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High-resolution logging images with glaring detail information are useful for analysing geological features in the field of ultrasonic
logging. The resolution of logging images is, however, severely constrained by the complexity of the borehole and the frequency
restriction of the ultrasonic transducer. In order to improve the image superresolution reconstruction algorithm, this paper
proposes a type of ultrasonic logging based on high-frequency characteristics, with multiscale dilated convolution to feature as
the basis of network-learning blocks, training in the fusion of different scale texture feature. The outcomes of other
superresolution reconstruction algorithms are then compared to the outcomes of the two-, four-, and eightfold reconstruction.
The proposed algorithm enhances subjective vision while also enhancing PSNR and SSIM evaluation indexes, according to a
large number of experiments.

1. Introduction

Diverse sensing technologies are being applied to environ-
ment sensing or source exploration with the advancement
of material technology [1–3]. By providing a crucial insight
logging map with fracture and hole information to reflect
the well’s state, borehole imaging logging has grown to be
a significant technology in the field of petroleum logging
for oil exploration. The two primary logging techniques used
in borehole imaging logging are circumference ultrasonic
imaging and microresistivity scanning, with ultrasonic imag-
ing being more widely used due to its high penetrability,
high borehole coverage, and simple instrument structure.
Figure 1 shows the principle of ultrasonic imaging logging.
This instrument mainly uses ultrasonic transducer to send
and receive ultrasonic signals in oil wells and adopts the
principle of pulse reflection. Rotate the transducer while
exciting the transducer to generate ultrasonic waves, so that
it can rotate circumferentially downwards and emit scanning
to the borehole wall; after the ultrasonic wave is transmitted,
the reflected echo will be generated when it meets the bore-
hole wall, and it will be returned to the transducer to be
received. If the borehole diameter is different, the propaga-

tion time of ultrasonic wave in the borehole will be different,
so the geometric image of the borehole wall can be inferred
according to the propagation time of ultrasonic wave [4].

However, because of the influence of the downhole envi-
ronment and hardware constraints, it is possible that the
actual logging images obtained have low contrast and the
detail information of the images may not be obvious [5],
which makes it challenging to interpret the existing logging
images and calls for image enhancement. Superresolution
reconstruction is one of the most widely used processes for
image enhancement. This method’s objective is to generate
a part with a certain degree of confidence while recovering
a high-resolution image from a low-resolution part [6–8].
The research method is divided into interpolation-based
reconstruction algorithms, such as the dual cubic interpola-
tion method [9], which computes the weighted average of 16
known pixel points within the 4 ∗ 4 domain of the current
pixel point. Many superresolution reconstruction techniques
have been proposed in recent years [10, 11]. This interpola-
tion method has a broad reconstruction effect but is simple
to calculate. It also loses edge details. Li and Orchard
proposed an edge-oriented natural image interpolation
algorithm [12] to estimate the local covariance coefficients
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from low-resolution images and derive higher-resolution
images based on the covariance coefficients. Zhang and
Wu proposed an edge-guided nonlinear interpolation
method based on directional filtering and data fusion to
obtain the pixels to be interpolated by linear minimum mean
square error estimation [13]. Edge blurring is effectively
suppressed by G. Cheng and L. Cheng’s wavelet-based
directional adaptive interpolation algorithm [14], which
combines local directional adaptation with wavelet trans-
form. Although the interpolation-based superresolution
reconstruction method is simpler to compute, the image
reconstruction effect is far from ideal because it lacks
high-level image features [15]. More and more people
are researching learning-based reconstruction algorithms
because they can learn from a lot of image data and create
a suitable network model to enhance the reconstruction
effect. The SRCNN was proposed by Dong et al. [16]
and uses dual triple interpolation to perform upsampling
before using deep learning to reconstruct images using a
three-layer neural network. When compared to the con-
ventional interpolation method, the image reconstruction
effect is significantly improved. The residual network [17]
used as a reference in VDSR [18], which was developed
by Kim et al., can prevent gradient disappearance and
enhance network training stability in addition to deepen-
ing the network structure.

