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Accurate detection of power lines in aerial images is of great significance in ensuring grid security. However, complex power line
scenarios and the thin and light structure of power lines both make it difficult to detect power lines accurately. Most of the existing
approaches use traditional deep learning methods, using networks with a large number of parameters, computation, and memory
occupation, thus making them not lightweight enough to perform on mobile devices. Based on this, a lightweight power line detection
network based on direction consistency and location attention is proposed. The network is designed with a coordinate-aware feature
extraction layer, which performs feature extraction by four-layer stacking to achieve faster inference speed while ensuring the network
has fewer parameters. This layer is also able to sense the coordinates of the center pixel of the convolution in the image during the
convolution process, thus preserving the location information of the power lines. In order to enhance the power line representation, a
two-stage context-guided module is later utilized to simultaneously learn local features, surrounding context, and global context. Then,
the features are input into a Gaussian kernel estimation module and features are aggregated in the corresponding directions through
Gaussian kernels of eight different directions. The main directions of the power lines in the image and the corresponding Gaussian
convolution kernels are obtained by filtering the feature responses. In addition, a kernel-guided decoder module is proposed to take
advantage of the estimated power line features in the main direction of Gaussian kernel aggregation. This module can effectively
enhance the power line representation and maintain the continuity of power lines. Meanwhile, low-level features are introduced to
recover the edge details to realize high performance in distinguishing dense power lines. Both ablation experiments and comparison
experiments on the transmission towers and power lines aerial-image and Power Line Aerial Image Dataset show that the proposed
power line detection network has a good segmentation performance in complex scenarios. The proposed method performs the best in
the comparison experiments, improving over the suboptimal method by 3.51% on average for the max F-measure metric.

1. Introduction

Segmenting power lines from aerial imagery is a very challeng-
ing task [1]. Aerial images have different viewpoints, and when
the camera on board, the unmanned aerial vehicle (UAV)
captures the target in an elevated perspective, the background
is mostly the sky. However, when the viewpoint is switched to
an overhead perspective, the background can be woods, cities,
mountains, countryside, etc., with remarkable diversity and
complexity. When the color of the target and the background
tend to be similar, it is difficult to accurately and completely
segment the target from the image. Finally, power lines have
very thin structural characteristics [2] and usually cover only a

small part of the image, for example, only a few pixels wide in
aerial images, so the segmentation of power lines is easily frag-
mented, resulting in the loss of the original continuity and poor
segmentation performance [3, 4].

Most of the existing power line detection work uses man-
ual feature extraction-based methods, which have several
drawbacks. First, the early methods divide the power line
detection work into three parts, namely, manual feature
extraction, straight line detection, and power line selection.
Yan et al. [5] presented an algorithm to automatically extract
the power line from aerial images, first a radon transform is
used to extract line segments of the power line, followed by
the grouping method to link each segment, and finally the
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Kalman filter technology is applied to extract entire power
lines. Zhang et al. [6] proposed a method of power line detec-
tion and tracking, first the Hough transform is used to extract
line segments of power lines, and then K-means is utilized in
theHough space to cluster and filter the straight lines according
to the characteristics of the power lines, subsequently, a Kal-
man filter is used to track the power lines. However, the back-
ground of power lines is not always the sky, and when there is
line interference in the background, it is difficult to eliminate
the interference and obtain power lines accurately by the
straight line detectionmethod [7]. Second, with the edge detec-
tion method [8, 9], the power lines need to have a very obvious
contrast with the surrounding background. Moreover, accurate
segmentation can only be achieved in ideal situations, while in
actual aerial images, the colors of the power lines and the
backgroundmay be very similar. Recently, deep learning-based
methods [10–12] have also been gradually applied to power
line detection, Titov et al. [10] built a defect detection system in
blocks, and yolov3 is used for detecting and classifying power
line poles in images or videos. Pan et al. [11] raised a power line
extraction network combined with the encoder–decoder
framework to extract power lines automatically with an intro-
duced self-attention block and an introducedmultiscale feature
enhancement block. Some methods transform power line
detection into generic line segment detection [13, 14], but sim-
ilar to the problem of traditional straight line detection, power
lines are not always the only straight shapes in an image. Some
methods [15, 16] also treat power line detection as a salience
detection problem, which relies on the joint inference of line
salience and continuity; this, however, does not apply to aerial
images with complex backgrounds. Other methods [17–19]
directly turn the problem into a pixel-by-pixel classification
based on CNN networks during training, which counts too
much on the aggregation of local information, without consid-
ering the power lines’ structure and global consistency well.
The existing models adopt a lot of stacked layers to improve
the accuracy of power line detection, without taking into
account the lightweight and real-time requirements when the
power line detection algorithms are applied to UAV inspection.

