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Although solving the robust control problem with offline manner has been studied, it is not easy to solve it using the online
method, especially for uncertain systems. In this paper, a novel approach based on an online data-driven learning is suggested
to address the robust control problem for uncertain systems. To this end, the robust control problem of uncertain systems is
first transformed into an optimal problem of the nominal systems via selecting an appropriate value function that denotes the
uncertainties, regulation, and control. Then, a data-driven learning framework is constructed, where Kronecker’s products and
vectorization operations are used to reformulate the derived algebraic Riccati equation (ARE). To obtain the solution of this
ARE, an adaptive learning law is designed; this helps to retain the convergence of the estimated solutions. The closed-loop
system stability and convergence have been proved. Finally, simulations are given to illustrate the effectiveness of the method.

1. Introduction

Existing achievements of control techniques are mostly
acquired under the assumption that there are no dynamical
uncertainties in the controlled plants. Nevertheless, in practi-
cal control systems, there are many external disturbances
and/or model uncertainties, so the system lifetimes are
always affected by those uncertainties. The factors of uncer-
tainties must be taken into consideration in the design of
the controller such that the closed-loop systems must have
good responses even in the presence of such uncertain
dynamics. We say a controller is robust if it works even
though the practical system deviates from its nominal model.
Therefore, it creates the problem of robust control design,
which has been widely studied during the past decades [1,
2]. The latest research [1, 3] shows that the robust control
problem can be addressed via using the optimal control
approach for the nominal system. Nevertheless, the online

solution for the derived optimal control problem is not han-
dled in [1].

Considering optimal control problems, recently, many
approaches have been presented [4, 5]. A linear system opti-
mal control problem is described to address the associated
linear quadratic regulator (LQR) problem, where the opti-
mal control law can be obtained. The theory of dynamic pro-
gramming (DP) has been proposed to study the optimal
control problem in the past years [6]; however, there is an
obvious disadvantage for DP, i.e., with the increase in the
dimensions of system state and control input, there is an
alarming increase in the amount of computation and stor-
age, which is called “curse of dimensionality.” To overcome
this problem, the neural network (NN) is used to approxi-
mate the optimal control problem [7], which leads to recent
research work on adaptive/approximate dynamic program-
ming (ADP); the tricky optimal problem can be tackled via
ADP method; thus, we can get the online solution of the
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optimal cost function [8]. Recently, robust control design
based on adaptive critic idea has gradually become one of
the research hotspots in the field of ADP. Many methods
have been proposed one after another, which are collectively
referred to as the robust adaptive critic control. A basic
approach is to transform the problem to establish a close
relationship between robustness and optimality [9]. In these
literatures, the closed-loop system generally satisfies the uni-
formly ultimately bounded (UUB). These results fully show
that the ADP method is suitable for the robust control
design of complex systems in uncertain environment. Since
many previous ADP results are not focus on the robust per-
formance of the controller, the emergence of robust adaptive
critic control greatly expands the application scope of ADP
methods. Then, considering the commonness in dealing
with system uncertainties, the self-learning optimization
method combined with ADP and sliding mode control tech-
nology provides a new research direction for robust adaptive
critic control [10]. In addition, the robust ADP method is
another important achievement in this field. It is worth
mentioning that the application of robust ADP methods in
power systems has attracted special attention [11], leading
to a higher application value in industrial systems.

Based on the above facts, we develop a robust control
design for uncertain systems via using an online data-
driven learning method. For this purpose, the robust control
problem of uncertain systems is first transformed into an
optimal control problem of the nominal systems with an
appropriate cost function. Then, a data-driven technique is
developed, where Kronecker’s products and vectorization
operations are used to reformulate the derived ARE. To
solve this ARE, a novel adaptive law is designed, where the
online solution of ARE can be approximated. Simulations
are given to indicate the validity of the developed method.