Inverse convolution is used for upsampling, and a small
convolution kernel is used in place of the large convolution
kernel in FSRCNN [19], which enhances the SRCNN model.
In order to preserve as much feature information as possible
and enhance the reconstruction effect, Shi et al. proposed the
ESPCN [20] method, which can perform feature extraction
directly on low-resolution images and then upsample using
subpixel convolution. Ledig et al.’s [21] proposed SRResNet
and SRGAN, which introduced generative adversarial net-
works, to enhance the visual effect. The EBRN networks
proposed by Qiu [22] suggest that the complexity of low-
frequency and high-frequency information in images varies,
and that low-frequency information is recovered with sim-
ple networks to avoid overfitting while high-frequency
information is recovered with complex networks to avoid
underfitting.

The aforementioned algorithms also suffer from flaws
like insufficient high-frequency feature reconstruction, inef-

fective feature correlation, and insufficient feature acquisi-
tion. However, unlike other optical images, raw logging
images created by ultrasonic waves only have a single chan-
nel and contain a significant amount of high-frequency data,
as shown in Figure 1.

In light of this, this paper suggests an ultrasonic logging
image superresolution reconstruction algorithm based on
high-frequency feature enhancement. The network is first
fed with the low-resolution image, and after a predetermined
number of layers, the multiscale dilated convolution block
mapping high-level feature is applied. Upsampling and
downsampling are then applied, and the low-resolution
image and the resulting results are compared to derive the
unlearned high-frequency information. The original results
are kept while the high-frequency data is fed into a different
multiscale dilated convolution block for strengthening
training. The enhanced training of high-frequency informa-
tion is then repeated several times after the results of the
high-frequency information training are combined with the
initial results. The proposed method can effectively improve
the reconstruction effect in terms of both objective index
and subjective vision when compared to the classical
hypersegmentation models of SRCNN, VDSR, SRResNet,
and SRGAN.

The main innovations and contributions of this paper
include the following: (1) proposing a multiscale dilated con-
volution block that uses dilated convolution to build convo-
lution kernels of various sizes, fully acquiring the scale
features of various perceptual fields of the image and fusing
them to make the features more global.

(2) In the high-level feature mapping, the high-
frequency feature enhancement structure is designed to
compare with the original image several times in order to
find unlearned high-frequency features and improve learn-
ing. All math symbols existing in the paper are defined as
in Table 1.

2. Related Work

Deep learning (DL) has developed greatly with computers
developing over the last decade, which has remarkably
promoted the development of information technology in
various fields [23–25]. Scientists reconstructed DL frame-
works and proposed some revolutionary techniques such

Raw logging image Image afer FFT

Transducer

Logging
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Figure 1: The principle of ultrasonic image logging. It is clear that raw logging images have numerous elements of high frequency.
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Table 1: Math symbols in the paper.

ILR Low-resolution image

IHR Original high-resolution image

F0 Feature extraction layer function

OUT0 Output of the first layer

Fi Function of multiscale dilated convolution block at stage i

LRHF1
Missing high-frequency information after the first

stage training

FT
Transform of upsampling, downsampling, and

converting to three-channel images

FHFi
Function of multiscale dilated convolution residual

block at stage i

HFi
High-level feature of high-frequency information at

stage i

OUTi High-level feature obtained at stage i

Ki Convolution kernel size after expansion, i ∈ 1, 3½ �

H
Function of upsampling and generating a

three-channel image

outi−1 Output of the i − 1 layer

Fki
Convolutional layer function of the 3 ∗ 3 convolution

kernel with expansion rate i, i ∈ 1, 3½ �
F1∗1

Convolutional layer function of the 1 ∗ 1
convolution kernel

outout Output of feature fusion

outi
Output of the i multiscale dilated convolution

residual block

BN Batch normalization

PReLU Parametric rectified linear unit

as convolutional neural network (CNN) [26], recurrent
neural network (RNN) [23], or generative adversarial net-
work (GAN) [27, 28]. During these techniques, dilated con-
volution and residual network are representatives that can
improve performances of models in forward and backward
phases when training.

