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Background. Peripheral neuropathy is regarded as one of the leading causes of fatal and nonfatal falls. Wearable sensors, due to
their increasing availability and flexibility of setting and space, are used widely to obtain wearer’s kinematic data to analyze
one’s balance capacities for the evaluation of risk of fall. There is yet to have a review study focusing on the application of
wearable sensors in the scope of fall risk for patients with peripheral neuropathy. Objective. To investigate the methods by
which researchers adopt to assess risk of fall in peripheral neuropathy patients and potentially shed light on future researches.
Methods. A systematic review design was used to identify articles on fall risk assessment and balance training using wearable
sensors in patients with peripheral neuropathy. The study is aimed at extracting the following information: the type of sensors,
the type of signal and data processing employed, the scales and tests used in the study, and the type of application. Results. We
identified 351 studies, from which 8 were included. An average sample size of 35.6 patients enrolled the studies. The
accelerometer was the most common wearable sensor used. 10-meter walk test was the preferable procedure for assessing risk
of fall. Conclusion. This review examined several key components in studies on assessing and improving the risk of fall using
wearable sensors. We identified the preferred functional test (10-meter walk test), sensor technology (accelerometer), locations
(torso and lower legs), and fall risk improvement methods (prostheses). However, due to the limited number of articles
specializing in this field of research, a consensus on patient sample size and procedures is not reached. We would recommend
future researches to examine more parameters and adopt a fusion sensor setup.

1. Introduction

Peripheral neuropathy (PN) is one of the most frequent causes
for neurology outpatient visits, with a prevalence of 1-12% in
all age groups [1, 2]. It refers to a wide series of symptoms
impairing the peripheral nerve system; affecting the distal
motor, sensory, and autonomic fibers [3]; and thus causing
impaired balance, loss of tactile sensations, and allodynia [4].
Common causes include systemic diseases (i.e., diabetes melli-
tus (DM)), genetic disorders (i.e., Charcot-Marie-Tooth dis-
ease), toxic exposure, and chemotherapy [5, 6]. Especially
with DM reaching increasing proportions in the world, high
occurrence of diabetic peripheral neuropathy (DPN) of nearly
50% in DM populations was reported [7, 8].

PN is thought of as a major risk factor of falls [9]. Hindfoot
reflex loss, decreased vibratory sense, damaged propriocep-
tion, and strength all contribute to the higher odds of fall
[10]. Fall is identified as a leading cause of injury, disability,
and death by the Centers for Disease Control and Prevention
[11] that results in over 50 billion dollars of medical bills in the
U.S. alone [12], causing financial burdens on the healthcare
system and individuals. Fall risk assessments are therefore cru-
cial in analyzing the risk factor and characteristics of people
who are more prone to falling.

Traditionally, assessment of fall risks relied heavily on
gait and balance monitoring in laboratory settings using
motion capture or clinical tools. While these methods are
accurate, they have innate limitations, requiring for a
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dedicated test space, costly equipment, or the presence of
healthcare professionals for data interpretation [13]. In
contrast, wearable sensor devices utilizing accelerometers
or gyroscopes are most used to accurately record the
body’s kinematic data in a relatively compact and bound-
less chassis [14]. They are attached to various locations on
the patient’s body (i.e., waist, ankle, or shin) and retrieve
accurate motion data.

Unfortunately, researchers have yet to reach a consensus
on the methodology by which they evaluate the risk of fall.
Plenty of researches focused on exploring the risk of fall
assessment in healthy individuals or the elderly [15–17].
But only a handful of them are specifically targeting the
PN population. Considering that there is currently no review
article focusing on the application of wearable in fall risk
assessment in PN patients, our study is aimed at perform-
ing a systematic review analysis to provide insight for
future studies.

2. Method

Our research adopts a systematic review strategy in accor-
dance with PRISMA recommendations [18].