The major contributions of this paper include the
following:

(1) To address the robust control problem, we transform
the robust control problem of uncertain systems into
an optimal control problem of the nominal system.
It provides an approach to address the robust control
problem

(2) Kronecker’s products and vectorization operations
are used to reformulate the derived ARE, which
can help to rewrite the original ARE into a linear
parametric form. It gives a new pathway to online
solve the ARE

(3) A newly developed adaptation algorithm driven by
the parameter estimation errors is used to online
learn the unknown parameters. The convergence of
the estimated unknown parameters to the true values
can be guaranteed

This paper is organized as follows: In Section 2, we intro-
duce the robust control problem and transform the robust
control problem into an optimal control problem. In Section
3, we design an ADP-based data-driven learning method to
online solve the derived ARE, where Kronecker’s products

Journal of Sensors

and vectorization operations are used. Section 4 gives some
simulation results to illustrate the effectiveness of the pro-
posed method. Some conclusions are stated in Section 5.

2. Preliminaries and Problem Formulation

A continuous-time (CT) uncertain system can be written as
x(t) = A(d)x + Bu + D(x), (1)

where x € R” and u € R™ are the system state and the con-
trol action, respectively. A € R™" is the system matrix and
BeR™™ is the input matrix. d € Q denotes the uncertain
parameter involved in the system, and D(x) denotes the
bounded nonlinearities. The purpose of this paper is design-
ing a controller to make the system (1) asymptotically stable
under uncertainties d € Q.

In this paper, we study the case, i.e., the matching condi-
tion is satisfied; in other words, the uncertainty is in the
range of B; thus, the uncertainty is in matrix A which can
be rewritten as A(d) — A(d,) = Bw(d) for uncertain w(d),
where d, € Q is the nominal value of d. Let F denote the
upper bound of w(d); then, for all d € Q, we have w(d)w(
d) < F. In this paper, we will resolve following problem,
i.e., realize the online solution for robust control with uncer-
tain system (1). Then, the above robust control problem can
be rewritten as

x(t) = A(dy)x + Bu + Bw(d)x. (2)

To obtain the robust control solution, the classical
method is linear matrix inequality (LMI) [12] in an offline;
online resolving the robust control problem is not easy. To
overcome this problem, the authors in [1, 9] reported that
the robust control problem of uncertain systems can be
transformed into an optimal control problem of nominal
systems, which provides a new pathway to address the
robust control problem. Hence, consider the nominal plant
of the system (1).

x(t) = A(dy)x + Bu. (3)

The aim is to find a control action u to minimize the fol-
lowing continuous cost function:

V(x) = J (x"Fx+x"Qx + u" Ru)d, (4)
t

where Q=Q7>0eR™ and R=RT>0eR™" are the

weight matrices.

It should also be noted that the upper bound F of the
uncertainties w(d) is involved in the cost function (4) to
address their effects. The following Lemma summarizes the
equivalence between the robust control of the system (1)
or (2) and the optimal control of the system (3) with cost
function (4).

Lemma 1 (see [9]). If the solution to the optimal control
problem of the nominal system (3) with cost function (4)
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exists, then it is a solution to the robust control problem for
system.

Lemma 1 exploits the relationship between the robust
control and optimal control and thus provides a new way
to address the robust control.

To address the optimal control problem of (3), an Alge-
braic Riccati equation (ARE) can be derived via the cost
function (4) as

ATP* + P*A+Q; - P*BR'B"P* =0, (5)

where P* is the solution of (5), Q;=Q+ F, and A = A(d,).
Then, based on the optimal principle, its optimal action
can be given as

u=-Kx=-R"'BTP*x. (6)
3. Online Solution to Robust Control via Data-
Driven Learning

This section will propose a data-driven learning method to
resolve the robust control, the schematic of the proposed
control method as given Figure 1.