2.1. Dilated Convolution. When the convolution kernel pro-
cesses the data, the dilated convolution [29] layer adds a new
“dilation” coefficient that establishes the value spacing. The
same amount of computation will produce a 5 ∗ 5 receptive
field with the same number of parameters as the 3 ∗ 3 con-
volution kernel if the normal convolution kernel is assumed
to be 3 ∗ 3, 2 dilation rates, and the input. In the papers
[30, 31] and others, dilated convolution was introduced
to obtain a wider range of feature information and capture
richer detailed features, all with predictable outcomes.

2.2. Residual Network. The problem of gradient disappear-
ance and gradient explosion while training a deep network
was addressed by He et al. in 2015 when they proposed a
residual network that uses a skip connection to transfer
information from the earlier convolutional layer directly to
the later convolutional layer, allowing the original input to
be transferred directly to the output. The residual network,

which sped up network convergence and significantly
reduced the issue of model overfitting for better deep-level
network training, was introduced and improved in the
papers [32–37].

3. Proposed Method

3.1. Network. In this paper, a multiscale dilated convolu-
tional residual network with enhanced high-frequency fea-
tures is proposed as shown in Figure 2. Suppose the input
image be the low-resolution image ILR after double-triple
interpolation of the original high resolution IHR, and the
low-level features are extracted by the shallow feature extrac-
tion layer of the low-resolution image reconstruction net-
work, which is expressed by the following equation:

OUT0 = F0 ILRð Þ, ð1Þ

where F0 is the shallow feature extraction layer function and
OUT0 represents the output of this layer. Then, input to
four multiscale dilated convolution blocks for high-level
feature extraction to get the result OUT1, upsampling and
downsampling in turn. Then, compare the output low fre-
quency information ILR and OUT1 to get high-frequency
information LRHF1; input LRHF1 to four multiscale dilated
convolution blocks separately for enhanced training to get
HF1; continue to input OUT1 to four multiscale dilated
convolution residual blocks to get high-level feature OUT2.
These can be expressed by the following equation:

OUT1 = F1 OUT0ð Þ,
LRHF1 = ILR − FT OUT1ð Þ,
HF1 = FHF1 LRHF1ð Þ,

OUT2 = F2 OUT1ð Þ +HF1,

ð2Þ

where Fi is the function of multiscale dilated convolution
block at stage i, i ∈ ½1, 4�, LRHF1 is the missing high-
frequency information after the first stage training, FT is
the function that has been upsampled, downsampled, and
converted to three-channel images, FHF1 is the function of
multiscale dilated convolution residual block used for high-
frequency information enhancement, HF1 is the high-level
feature of high-frequency information, and OUTi is the
high-level feature obtained at stage i. The specific structure
of the multiscale dilated convolution block will be discussed
in Section 3.2. The above process is repeated to obtain
high-frequency information several times to enhance the
reconstruction of logging images:

HF2 = FHF2 ILR − FT F2 OUT2ð Þð Þð Þ,
OUT3 = F3 OUT2ð Þ +HF2,

HF3 = FHF3 ILR − FT F3 OUT3ð Þð Þð Þ,
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OUT =OUT3 + HF3

= OUT2 + HF2 + HF3

= OUT1 + HF1 + HF2 + HF3:

ð3Þ

OUT is upsampled by a subpixel convolutional layer to
obtain a three-channel reconstructed image SRL, as shown
in the following equation.

SRL =H OUTð Þ, ð4Þ

1⁎1 conv

BN

PReLU

Down-sampling

9⁎9 conv

Tanh

3⁎3 conv

5⁎5 conv

7⁎7 conv

Up-sampling

3⁎3 conv with 3 channels

MRB

Figure 2: Our networks: the superresolution reconstruction algorithm based on high-frequency feature enhancement is based on multiscale
dilated convolution blocks.
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where H is a function of upsampling and generating a
three-channel image.

