6006 0.2944 0.8217 2.1742
JSR_SD 6.9258 13.8516 0.2944 0.8249  129.8357
MDLatLRR 6.5841 13.1682 0.5273 0.8954  73.3878
VGG-19 6.5430 13.0859 0.3988 0.8693 7.4692
ResNet-ZCA 6.6948 13.3896 0.4062 0.8813 4.2912

TaBLE 5: Objective fusion results on the sixth pair images when
using different algorithms.

Fusion algorithm  EN MI Qupy  MS-SSIM t/s

Proposed method 7.1558 14.3115 0.4775 0.8748  28.5617
FusionGAN 6.5194 13.0387 0.2329 0.7299 3.2456
JSR 6.1612 12.3224 0.2862  0.7932 2.2352
JSR_SD 6.9259 13.8518 0.2660 0.7287  143.9548
MDLatLRR 6.5695 13.1389 0.4522 0.8823  47.2279
VGG-19 6.5451 13.0901 0.3526 0.8565  11.6805
ResNet-ZCA 6.5782 13.1565 0.3584  0.8609 5.1654

TAaBLE 6: Objective fusion results of average value on the six pairs
images when using different algorithms.

Fusion algorithm  EN MI Qupy  MS-SSIM tl/s

Proposed method 7.1786 14.3572 0.4981 0.8856  17.0943
FusionGAN 6.5198 13.0395 0.2155 0.6521 2.8039
JSR 6.2254 12.4509 0.3211  0.7993 1.8635
JSR_SD 6.8701 13.7401 0.3098 0.7706  114.3775
MDLatLRR 6.6449 13.2899 0.4766 0.8763  58.9798
VGG-19 6.5957 13.1914 0.3658  0.8435 7.3742
ResNet-ZCA 6.6489 13.2978 0.3684  0.8500 3.8398

6. Conclusion

This paper proposes a multilevel low-rank decomposition
method based on guided filtering and feature extraction
for infrared and visible image fusion. The VGG-19 net-
work and guide filtering are used in the base layer fusion
to obtain the weight map. Then, the final base layer is
acquired by multiplying the initial base layer and the
weight map. As for detail content fusion, we are using
the dynamic activity level with maximum value to obtain
the final detail content. The results exhibit that our pro-
posed method has an attractive performance in retaining
the object detail features information and edge feature
information compared with other fusion methods in both
subjective and objective. The proposed method can be
applied in target detection and recognition in daily com-
puter vision. In addition, there are some drawbacks to
our proposed algorithm. With decomposition increasing,
more luminance and contour information are introduced,
aggravating the fused performances. The artifacts are more
bright to interfere with the targets. In the latter work, we
will be committed to reducing artifacts’ effect and enhanc-
ing the fusion performance with the number of decompo-
sition layers increasing.
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