To address the issues raised above, we propose a light-
weight power line detection network based on direction con-
sistency and location attention. First, a coordinate-aware
feature extraction module (CAFEM) is designed to complete
feature extraction by four-layer stacking, replacing the classi-
cal backbone networks such as VGG16 (visual geometry
group network) [20] and ResNet [21]. In this way, the net-
work has a smaller account of parameters and faster inference
speed, and the center pixel of the convolution in the image can
be sensed during the convolution coordinates, thus preserving
the position information of the power lines. After that, the
local features and the surrounding context are learned simul-
taneously by using a two-stage context-guided module, and
the power line representation is enhanced by learning the
global context. The features are subsequently fed into the
proposed Gaussian kernel estimation module, and the fea-
tures of the corresponding directions are aggregated by using
Gaussian kernels of eight different directions. Themain direc-
tions of the power lines in the images and the corresponding

Gaussian convolution kernels are obtained by filtering the
feature responses. Then, a Gaussian kernel-guided decoder
module is proposed to effectively strengthen the power line
representation and maintain the continuity of power lines. It
takes advantage of the estimated Gaussian kernels to aggre-
gate the power line features in the main direction, and the
low-level features extracted by the coordinate-aware features
are introduced to recover the edge details of power lines and
effectively distinguish the dense power lines. After passing
through two decoders, the power line detection results arefinally
obtained with a layer of convolutional layers and upsampling
operations. The network has ultimately a lightweight structure
with only three downsampling stages, and the feature map res-
olution is reduced to 1/8 at the lowest, which can retain more
discriminative spatial information compared with the main-
stream five downsampling stages and 1/32 resolution.

The main contributions of this paper can be summarized
as follows:

(1) A feature extraction enhancement module based on
direction consistency and location attention is pro-
posed, including a CAFEM and a context-guided
module. The CAFEM completes feature extraction
by four-layer stacking, which ensures that the net-
work has fewer parameters and faster inference. The
coordinates of the center pixel of the convolution in
the image can be sensed during the convolution pro-
cess, and the position information of the power lines
is preserved. Then, the context-guided module
enhances the features by learning local features, sur-
rounding context, and global context.

(2) A Gaussian kernel-guided decoder module based on
direction consistency is proposed to effectively
strengthen the power line representation and main-
tain the continuity of power lines. It uses the esti-
mated Gaussian kernels to aggregate the power line
features in the main direction. The low-level features
extracted by the coordinate-aware features are intro-
duced to recover the edge details of power lines and
effectively distinguish the dense power lines.

(3) Moreover, the Power Line Aerial Image Dataset
(PLAID) is constructed due to the limited available
power line datasets for pixel-wise detection. The
experimental results of our method show good per-
formance on the self-build dataset.

The rest of this paper is organized as follows. Section 2
introduces the related research about power line detection
and lightweight semantic segmentation. The proposed method
and the self-build dataset are elaborated in Section 3. Section 4
gives experimental results and a detailed discussion of the pro-
posed method. Finally, in Section 5, conclusions are made.

2. Related Work

2.1. Power Line Detection. Power line detection has been a
topic of interest within the research community, with a variety
of methods being proposed. In conclusion, these approaches
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can be divided into two categories. One is based on manual
feature extraction and another is based on deep learning
algorithms.