3.2. Multiscale Dilated Convolution Blocks. Convolution ker-
nels of various sizes can be used to obtain features of various
scales, and the features obtained by combining these features
are often superior to those obtained by a single scale
[38–41]. The yellow arrow in Figure 2 shows the multiscale
dilated convolution block (MRB) designed in this paper,
which adopts a convolution kernel of size 3 ∗ 3 on which
the dilated convolution with a dilation rate of 2 and a
dilation rate of 3 is used to obtain receptive fields of
5 ∗ 5 and 7 ∗ 7 convolution kernel sizes, respectively, as
shown in Figure 3, which is centered on the red number
3. And the grid occupied by 3 indicates the range of
features extracted by the convolution kernel of size 3 ∗ 3
and the grid occupied by 5. The feature range extracted
by 3 ∗ 3 convolutional kernel with expansion factor of 2
is represented by grid 3, and the feature range extracted
by 3 ∗ 3 convolutional kernel with the expansion factor
of 3 is represented by grid 7.

The computation does not increase the computational
effort because the expansion is done with 0 as shown in
the following equation:

K1 = k + k − 1ð Þ r − 1ð Þ = 3,

K2 = k + k − 1ð Þ r − 1ð Þ = 5,

K3 = k + k − 1ð Þ r − 1ð Þ = 7,

ð5Þ

where k is the convolution kernel size, r is the expansion
coefficient, and Ki is the convolution kernel size after
expansion, i ∈ ½1, 3�.

The output results of three different convolutional kernel
sizes are summed and input again into these three convolu-
tional kernels, and a 1 ∗ 1 size convolutional kernel is used
for feature fusion, and finally, the feature fusion and input
results are summed to establish a residual structure that
facilitates network convergence, as shown in the equation
below:

out11 = Fk1 outi−1ð Þ,
out12 = Fk2 outi−1ð Þ,
out13 = Fk3 outi−1ð Þ,
out = torch:cat out11 + out12 + out13ð Þ,

out21 = Fk1 outð Þ,
out22 = Fk2 outð Þ,
out23 = Fk3 outð Þ,
outout = PRelu BN F1∗1 out21, out22, out23ð Þð Þð Þ,
outi = outout + outi−1,

ð6Þ

where outi−1 is the output of the i − 1 layer, Fki is the convo-
lutional layer function of the 3 ∗ 3 convolution kernel with
expansion rate i, i ∈ ½1, 3�, F1∗1 is the convolutional layer
function of the 1 ∗ 1 convolution kernel, outout is the output
of feature fusion, and outi is the output of the i multiscale
dilated convolution residual block.

4. Experiments

4.1. Experiment Setups. As shown in Figure 4, we created a
unique imaging logging tool that consists of a downhole log-
ging device and a ground control system. The computer and
power supply that are part of the ground control system are
intended to let ground engineers control the transmission
and reception of ultrasonic signals as well as the creation
of images of borehole walls. A downhole logging device is
used to transmit bipolar pulses to drive the transducer while
simultaneously gathering and processing ultrasonic signals
reflected from strata at various depths. An armored cluster
cable that connects the two pieces acts as a conduit for
power and communication between the surface and the
underground. The field-programmable gate array (FPGA)
on the main control circuit board first receives the order
during a signal processing cycle. It then sends a bipolar pulse
to the drive circuit, which causes the piezoelectric ceramic to
generate ultrasonic waves. The same piezoelectric ceramic
will pick up the signals reflected off the borehole walls and
transmit them to the main control circuit board using an
analog-to-digital converter (ADC) with a 20MHz sampling
rate. All of the acquisition circuit’s hardware filters are pres-
ent. The time of flight (ToF), amplitude, and other ancillary
data of echo signals are then calculated using the preset algo-
rithm using the same FPGA. These data are kept in a large-
capacity NAND flash and sent to the ground control system
by the downhole instrument bus of the enhancing logging
image system (EDIB). Finally, using data from the main con-
trol circuit board, the ground system can visualize strata at
various depths by creating borehole walls based on ToF
and echo signal amplitudes that correspond to the various
strata’s positions. The ground system’s host display software
is in charge of combining logging images and interaction
with instructions. In this paper, the training and test sets
are sequentially derived from the circumference ultrasonic
logging tool data acquired in the field in Zhanjiang. The
echoes are gathered underground and transmitted to the
surface control system via the EDIB bus. The surface com-
puter receives the data via a USB port, extracts the echo’s
amplitude and arrival time, and then synthesizes the final
logging images, of which 1462 images are used as the
training set and 589 images as the test set.