2.1. Database Search Strategy. PubMed, Embase, Scopus,
IEEE Xplore, and Web of Science databases were chosen to
include both engineering and medical journals in the search
process. The following terms were used to search the data-
base on March 23, 2022: neuropathy or “peripheral neurop-
athy” or “peripheral nervous system diseases”, device or
wearable or accelerometer, risk or detect∗ or predict∗ or pre-
vent∗, and fall∗ or stumble or misstep. The search query is
summarized in Table 1.

2.2. Inclusion and Exclusion Criteria. The inclusion criteria
of the search were as follows: (1) to identify articles pub-
lished in English; (2) used portable wearable devices to
detect, predict, or improve fall risks; and (3) research sub-
jects clinically diagnosed with peripheral neuropathy. The
exclusion criteria of the search were as follows: (1) review
articles, conference abstracts, books, patents, or case studies;
(2) did not specify the use of wearable devices; and (3) pub-
lished in a language other than English.

2.3. Data Analysis. Our study designed a table prior to data
extraction. Target data included author, utilization of wear-
able for rehabilitation, PN sample size, cause of PN, wearable
sensor type, location of the wearable, data acquirement pro-
cedure, and clinical measurement for fall risk stratification
or assessment.

3. Results

3.1. Selection Process. A total of 351 records were identified
from the 5 electronic databases as summarized in Figure 1.
Of these, we identified 8 articles meeting our criteria to be
included in the systematic review [19–26]. Of which, 5
applied wearable sensors to assess risk of falling, 1 utilized
wearable sensors to improve gait and balance in effort to
mitigate risk of falling, and another 2 did both.

3.2. Risk of Fall Assessment

3.2.1. Sensors. Three types of sensors are recognized in the 6
studies assessing the risk of fall. All of the studies used accel-
erometers. Three of the studies used the combination of
accelerometers, gyroscopes, and magnetometers [27]. One
study used a combination of accelerometers and gyroscopes.
The number of sensors and the locations of the sensors also
varied. Four studies used multiple sensors to capture motion
data. Gait analysis and balance evaluation required a differ-
ent number of sensors. On average, 3.2 sensors were needed
to complete gait performance evaluation, and 2.75 sensors
were needed for balance evaluation. The torso and lower legs
are the most common placement of sensors. In the 2 studies
using only 1 sensor, both of them were placed at chest level.
The details of risk of fall assessment are shown in Table 2.

3.2.2. Sample. In the studies, a total of 214 PN subjects were
enrolled, an average of 35.6 per study. The average age for
the subjects was 74.2. Only DPN or CIPN are included in
these studies, 3 had CIPN subjects, 2 had DPN patients,
and another 1 had both.

3.2.3. Clinical Fall Assessment. We sought to identify the
clinical tools used to evaluate the subject’s fear of fall or fall
tendencies. Past fall events in the 12-month period were sur-
veyed in 5 studies, with 3 of them recording the recalled
number of past falls and 2 taking yes/no answers. Fall Effi-
cacy Scale-International (FES-I) was used in 4 of the studies.
FES-I is a validated tool in assessing concerns for fall and fall
risks, with good reliability [28, 29]. The FES-I score in PN
subjects among studies varied. One study adopted the
Tinetti score. The Tinetti score was designed as a quick scale
to evaluate gait and balance with good validity [30, 31].

3.2.4. Procedures. The functional test procedures during
which wearables were applied to measure gait and balance
in the studies include timed up and go (TUG), walk with
varied length or duration with or without turns required,
48-hour physical activity, and 30-second standing balance
test Table 3.

3.3. Risk of Fall Improvement. We identified 3 articles focus-
ing on the use of wearable technology to train PN patients to
improve their gait and balance functions in an effort to
reduce fall risks. Two of them used a wearable sensory pros-
thesis that detects center of plantar pressure and provides
directional tactile vibrational stimuli to signal the patient at
the lower leg level. One used a triaxial accelerometer, gyro-
scope, and magnetometers to capture patient motion; then,
data was used to assist balance training simultaneously.
Training time varies as depicted in Table 4.