Manual feature extraction-based methods mainly detect
power lines based on edge detection or joint features. Edge
detection-based methods were proposed earlier. Candamo
et al. [22] argued to use Canny edge detector and morpho-
logical filtering followed by motion estimation to conduct
edge detection. Golightly and Jones [23] viewed power lines
as straight lines, which were detected by the Hough straight
line detection algorithm. Later, some scholars proposed joint
feature-based approaches to the segmentation of power lines.
In Zhu et al. [24], a low–high pass block and an edge atten-
tion fusion module were proposed to extract spatial and
semantic information, improving the power line detection
result along the boundary. Wu et al. [25] combined Deeplab
V3+ model and edge detection to finely segment bunches.
Yang et al. [26] proposed an attention block and an attention
fusion network to separately capture global contextual fea-
tures and utilize local feature maps, thus acquiring more rich
contextual information. Inspired by locusts’ looming-
sensitive neurons, namely the Lobula giant movement detec-
tor, Wu et al. [27] presented a neural computational model
that fused a line-attention module with the Lobula giant
movement detector model to solve the problem that previous
models do not reflect small-size objects well.

With the development of deep learning, deep learning
algorithm-based detection methods have shown promising
detection capabilities for power line inspection. Based on the
holistically-nested edge detection (HED) algorithm, Liang
et al. [28] used the TensorFlow deep learning framework
to build a HED network model to realize the pixel-wise
segmentation. Hybrid models for power line detection have
also been developed. Guo et al. [29] extracted the character-
istics of transmission lines through a deep convolutional
neural network, and the improved AlexNet model and
SVM classification method were incorporated to realize the
classification of various types of power equipment. For the
accurate detection of power lines in aerial images, Xu et al.
[30] proposed an end-to-end convolutional neural network.
Multilevel, multilayered features of images were extracted by
backbone networks, the perceptual field was increased to
obtain features with more global contextual details using
the joint attention module. Tian et al. [31] used CNNs to
classify images of damaged power lines and SVMs to identify
and calculate the severity of damaged power lines using sta-
tistical information. Vemula et al. [32] proposed a power line
detection segmentation algorithm based on migration learn-
ing and improved Mask R-CNN, while the framerate is too
slow for real-time performance. Nevertheless, it ignored the
significant position information of the power line.

However, due to the limited hardware performance in
real-world application scenarios, lightweight solutions are
still needed to compress the models and reduce the number
of parameters and computations.

2.2. Lightweight Semantic Segmentation Models. Lightweight
semantic segmentation models require a good trade-off

between accuracy and latency. Computational complexity
is positively correlated with spatial resolution, and spatial res-
olution can be reduced by mediating spatial information loss.

Encoder–decoder architecture is an effective way to solve the
problem, Enet [32] and SegNet [33] are typical examples. ICNet
[34] used different calculations for inputs of different resolutions,
specifically, PSPNet [35] was used for low-resolution images,
the parameters were shared between branches for medium-
resolution images, and light CNN was used for high-resolution
images. In BiSeNetV2 [36, 37], a bilateral segmentation network
was designed to extract detailed features and semantic features
separately, and finally, they were fused to achieve a balance
between accuracy and latency. However, this network had a
poor performance for specific tasks, based on which STDCSeg
[38] removed structural redundancy and reduced feature map
dimensionality.

Some efficient blocks are applied to improve the effi-
ciency of the network, Wu et al. [39] proposed a CG block
that learned joint feature of both local feature and surround-
ing context, and enlightened by SENet [39], the global con-
text was treated as a weighted vector to channel-wisely refine
the joint feature. Also, depth-wise separable convolution is a
key block to reduce the amount of calculation, which has
been used in many network architectures, such as MobileNet
[40], IGCV3 [41], and ShuffleNet [42, 43]. Shi et al. [44]
replaced normal convolution with depth separable convolu-
tion, performing information exchange across channels to
solve the problem of information blocking between channels.
Yang et al. [45] proposed a lightweight semantic segmenta-
tion network based on U2Net, replacing the normal convo-
lution in upsampling and downsampling in U2Net with
deeply separable convolutions, effectively reducing the
computational effort of the model. Wu et al. [46] introduced
the InvolutionBottleneck module and modified the loss func-
tion to construct a lightweight YOLOv5-B, which is further
used to detect and identify banana-bearing branches, rachi-
des, and flower buds in orchards with complex background.