The local hardware environment used for the experiments
is a laptop with a 64-bit Windows 10-based operating system
and an AMD Ryzen 5 3550H CPU. Computational accelera-
tion was performed using Colaboratory, a cloud-based envi-
ronment provided by Google, with 16G of video memory.

The specific training process is as follows:

(1) Initialize the network parameters and set 64 images
as a batch, and the learning rate is 0.0001

5Journal of Sensors



(2) Input IHR and four times downsampling using bitri-
ple interpolation to obtain ILR

(3) Input ILR to the network; after the first segment of
the residual network composed of four multiscale
dilated convolution blocks, get OUT1; the results of
ILR and OUT1 are differenced by upsampling and
downsampling in turn to get high-frequency infor-
mation LRHF1; in order to strengthen the training
of high-frequency information, LRHF1 is input to
the residual network composed of four multiscale
dilated convolution blocks. Obtain the high-level

feature HF1 and sum up HF1 and OUT1 as the input
of the second residual network

(4) Repeat step (3) to get the second stage result
OUT2 and enhanced high-frequency information
HF2, respectively, and take them as the input of
the third segment of the residual network; repeat
step (3) again to get the third stage result OUT3
and enhanced high-frequency information HF3,
then take them as the input of the fourth seg-
ment of the residual network to get the result
OUT4.

7 7 7

5 5 5

3 3 3

7 5 3 3 3 5 7

3 3 3

5 5 5

7 7 7

3 3 3

3 3 3

3 3 3

Figure 3: Diagram of receptive field by multiscale dilated convolution block.

Main control circuit

Transducer
drive circuit

Swivel

Transducer 

Communication 
module

Field test

Centralizer

Power supply

PC interface

Figure 4: Logging operation in Zhanjiang.
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(5) Upsample and reconstruct OUT4 to get three-
channel reconstructed image SRL.

(6) Calculate L1 loss function from SRL and the original
high-resolution image IHR to obtain LLR and use the
Adam optimization algorithm to update the param-
eters of the low-resolution image reconstruction
network

(7) Based on the results of LHR, the network is updated
with parameters using the Adam optimization
algorithm

(8) After 200 iterations, the trained network model is
obtained, and the images of the test set are tested
directly in the low-resolution image reconstruction
network

In this paper, we use peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM), which are common eval-
uation metrics in the field of image hypersegmentation
[42–44]; to compare the reconstruction effect, PSNR is
used to describe the distortion caused by random noise
on the reconstructed image as shown in the following
equation.

PSNR = 10 log10
2n − 1ð Þ2
MSE

, ð7Þ

where n is the number of bits per pixel, generally taken as
8, and MSE is the mean square error.

SSIM is a comparison of two images in terms of con-
trast, structural features and brightness; the higher the

PSNR the less distortion, and the higher the SSIM the
closer the image is.

l X, Yð Þ = 2μXμY + C1
μX

2 + μY
2 + C1

,

c X, Yð Þ = 2σXσY + C2
σX

2 + σY
2 + C2

,

s X, Yð Þ = σXY + C3
σXσY + C3

,

SSIM X, Yð Þ = l X, Yð Þ∙c X, Yð Þ∙s X, Yð Þ:

ð8Þ

Among them, μX and μY represent the mean values of
image SR and image HR, respectively; σX and σY represent
the standard deviation of image SR and HR, respectively;
σX

2 and σY
2 represent the variance of image SR and HR,

respectively. σXY represents the image SR and HR covariance
and C1, C2, and C3 are constants.

4.2. Experiment Analysis. In order to verify the merits of the
algorithm proposed in this paper, the structure of this paper
is verified step by step.