3.3.1. Procedures. As is summarized in Table 3, both studies
using prostheses adopted functional gait assessment, 10-
meter walk test (10MWT), and 4-stage balance test; one
additionally included timed up and go test. The study using
interactive balance training strategy included 30-second
standing balance test and 10-meter walk test.
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3.3.2. Summary of Papers. Zahiri et al. [19] stratified patients
according to clinical diagnoses and the quantifiable vibration
perception threshold (VPT) test and found that ankle sway
and stride time had a significant correlation with motor
deterioration. Najafi et al. [22] proposed that by novel algo-
rithm, one accelerometer can monitor three main postures
(sitting, standing, and lying), assessing the risk of falling.
Lalli et al. [23] discovered that variability for step length
and velocity is the distinguishing parameter for PN. Kang
et al. [25] assessed the relationship between postural sway
and fall risk with or without visual cues. In another research,
Kang et al. [26] monitored the daily physical activity over

the span of 48 hours, proposing that walking bouts and total
step counts have a strong correlation to fall risk assessment.

Schwenk et al. [20] utilized a five-sensor setup to con-
duct sensor-based balance training to improve patients’ bal-
ance functions. After four weeks of training, the subjects
significantly improved sway of ankle, hip, and mediolateral
center of mass. Since sensory loss is a major symptom for
PN patients, Oddsson et al. [21] tested a sensory prosthesis
on patients over a period of 10 weeks. A decrease in fall risk
factors and fall rate was observed in the patients. The same
prosthesis was used by Koehler-McNicholas et al. [24] to
validate the short-term effect; over half of the participants
reported improved gait scores.

4. Discussion

The use of wearable sensor types and locations had shown a
degree of homogeneity, preferring the combination of accel-
erometer, gyroscope, and magnetometer. Only 1 article [22]
described the specific algorithm in denoising and removing
signal artifacts to assess risk of fall. We believe the fact that
many researchers used wearables from the same commercial
wearable sensor company and that sensors have become
more available and affordable played a major role. The most
used sensors were validated sensors such as PAMSys [32],
LEGSys [33], and BalanSens from the same company Bio-
Sensics. Overall, the most frequently used sensor was an
accelerometer, which corroborates with other reviews on
wearable sensor fall detection [13, 34]. The torso and lower
legs were the most common locations for sensor fixation.

Only DPN and CIPN patients have been recruited in
these studies, while they do represent the majority of
patients with PN, whether PN caused by other diseases or
factors share the same characteristics in gait and balance
remains to be tested. Future studies should also focus on
the difference in fall risk impact among different causes of
PN since the mechanism varies.

The use of FES-I and past fall recollection as an indicator
for fall risk assessment is present in most articles. Recording
the number of falls in the past 12 months rather than binary

Table 1: Search queries used for each database.

Database Query Hits

Scopus
TITLE-ABS-KEY ((neuropathy OR “peripheral neuropathy” OR “peripheral nervous system diseases”) AND

(device OR wearable OR accelerometer) AND (risk OR detect∗ OR predict∗ OR prevent∗) AND (fall∗ OR stumble
OR misstep))

70

IEEE Xplore
(neuropathy OR “peripheral neuropathy” OR “peripheral nervous system diseases”) AND (device OR wearable OR

accelerometer) AND (risk OR detect∗ OR predict∗ OR prevent∗) AND (fall∗ OR stumble OR misstep)
3

Web of Science
(TS=(neuropathy) OR TS=(peripheral neuropathy) OR TS=(“peripheral nervous system diseases”)) AND

(TS=(device) OR TS=(wearable) OR TS=(accelerometer)) AND (TS=(prevent) OR TS=(risk) OR TS=(detect∗) OR
TS=(predict∗)) AND (TS=(fall∗) OR TS=(stumble) OR TS=(misstep))

102

PubMed
(“peripheral neuropathy” OR “peripheral nervous system diseases” [MeSH] OR neuropathy) AND (device OR

wearable OR accelerometer) AND (risk OR detect∗ OR predict∗ OR prevent∗) AND (“accidental falls” [MesH] OR
fall∗ or stumble or misstep)