There are other approaches that can also lighten seman-
tic segmentation. Ma et al. [47] combined the visual and
linguistic encoders to jointly extract features. Then, a
cross-modal fusion module was used to bridge the embed-
ding space, and finally upsampled the features to the original
resolution by a visual decoder, and the segmentation results
could be derived by calculating the cosine similarity between
visual and linguistic. Cheng et al. [48] presented a new light-
weight segmentation network search method through local
information exchange and global information fusion; specif-
ically, a graph convolutional network bootstrap module was
used to pass local information of neighboring units and a
densely connected fusion unit to perform global information
aggregation.

3. Materials and Methods

3.1. Network Framework. The architecture of the direction
consistency-guided lightweight power line detection network
is shown in Figure 1. First, in the feature extraction stage, the
coordinate convolution layer [49] and the coordinate attention

Journal of Sensors 3



layer [50] are combined to design a CAFEM. This module
extracts power line features in a four-layer stack, which can
effectively maintain and enhance the location information of
power lines while lightweighting the network. Then, the feature
representation of power lines is highlighted by capturing the
local features, surrounding context, and global context of power
lines through a context-guided module, which is divided into
two stages and progressively processes features with different
resolutions to form the initial attention information of power
lines. To address the problems of coarse power line features,
incomplete local connections, and still some background
interference, a Gaussian kernel estimation module is proposed.
Based on the characteristics of similar power line structures and
the same angles inmost scenes, themain direction of power lines
can be searched, and Gaussian kernels with similar power line
structures can be constructed. Based on this, a Gaussian kernel-
guided decoder module is proposed, which not only uses
Gaussian kernel to deconvolute and aggregate power line
features to gradually recover continuity and strengthen power
line representation but also introduces low-level features in
coordinate-aware feature extraction for recovering power line
edge detail representation and avoiding dense power lines
from being segmented into the same target. After passing
through two layers of decoders, the resolution is finally
recovered by upsampling operation and the segmentation
result is obtained by sigmoid operation.

3.2. Coordinate-Aware Feature Extraction Module (CAFEM).
Because of the spatial and structural characteristics of power
lines in images, not only the similarity between multiple
power lines but also the continuity of single power lines
exists, so it is very necessary to keep the spatial location
information of power lines in the power line detection
task. At the same time, in order to ensure that the network
has a small number of parameters and low computational
overhead, the selection of the backbone network is very

important. The mainstream VGG, ResNet, and other series
of networks have a large number of parameters, and the
extracted features have the characteristics of substantial
channels and low resolution, which are not suitable for light-
weight networks.

Based on the above characteristics, the proposed method
designs a lightweight CAFEM for early feature extraction to
maintain and enhance the spatial location information of
power lines. As shown in Figure 1(b), the module first extracts
the power line features of the input image I 2R3×H×W using a
coordinate convolution layer with a step size of 2 and com-
pletes 1/2 downsampling. Then, two 3× 3 standard convolu-
tional layers are used to further extract power line features.

F0 ¼ f coord3×3 I;W0ð Þ; F1 ¼ f coord3×3 F0;W1ð Þ; F2 ¼ f coord3×3 F1;W2ð Þ;
ð1Þ

where f coord3×3 ð∗Þ denotes a 3× 3 coordinate convolution layer,
F0; F1; and F2 denote the three convolution results, respec-
tively, and F0; F1; and F2 2R32×H

2×
W
2 . Finally, a coordinate

attention layer fCAð:Þ is used to enhance the power line feature
representation and the corresponding location-aware infor-
mation:

F ¼ fCA F2ð Þ; ð2Þ

where F denotes the output feature encoding, F 2R32×H
2×

W
2 .