4.2.1. Ablation Study: Effect of Multiscale Dilated
Convolution Blocks on the Results. The structures in
Figure 5 are compared in this subsection to show the efficacy
of the proposed multiscale dilated convolution block for fea-
ture extraction in this paper, where the latter three structures
are used for multiscale feature extraction. Figure 5(a) depicts
the SRResNet base block, Figure 5(b) depicts the modified

PRelu
bn

conv
3⁎3

bn

conv
3⁎3

(a)

conv
3⁎3

conv
5⁎5

conv
3⁎3

conv
5⁎5

conv
1⁎1

conv
1⁎1

conv
1⁎1

Relu Relu Relu

Relu Relu Relu

conv
1⁎1

(b)

PRelu

conv
3⁎3

d = 1

conv
3⁎3

d = 2

PRelu

conv
3⁎3

d = 3
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(c)

conv3*3
d=2
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1⁎1
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1⁎1
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3⁎3

d = 2
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3⁎3
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3⁎3

d = 1
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3⁎3

d = 3
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3⁎3

d = 3

conv
3⁎3

d = 1

(d)

Figure 5: Multiscale feature extraction structure: (a) is the single-scale SRResNet base block, (b) the modified structure of inception V1
base block for multiscale structure, (c) is the multiscale structure proposed in paper [18], and (d) is the multiscale structure proposed in
this paper.
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structure modeled after the inception V1 base block,
Figure 5(c) depicts the dilated convolution base block, and
Figure 5(d) depicts the multiscale dilated convolution block
proposed in this paper. The results of doing 2 times, 4 times,
and 8 times of reconstruction are shown in Table 2, with the
number of all five base blocks in Figures 5(a)–5(d) being 16
and the rest of the modules and parameter settings being
identical.

From the above results, we can see that in the 2 times, 4
times, and 8 times magnification, the single-scale feature
acquisition structure in Figure 5(a) is significantly worse
than the remaining three multiscale feature acquisition
structures, whereas the proposed Figure 5(d) structure in
this paper has the best metrics, with about 0.136 improve-
ment in PSNR and 0.002 improvement in SSIM when com-
pared to the single-scale under 4 times of reconstruction.

The feature maps Figure 6(a) of the residual block
through SRResNet and the feature maps Figure 6(b) of
the multiscale dilated convolution block are compared in

Figure 6 to better understand the proposed multiscale
dilated convolution block in this paper. Figures 6(d), 6(f),
and 6(h) are feature maps of the multiscale dilated convo-
lution block through the scale dilated convolution block of
the 4th, 42nd, and 58th channels, respectively, and
Figures 6(c), 6(e), and 6(g) are feature maps of the 4th,
42nd, and 58th channels through the residual block of
SRResNet, respectively. The proposed structure in this
paper obtains more comprehensive features and clearer
textures, as can be seen.

4.2.2. Impact of High-Frequency Feature Enhancement.
Table 3 shows the comparative effects of objective met-
rics after reconstruction of SRResNet (a in the table),
SRResNet-based primary high-frequency feature-enhanced
structure (b in the table), and SRResNet-based four high-
frequency feature-enhanced structure (c in the table) with
the effect of × 2 and × 4magnification. a, b, and c structures
in Table 3 have the same residual block structure and

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 6: Feature map comparison: (a) is the 64-channel feature map extracted from the 16th residual block of SRResNet; (c), (e), and (g)
are the amplification display of the feature map of the 4th, 42nd, and 58th channels, respectively; (b) is the 64-channel feature map extracted
from the 16th block of the multiscale cavity convolution block proposed in this paper; and (d), (f), and (h) are the enlarged display of the
feature map of the 4th, 42nd, and 58th channels, respectively.

Table 2: The reconstruction effect of multiscale dilated convolution block.