To this end, the system states are multiplied on both
sides of ARE (5); we have

x"(ATP* + P*A-P*BR'B'P*)x=-x"Qux.  (7)

We apply two operations (vec(:) and ®) on (7) yielding

2(x® Ax)vec(P*) + (x® x)"vec(Qr) — (vec(BR'B") ® (x®x))Tvec(P* ® P*) =0.

(8)

Since the vec(P* ® P*) is involved in (8), then the
dimension of (8) is very high. To overcome this issue, a
dimensionality reduction operation on (7) is given

x"(ATP* + P*A-K'R'K)x = —x"Qrx, (9)

then we can apply two operations (vec(-)and ®) on (9)
yielding

2(x® Ax) vec(P*) + (x® x)"vec(Qy) — (vec(R) ® (x® x)) "vec(K ® K) = 0.

(10)

Hence, above equation (10) can be rewritten as a com-
pact form

¢=-WT9, (11)
where W = [vec(P*), vec(K® K)]", 9=[2(x ® Ax),~vec(
R)® (x®x)], and ¢ = (x ® x)vec(Qy).

3.1. Online Solution of Robust Control. From (11), we have
that only variable W is unknown due to involving the
unknown matrices P* and K; thus, the next operation is

Data-driven [
learning ¢
ARE /
Robust u Controlled x
s —
T control system

FIGURE 1: Schematic of the proposed control method.

design an online learning method to update the unknown
variable W. Consequently, the unknown matrices P* and
K can be online estimated based on the estimate W of W.
To this end, we define two auxiliary variables, i.e., Y € R
and N € Rlas

{ Y=-ey+ 99", Y(0) =0,
(12)

N=-eN +9¢",N(0) =0,

with €> 0 being the learning parameter. Then, its solution
can be calculated as

Y= Jt e Y9 (1)dy,
’ (13)
N :J e YW P! (1)du.

0

To realize the online estimation for W based on the esti-
mation error W, an auxiliary vector M € R is defined as

M=YW+N. (14)

After taking (11) into (13), we have N = —YW; thus, we
can rewrite (14) as

M=YW+N=-YW, (15)

with W = W — W being the estimation error. Then, we can
design the adaptive learning law as

W =—xM, (16)

with x being the learning gain.

For adaptive law (16), auxiliary vector M of (14)
obtained based on and 9 using (15) contains the information
on the parameter estimation error YW. Thus, M can be used
to drive parameter estimation. Consequently, parameter
estimation W can be updated along with the estimation
error W extracted by using the measurable system states x.
Thus, this adaptive algorithm clearly differs to the gradient
descent algorithms used in other ADP literatures.
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1) (Initialization): given the initial parameter W(0) and gains , ¢ for adaptive learning law (16)

2) (Measurement): measure the system input\output data and construct the regressors ¢, 9 in (10) and (11)

3) (Online adaptation): solve Y, N, and M and learn the unknown parameter W with (16) to obtain the control u
4) (Apply control): apply the derived output-feedback control u on the system

ALGORITHM 1: (Step-by-step Implementation for Online Robust Control Solution of Uncertain Systems).

Since the fact M = —Y W is true, then we can obtain the
following lemma as follows.

Lemma 2 (see [13, 14]. Assume that the variable 9 provided
in (12) meets persistently excited, then the matrix Y given in
(12) can be considered as positive definite, which means that
Anin(Y) > 0 > 0 for any positive constant o.

Lemma 2 shows the positivity of the variable 9, then we
can summarize the convergence of proposed adaptive learn-
ing law (16) as follows.

Theorem 3. Consider (11) with adaptive learning law (16),
when variable 9 provided in (11) satisfies PE condition, then
the estimation error W is convergence to the origin.

Proof. A Lyapunov function can be chosen as V, = (1/2)(

Wk W), then we can calculate its V, as
. ST ST <2
Vi=W kW=-W YW <—0||W| <-uV,, (17)

with p=20/A,,. (k') >0. Hence, we have the estimated
error W — 0. This completes the proof.(] ]

The step-by-step implementation of proposed learning
algorithm is given as follows.