3.3. Context-Guided Module. In order to make full use of the
inherent property of image segmentation, i.e., contextual
information, a context-guided module is designed to fully
capture multiple contexts to help pixel-level power line seg-
mentation. As shown in Figure 1, when power line segmen-
tation needs to be completed, if only a local region of the
power line itself is focused, as shown in the yellow region in
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FIGURE 1: (a) Overall framework of the proposed network. (b) Coordinate-aware features extraction module. (c) Context-guided module.
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Figure 1(c), this region is too small in area, which easily leads
to insufficient information for pixel-level classification of the
region. However, if the coverage area of the region is
expanded, as shown in the red region in Figure 1(c), at this
time, the region contains both the power line and the sur-
rounding environment, it is easier to identify the power line
as a significant target and thus assign more weights. Further,
if the global context of the whole scene is captured, as shown
in the green region in Figure 1(c), it not only provides a
global representation of the scene but also aggregates power
line representations with similar features and structures,
which can effectively improve the confidence level of power
line segmentation within the yellow region. Thus, both the
surrounding context and the global context help to improve
the power line segmentation accuracy.

Therefore, the context-guided module is proposed to
fully utilize the local features, surrounding context, and
global context. For the input features F, the number of chan-
nels is first changed using a layer of 1× 1 convolution. Then,
the local features Floc and the corresponding surrounding
contexts Fsur are learned using 3× 3 standard convolution
and dilated convolution, respectively:

Floc ¼ f 3×3 f 1×1 F;W0ð Þ;W1ð Þ; ð3Þ

Fsur ¼ f 3×3d f 1×1 F;W0ð Þ;W2ð Þ; ð4Þ

where f 3×3d ð:;W2Þ denotes the dilated convolution and d is
the dilation rate, which can be adjusted according to the
feature map size. Since the dilated convolution has a larger
perceptual field compared to the standard convolutional
layer, it can learn the surrounding environment effectively.
After that, the two features are cascaded and batch normali-
zation (BN) and rectified linear unit (ReLU) operations are
performed:

Fjoi ¼ ReLU BN Floc; Fsur½ �ð Þð Þ: ð5Þ

Then, the global average pooling layer and two fully con-
nected layers are used to extract global context information,
which is used as a weighted vector for improving the joint
features Fjoi after sigmoid operation σ to get the final feature
output Fout:

Fout ¼ Fjoi ⋅ σ W4 ⋅ W3 ⋅ favg Fjoi
À ÁÀ ÁÀ Á

: ð6Þ

Two feature processing stages, respectively, containing M
and N Gaussian kernel-guided convolution modules are con-
structed with the context-guided module as the base compo-
nent, and a step-2 convolution operation is performed on the
input features in the first module of each stage to reduce the
resolution. The input feature of the first stage is F 2R32×H

2×
W
2 ,

and the input feature of the second stage is cascaded from three
parts: the output of the first and last modules of the first stage,
and the input image after 1/2 downsampling, by which feature
reuse is encouraged and feature propagation is enhanced.

Similarly, the output feature F2 of the second stage is the output
of the first and last modules of the stage cascaded.

3.4. Gaussian Kernel Estimation Module. Since power line
detection and segmentation is a pixel-level classification
task and is not an instance-level classification task for the
complete target, it is easy to break the local connection of
power lines during the segmentation process and destroy the
integrity of a power line. As power lines are erected between
the poles with a certain regularity, most of the power lines in
the same area present the same angle and similar appearance,
and even though some of the power lines are in the shape of
hanging chain lines, their overall still present a certain main
direction. Based on the above characteristics, the proposed
method proposes to use Gaussian kernels with a similar
structure to power lines to convolve the power line features
extracted from the network and aggregate the power line
features in the main direction, so that the local breaks in
the power lines can be reconnected to maintain continuity
and strengthen the power line representation.

Therefore, it is first necessary to obtain Gaussian kernels
with the same angle as the main direction of the power lines
in the image. A Gaussian kernel estimation module is
designed, as shown in Figure 2.