Magnification Metrics (a) (b) (c) (d)

× 2
PSNR 36.462 35.980 35.830 36.496

SSIM 0.963 0.959 0.956 0.961

Parameters 1401 k 4672 k 1981 k 7505 k

× 4
PSNR 30.990 30.895 30.716 31.126

SSIM 0.858 0.857 0.857 0.860

Parameters 1542 k 4812 k 2131 k 7653 k

× 8
PSNR/dB 27.325 27.172 26.767 27.355

SSIM 0.714 0.716 0.700 0.718

Parameters 1691 k 7262 k 2283 k 9713 k
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22.7575
0.7213

23.6445
0.7520

20.7934
0.7853

20.9390
0.8128

19.3128
0.6850

19.8750
0.7444

19.9570
0.7354

20.2861
0.7669

19.3128
0.6850

19.8750
0.7444

19.9570
0.7354

20.2861
0.7669

22.4381
0.7502

23.3039
0.7707

20.4541
0.6541

21.0800
0.7020

19.9570
0.7354

20.2861
0.7669

Bicubic SRCNN VDSR ESPCN OursSRResNet

Figure 8: The reconstruction effect of single log image.

Table 3: The reconstruction effect of Parallel structure.

Magnification Specification a b c

× 2
PSNR 36.462 36.692 36.800

SSIM 0.963 0.962 0.962

Parameters 1401749 2328870 3188406

× 4
PSNR 30.990 30.682 31.247

SSIM 0.858 0.849 0.859

Parameters 1549462 2820904 4369082

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 7: Feature map comparison: (a) is the 64-channel feature map extracted from the 16th residual block of SRResNet; (c), (e), and (g)
are the amplification display of the feature map of the 4th, 42nd, and 55th channels, respectively; (b) is the 64-channel feature map extracted
from the 16th block of the multiscale cavity convolution block proposed in this paper; and (d), (f), and (h) are the enlarged display of the
feature map of the 4th, 42nd, and 55th channels, respectively.
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number, and the remaining parameter settings are exactly the
same.

We can obtain the unlearned high-frequency detail
information by comparing the reconstruction effect of the
mapped high-level features with the original low-resolution
image using the above experiments, and it is effective to do
strengthening learning of this high-frequency detail infor-
mation alone and repeat this process several times. Under
fourfold reconstruction, the PSNR improves by 0.257 and
the SSIM improves by about 0.001.

The feature maps of low-resolution images with direct
feature learning Figure 7(a) and enhanced high-frequency
feature training Figure 7(b) are compared in Figure 7, where
Figures 7(c), 7(e), and 7(g) are the feature maps of the 4th,
42nd, and 55th channels through SRResNet residual blocks,
respectively, and Figures 7(d), 7(f), and 7(h) are the feature
maps of the 4th, 42nd, and 55th channels after high-
frequency feature enhancement proposed in this paper.

4.2.3. Comparison of the Method in This Paper with Others.
The multiple average PSNR and average SSIM values of this
algorithm and other hypersegmentation algorithms in the
test set for single image reconstruction tests are shown in
Figure 8 and Table 4.

The PSNR and SSIM metrics, as well as the number of
model parameters, are compared in Table 4 between this
method and other classical hypersegmentation methods.
On a single log image, Figure 8 shows the reconstruction
results as well as a comparison of PSNR and SSIM metrics
between this method and other classical hypersegmentation
methods. The method has significantly improved the metrics
when compared to traditional methods and other classical
deep learning methods, with PSNR of more than 0.435 and
SSIM of more than 0.009, and the subjective visual effect
has also been improved, with clearer and more accurate
edges, as shown in the figure.

5. Conclusion

In this paper, a high-frequency feature-enhanced superreso-
lution reconstruction method for logging images is proposed
as a solution to the problem of feature extraction being
insufficiently thorough and detail information not being
learned in depth. The algorithm uses multiscale dilated con-
volution blocks to extract various feature information, and
the dilated convolution expands the receptive field without
adding more parameters. As a result of the method’s

repeated extraction of high-frequency features, detail infor-
mation that was not learned during reconstruction can be
learned and improved. The circumference ultrasonic logging
tool’s real logging images are used as the training set to
assess the method’s efficacy. The reconstructed images are
evaluated using the PSNR and SSIM image quality evalua-
tion criteria. The experimental results show that the method
described in this paper can recover better high-resolution
images and extract more feature information. Lightweight
networks will be the primary area of research for future
optimization.
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