Remark 4. For the above designed adaptive learning law (16),
which is derived by the estimation error. To this end, the
control input u and system states x are used; this is clearly
different to the existing results [15]. In particular, two oper-
ations vec(-) and ® are applied to the derived ARE; this
helps to realize the online learning. Consequently, faster
convergence can be retained compared to the previous gra-
dient method-based adaptive laws designed.

Remark 5. Tt is a fact that some ADP methods are applied to
address the robust control problem successfully. However,
most existing ADP techniques focus on H-infinity control
problem. For proposed robust control problem in this paper,
we know the uncertain parameter d are involved in system
matrix A such that A(d), so we can consider the system con-
tains unmolded dynamics. To obtain the uncertain term
bound, we should do some operations such that A(d) — A(
d,), which will be used in the cost function (4). Assume that
the system dynamics are completely unknown, the uncertain
bound may not be used in cost function as expected. Hence,
the system matrix must be known in this paper; future work

will try to solve the output-feedback robust control under
completely unknown dynamics.

3.2. Stability Analysis. Before the stability analysis of the
closed-loop system, we first define the practical optimal con-
trol as

u=-R"'B"Px, (18)

with P being the estimated P.
Taking (18) into (3), we have the closed-loop system
dynamics

x=Ax+Bu=(A-BR'B"P)x. (19)

To complete the stability analysis, we use the following
assumptions as follows.

Assumption 6. The dynamic matrices A <b, and B < b, for
b,, by > 0, the estimated matrix P < by, for by > 0.

In fact, the above assumptions are not stringent in prac-
tical systems and have been widely used in many results [13,
14, 16].

Now, some results can be included as follows.

Theorem 7. Consider the system (3) with adaptive learning
law (16), if the variable 9 is PE, then the parameter estima-
tion error W converges to zero, and the derived control is con-
vergence to its optimal control, i.e., ||u—u*|| — 0.

Proof. Consider a Lyapunov function as
1/~ ~
J=Di+ D=5 (We'W) + Dix"x+ KV, (20)

where V* is the optimal cost function provided in (4) and
I', >0 and K, > 0 are the positive constants.

From (17), we have ], as

Ji=-W' YW <—o|W|". (21)
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The estimated value of P
(=)
w
1

Time (s)

Ficure 2: Convergence of estimated the matrix P.

Then, the ] , can be derived from systems (3) and (19) as

Jy=2I)x"ix+ K, V" =2I'x" (Ax - BR'B"P)x
+ K, (—x"Qpx— u"Ru)

(22)
<2T (by = Ay (R b3bp
= K Aanin (Qe)) %] = Ky Ay (R |47
Thus, based on (21) and (22), we have J as
J<Ji+ Ty =0 ||W|[" = 2T (by — Ay (R B20p 23)

- I<1Amin(QT))||x||2 - Kl/\min(R) ||M* ”2

Then, the parameters I, and K, can be chosen fulfilling
following conditions

K, > max {Ai_m(R)’ L(QT)},

min

2 (24)
F] S bA - Amax(Ril)bBbP - KlAmin(QT) )
2
Therefore, we can rewrite (23) as
. ~ 2 %
J<=a,||[W||" = aylx||* - as]|u*| %, (25)

Error

275 1227777777
i .
L7777
i
e
1

X
Figure 3: The error between P and P.

where a,, a,, and a; are represented as

a, =ao,
a, =2 (by = Ay (R 03Dy = Ky A (Qp)).
a3 = KlAmin(R)'

(26)

Thus, we have ] — 0 for t — 0o via Lyapunov theo-
rem, then the estimation error W converges to zero, i.e., W
— W. Consequently, we can obtain the error between u
and u*as

|u-u*||=-R"'B"P-R'B"P*=—R"'B" (P-P*) — 0.
(27)
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FIGURE 4: Estimation of system state x.
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This implies the practical optimal control convergence to
0 is true. This completes the proof.(J |