First, according to the structural characteristics of the
power lines, the size of the Gaussian kernel is set to 13× 13,
the two eigenvalues λ1 and λ2 are set to 7 and 1, and the set of
rotation angles with eight directional angles is constructed:

Θ¼ 0;
π

8
;
π

4
;
3π
8
;
π

2
;
5π
8
;
3π
4
;
7π
8

� �
: ð7Þ

Since the power lines are symmetric, the rotation angle is
set in the range [0, π]. Then, the covariance matrix Σi is
constructed based on the rotation angle θi 2Θ and the fea-
ture values:

Σi ¼
cos θið Þ −sin θið Þ
sin θið Þ cos θið Þ

" #
λ1 0

0 λ2

" #
cos θið Þ sin θið Þ
−sin θið Þ cos θið Þ

" #
:

ð8Þ

AGaussian kernel Ki with a kernel size of 13 based on the
covariance matrix is constructed:

Ki zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2π Σij jp exp −

1
2

z − μð ÞTΣ−1
i z − μð Þ

� �
; ð9Þ

where z¼ ½x; y�T ; μ indicates the mean value, each Gaussian
kernel is more sensitive to the power line features in the same
direction as itself, and these Gaussian kernels are used to
convolve with the input feature F2, as shown in Figure 2:

Gi ¼ fgaus F2; Kið Þ; ð10Þ

where fgausð; KiÞ denotes the convolution operation parame-
terized by a Gaussian kernel Ki. In this case, the convolved
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Gaussian kernel with the same direction as the power line
has a stronger degree of aggregation and a higher response
value, as shown in Figure 2. Therefore, by calculating the
mean square value of each result, the largest corresponding
one can be selected, and the appropriate Gaussian kernel K
can be estimated.

3.5. Kernel-Guided Decoder Module. In the final stage of the
network, a two-layer decoder module is designed, which not
only introduces the low-level features in the feature extrac-
tion module to gradually recover the feature resolution and
power line details but also performs a convolution guided by
a Gaussian kernel to aggregate the contextual information in
the main direction of the power line to recover and maintain
the continuity of the power line. The architecture of this
decoder is shown in Figure 3. First, the input features F are
upsampled to the same resolution as the introduced low-level
features L, and a 1× 1 convolution is performed:

F0 ¼ f 1×1 Up Fð Þ;W0ð Þ; ð11Þ

where Upð⋅Þ indicates upsampling operation. Then, the esti-
mated Gaussian kernel K is used as a guide to complete T
kernel convolution operations to reduce the number of

channels to 1. The difference between the kernel convolution
operation and the standard convolution is only that the
unlearnable predefined Gaussian kernel is utilized, and the
rest is the same. Finally, the power line attention weights are
calculated by the sigmoid operation on the kernel convolu-
tion results and multiplied with F0 to obtain the features of
the enhanced power line representation:

Fk ¼ f×5 F0; Kð Þ; F00 ¼ F0 ⋅ σ Fkð Þ; ð12Þ

where f×5ð:; KÞ denotes a series of five convolution operations
with Gaussian kernel K as the parameter, σð⋅Þ is a sigmoid
activation function. Then, cascade with the low-level features
and perform a 3× 3 convolution to obtain the power line
feature after recovering the details:

Fc ¼ f 3×3 F0; L½ �;W8ð Þ: ð13Þ

After passing through the two-layer decoder, the features
are restored to the original resolution of the input image
using the upsampling operation. Then, convolution is per-
formed to obtain the single-channel features, and the power
line detection result is obtained after the sigmoid operation.
So far, the network architecture proposed contains only 65
learnable convolutional layers with a small number of chan-
nels and 16 unlearnable convolutional layers based on
Gaussian kernel with M¼ 3;N ¼ 15, and two decoder layers
with T of 5 and 3, respectively, which have less number of
parameters and computational overhead compared with the
deep convolutional network framework containing hundreds
of layers and thousands of channels. Moreover, the network
has only three downsampling stages and feature map resolu-
tion is down to a minimum of only 1=8, which can retain
more discriminative spatial information compared to the
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mainstream five downsampling stages and 1=32 feature map
resolution.