90

Embase
(“peripheral neuropathy”/exp OR “peripheral nervous system diseases” OR neuropathy) AND (device OR wearable
OR accelerometer) AND (risk OR detect∗ OR predict∗ OR prevent∗) AND (fall∗ OR stumble OR misstep OR

“falling”/exp)
86

Records identifed
n = 351

Identifcation of studies via databases
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n = 45
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in review
n = 8

Records removed before
screening

Not in English (n = 1)
Duplicates (n = 165)

Records excluded
Out of scope (n = 100) 
Review articles (n = 25)

Not article (n = 5)

Records excluded
No wearable data analysis (n = 8) 

Not specifed subjects with
peripheral neuropathy (n = 29)

Figure 1: Study selection. Preferred Items for Systematic Reviews
and Meta-Analyses (PRISMA) flow diagram. Out of 351 identified
studies and after application of the inclusion and exclusion criteria,
8 studies were included.
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Table 2: Articles selected for fall risk assessment.

Year Author Cause Sample Sensor Numbers
Clinical
measures

Procedure Frequency

2013 Najafi et al. [22] DM N = 8 Accelerometer 1 (chest)
Tinetti
score

Traditional
timed up and go

40Hz

2013 Lalli et al. [23] DM N = 42
Accelerometer,
gyroscope,

magnetometer
2 (both shins)

Reports of
past falls

50-meter walk
with one

90-degree turn
N/S

2016 Schwenk et al. [20] CIPN N = 22
Accelerometer,
gyroscope,

magnetometer

Gait: 4 (each shank and
thigh); balance: 3 (each
shank and lower back)

FES-I,
reports of
past falls

30-second
standing and

10-minute walk
100Hz

2019 Zahiri et al. [19] CIPN N = 58
Accelerometer,
gyroscope,

magnetometer

5 (each shin thigh and
lower back)

FES-I, past
falls event
(yes/no)

15-meter walk at
self-selected

speed
100Hz

2020 Kang et al. [26]
DM,
CIPN

DPN (n = 23),
CIPN (n = 26) Accelerometer 1 (chest)

FES-I,
reports of
past falls

Physical activity
over 48 hours

50Hz

2021 Kang et al. [25] CIPN N = 35
Accelerometer,
gyroscope,

magnetometer

Gait:4 (2 each shin);
balance: 2 (1 shin,
1 lower back)

FES-I, past
fall event
(yes/no)

1. Walk for 12
meters. 2. Stand
for 30 seconds

100Hz

Table 3: Functional test description.

Functional test Description Frequency

10-meter walk test
(10MWT)

Walk at a self-selected speed for 10 meters. Some studies have slightly longer distance. 5

30-second standing test
30 seconds of standing in 2 circumstances: (1) feet close together (but not touching) with eyes
open (EO) and (2) feet close together and eyes closed (EC). One study required an additional

circumstance of semitandem position with EO.
3

Timed up and go Sit-to-stand and walk 10 meters roundtrip and then turn and stand-to-sit. 2

Functional gait assessment Includes a 10-item scale where each item is scored from 0 to 3. 2

4-stage balance test

Four gradually more challenging postures the subject performs: (1) stand with feet side by side,
(2) stand with feet in semitandem stance, (3) stand with feet in tandem stance, and (4) stand on
one leg. Subjects pass if they can hold the stance for 10 seconds and then move on to the next

stance.

2

Physical activity over 48
hours

A total 48-hour period (except for water activity and sleep). 1

50-meter walk with one 90-
degree turn

Walk at normal pace for 50 meters with one 90-degree turn with no rest time permitted. 1

Table 4: Articles selected for fall risk improvement.