4. Simulation

4.1. Example 1: Second-Order System. We consider a CT
second-order system as

|

where d € [-0.3, 0.3] denotes the uncertainties in system and

x =[x, xz]T is the state variable. The purpose of the paper is
to design a control u making the system (28) stable. In this

0 1 0

(28)
-05+d

-0.5+d 1

paper, we define d; = 0, then based on the stated in Section
2, we can rewrite the system (28) as

2 e o)

then we can extract the uncertain term as w(d)=[d, d].
Thus, the upper bound F can be calculated as

(Jo o

To complete the simulation, we set the initial system

states as x = [0.5,-0.5]", the weights matrices are Q=I,R =
1, and learning gains are £ =8.9 and « =96.5. To show the

0 1 0

1

0
1

(29)

-0.5 -0.5

0.3> 0.3°

w' (d)w(d)

0.32 0.3°

] =F. (30
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effectiveness of the proposed algorithm, the offline solution (31), we have that the estimated solution P is convergence

of ARE is given as to its optimal solution P*. This is also found in Figure 3,

where the normal error, i.e., |P — P*||, is provided. The good

1.5128 0.6180 convergence will contribute to the rapid convergence of the

: (31)  system states, which can be found in Figure 4, the system

states are bounded and smooth. Since the estimated P fast

convergence to P*, then the system response is quite fast;

Figure 2 gives the estimation of the matrix P with online this also can be found in Figure 4. The corresponding con-
adaptive learning law (16); based on the ideal solution in  trol input is given in Figure 5, which is bounded.

0.6180 1.0767
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FiGure 8: Control action u.

4.2. Example 2: Power System Application. This section will
provide a power system to test the proposed learning algo-
rithm; thus, we choose x = [g, ¢,,G;] € R® as system states,
where x; =¢, is the incremental change of the frequency
deviation, x, =¢, defines the generator output, and x; =g,
denotes the governor value position. Therefore, the state-
space expression of this power system can be given as

. 1A
To F.T, 1

. Ko 1 0 e

k=g T, X+l |» (32)
L g g |

then we can give some parameters of the proposed power
system as follows.

T =5(Hz/MW) is the time of the governor, T, =10(s)
denotes the time of the turbine model, T, = 10(Hz/MW)
is the time of the generator model, F, = 0.5(s) indicates the
feedback regulation constant, K, = 1(s) is the gain constant
of the turbine model, and K, = 1(s) shows the gain constant
of the generator model.

In order to complete this simulation, one assumes that
this system is disturbed by an uncertain term as example 1.
The initial system states are set as x, = [-0.3,0.5,1]", Q=1,
and R = 1; the learning parameters are given as £=0.5 and
x=100. Similar to example 1, the offline solution of ARE
can be given as

2.5817 1.4963 -1.7575
P*=1] 14963 7.7916 3.2394 |. (33)
-1.7575 3.2394 11.4129

Figure 6 shows the convergence of estimated matrix P;
based on the offline solution given in (33), we have that
the estimated solution P can converge to its optimal solution
P*; this in turn affects the system state response (as shown in
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Figure 7). Figure 7 gives the system state response, which is
smooth and bounded. The system control input is given in
Figure 8.

5. Conclusion

In this paper, an online data-driven ADP method is pro-
posed to solve the robust control problem for continuous-
time systems with uncertainties. The robust control problem
can be transformed into the optimal control problem. A new
online ADP scheme is then introduced to obtain the solution
of ARE via using the vectorization operator and Kronecker
product. Finally, the closed-loop system stability and the
convergence of the robust control solution are all analyzed.
Simulation results are presented to validate the effectiveness
of the proposed algorithm. It is worth noting that the
research results are satisfied to the matched uncertainty con-
dition. In our future work, we will extend the proposed idea
to address the robust tracking control problem, which allows
to carry out practical experimental validations based on
existing test-rigs in our lab.
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