3.6. Loss Function. To better supervise network learning and
obtain higher quality power line segmentation results and
clearer bounds, a hybrid loss consisting of a combination
of BCE loss [51] and SSIM loss [52] is defined as follows:

ℓtotal ¼ ℓBCE þ ℓSSIM þ ℓIoU; ð14Þ

where BCE loss is the most widely used loss in binary classi-
fication and segmentation and IoU is the Intersection over
Union:

ℓBCE ¼ − ∑
i;jð Þ

G i; jð ÞlogP i; jð Þ þ 1 − G i; jð Þð Þlog 1 − P i; jð Þð Þ½ �;

ð15Þ

where G denotes the ground truth image and ði; jÞ denotes
the pixel coordinates in the image. Originally designed for
image quality assessment, SSIM captures structural informa-
tion in the image and therefore integrates it into the training
loss to learn the structural information of ground truth.
Given x¼fxj; j2 ½1;N2�g; y¼fyj; j2 ½1;N2�g, respectively,
denote the pixel values of the two corresponding blocks
cropped from the predicted result and the ground truth
image. Then, the SSIM losses of x and y are defined as fol-
lows:

ℓSSIM ¼ 1 −
2μxμy þ C1

À Á
2σxy þ C2

À Á
μ2x þ μ2y þ C1

À Á
σ2x þ σ2y þ C2

À Á ; ð16Þ

where μx; μy; σx; and σy represent the mean and standard
deviation of x and y, respectively, σxy denotes covariance,
and C1 is set to 0:012 and C2 is set to 0:032 to avoid denomi-
nator of 0. The BCE loss is computed at the pixel level, it does
not consider the GT of other points around the pixel, and it
weights both foreground and background pixels. This helps
convergence for all pixels and guarantees a relatively good
local optimum. SSIM loss is a metric for local areas that
considers the local neighborhood of each pixel, and it assigns
higher weights to pixels located in the border area between
foreground and background, such as borders, and fine struc-
tures, so that the loss around the border is higher even if the
predicted probability is the same for the border and the rest
of the foreground.

4. Results and Discussion

4.1. Datasets and Implementation Details

4.1.1. Datasets. To meet the demand for UAV-based power
line detection and verify the effectiveness of the proposed
method, we construct the PLAID and use the publicly
available transmission towers and power lines aerial-image
(TTPLA) to provide a large number of diverse training
images for training the optimal model.

The PLAID is constructed as follows. First, a DJI M300
RTK UAV equipped with an industrial camera is used to
capture aerial images in different scenes of three 220 kV
overhead high-voltage transmission lines with a total length
of about 20 km. In order to enable the training model to cope
with the scene changes (different lighting conditions, color
distribution, complex backgrounds, etc.), avoid the problem
of overfitting, and improve the generalization ability of the
model, a total of 32 transmission line inspection videos are
captured under various shooting angles in multiple lines,
weather and lighting conditions, which are closer to the
actual inspection situation. At the same time because the
camera has a high shooting frame rate, it is necessary to pre-
vent the problem of data redundancy by screening and elimi-
nating imageswith high similarity, and only data enhancement
operations such as normalization and random rotation are
used. Finally, 2,000 aerial images with an image size of
2,448× 2,048 are selected and further split into training
and test sets with a ratio of 8 : 2. The image annotation tool
labelme [53] is adopted for the pixel-level annotation of power
lines and construct PLAID, part of which is shown in Figure 4.

TTPLA contains 1,242 power line images in urban and
transmission line scenes with a resolution of 3,840× 2,160.
This dataset has many scenes, most of the images have com-
plex backgrounds, and some of the images have elements
that tend to interfere with power line detection such as
lane lines. By training jointly with the PLAID, it can effec-
tively complement each other and better train the network.