Year Author Subjects Sensor Mechanism
Training
duration

Procedures

2016 Schwenk et al. [20] CIPN (n = 22)
Accelerometer,
gyroscope,

magnetometer

Interactive
balance
training

4 weeks
30-second standing balance test, 10-

meter walk test

2019 Koehler-McNicholas et al. [24] PN (n = 31) Pressure sensor
Sensory

substitution
10

minutes
Functional gait assessment, 10-meter

walk test, 4-stage balance test

2020 Oddsson et al. [21] PN (n = 45) Pressure sensor
Sensory

substitution
10 weeks

Functional gait assessment, 10-meter
walk test, 4-stage balance test, timed

up and go
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yes/no answers provides more data for the accurate estima-
tion of the patients’ fall risk. But patients’ recollection may
present itself as a bias. None of the articles included another
pool of PN patients to validate the correlation between sen-
sor data and fall risks. This might be due to the difficulty in
volunteer recruitment. Future researches could incorporate
fall detection wearables to correlate actual fall events to
ensure accuracy.

The 10-meter walk test was the preferred procedure for
gait analysis, followed by the 30-second standing test for bal-
ance evaluation. We presumed that this is partly due to the
fact that they are easier to perform with minimal setup to
prepare. They are well-researched and validated tests with
high reliability [35–38]. One study required subjects to
record 48 hours of daily physical activity. Daily activities
over a prolonged period of time can accurately represent
the natural gait and posture for the test subjects. Since it
was done using a single sensor setup, only step counts, walk-
ing bouts, and postural data were collected, making it hard
to take all activities into accurate assessment. It would be
interesting to see if multiple sensors can represent daily
activities more precisely.

For risk of fall improvement studies, the two using the
sensory substitution method applied the same prosthesis.
The device provides real-time tactile feedback, and signifi-
cant improvements of gait and balance was achieved even
after 10 minutes of training. The interactive balance training
study utilized sensor data for error-dependent training, indi-
cating the real-time feedback-enabled restore of sensory
mapping could improve gait and balance. Future studies
should investigate the ideal combination of the methods
and schematic training techniques.

A rather small number of articles were included in our
review. Our paper is focused on articles that expressively
selected patients with peripheral neuropathy (PN) as their
subjects. We did in fact find quite a large number of current
articles on fall prediction and intervention for healthy indi-
viduals or the elderly, or patients with Parkinson’s disease.
We excluded those articles that did not include clinically
diagnosed PN patients. Admittedly, fall risk assessment
methods could share a certain level of resemblance among
different groups. Due to the fact that PN is unique in its eti-
ology and pathology, gait patterns and fall mechanisms
could vary. As a result, the significance and threshold of cor-
responding assessment tool could differ widely. We believe
that methods and thresholds formulated from data collected
from other groups (mostly healthy adults) would be of poor
value to the future researches on fall risk assessment of
patients with PN.

As a relatively novel field for risk assessment and
improvement, research methods and sensor types used in
general fall risk researches could be migrated to that of PN
patient. Multiple novel wearable sensors could be put into
use. For example, plantar inclinometer, electromyography,
and pressure sensor could be promising [39]. Adaptive/
dynamic threshold selection is becoming increasingly crucial
to provide personalized care [40]. Utilizing the smartphone
as an input of integrated sensors has also proved practical
[41]. Researchers should also calculate the precision,

specificity, accuracy, and F1-measure of the selected
methods [42]. Future researches should also focus on apply-
ing deep learning algorithms to extrapolate gait patterns of
higher fall risk among PN patients [43]. The fusion of mul-
tiple sensors is also crucial to negate noises and boost
robustness of real-time analysis of fall risks in gait analysis
[44]. We would also advocate for more sophisticated and
validated sensor systems such as APDM [45] to be utilized
by future researches.

5. Conclusions

This review examined several key components in studies on
assessing and improving the risk of fall using wearable
sensors. We identified the preferred functional test (10-meter
walk test), sensor technology (accelerometer), locations (torso
and lower legs), and fall risk improvement methods (prosthe-
ses). However, due to the limited number of articles specializ-
ing in this field of research, a consensus on patient sample size
and procedures is not reached. We would recommend future
researches to examine more parameters and adopt a fusion
sensor setup.
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