4.1.2. Implementation Details. The proposed method is
implemented with the PyTorch framework and executed
on a computer with an Intel Core i7, NVIDIA RTX-2080
with GPUmemory of 12GB. AdamW [54] optimizer and the
step learning rate schedule are used during model training,
and the total number of training epochs is set to 100. The
initial learning rate and weight decay are set to 0.001 and
5e–4, and the learning rate decayed to 1/2 of the original
value at 50 and 60 epochs, respectively. The feature values
λ1 and λ2 are set to 7 and 3, and the number of Gaussian
kernel-based guided convolution modules M and N in
stages 1 and 2 are set to 3 and 9, respectively. The input
images are uniformly scaled to 512× 512.

4.2. Evaluation Metrics. F-measure, mean absolute error
(MAE), and S-measure are used to evaluate our method
and other comparison methods, all of which are widely
used metrics in the field of image segmentation. Among
them, F-measure is formulated as follows:

Fβ ¼
1þ β2ð Þ ⋅ precision ⋅ recall
β2 ⋅ precisionþ recallð Þ ; ð17Þ

where β2 is set to 0.3 to emphasize the importance of accu-
racy, and the maximum value of F-measure (Max F-measure,
MaxF) is used to evaluate the performance of all methods.

The MAE evaluates the MAE between the power line
detection results and the true value map, which is calculated
as follows:
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MAE¼ 1
T

∑
T

t¼1
Pt − Gtj j; ð18Þ

where Pt andQt refer to the detection result and the true
value map normalized to the range of 0–1, respectively,
and T ¼H ×W denotes all pixel points in the image. Com-
pared with F-measure, S-measure is closer to the human
visual evaluation criteria for binary segmentation maps, and
it focuses more on assessing the structural similarity of the
detection results. Therefore, the S-measure metric is added to
make a more comprehensive evaluation of the method,
which is expressed as follows:

S¼ γS0 þ 1 − γð ÞSr; ð19Þ

where S0 and Sr denote the structural similarity of the region
perception and object perception and the default setting of γ
is 0.5.

4.3. Ablation Study. To verify the effectiveness of each mod-
ule proposed in the method, the features of the Gaussian
kernel estimation module as well as the decoder module
are first visualized to understand more intuitively the feature
variations in the modules and the effectiveness of the pro-
posed method, and ablation experiments are conducted to
compare each module to better analyze the results.

4.3.1. Feature Visualization. In order to better demonstrate
the feature visualization results, five groups of images with

complex backgrounds are selected, as shown in Figure 5,
where Figure 5(a) has very thin power lines, resulting in a
very low zone with the background. Figure 5(b) has not only
the interference of lane lines but also the background switch-
ing of power lines, and the right fifth part of power lines is
more similar to the background. Figure 5(c) has a similar
situation, the left part of the power line is so similar to the
background that the human eye can barely distinguish it.
Figure 5(d) has interference from light changes, road cracks,
and edges, and there are three groups of power lines with
different detection difficulties. Figure 5(e) has a high degree
of differentiation from the background, but there is interfer-
ence from lines in the vertical direction and from the parts of
the power line connection.

In this section, we visualize the features of these five
groups of power line images with high difficulty. The visual-
ization results in the Gaussian kernel estimation module for
the input features and the convolutional features after eight
different Gaussian kernels are shown in Figure 5. The first
and second images of each group are the original images and
the input features, followed by the eight convolutional fea-
tures, and the corresponding value below for each feature is
its mean square value.

From the five sets of results, it can be seen that when the
Gaussian kernel direction is different from the power lines,
the attention information in the convolution features for the
power lines will be greatly scattered, resulting in a lower
overall response of the image, and the attention information
will only be enhanced when the main directions are the same
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FIGURE 4: Examples of power line images: (a) PLAID and (b) TTPLA.
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or nearby, and more power line features will be aggregated to
enhance the overall response of the image when the direc-
tions are the same, so the calculated mean square value is the
largest, as in Figure 5, the results for each group of images
marked with red boxes are shown.

After passing the Gaussian kernel estimation module, the
two-layer decoder will perform convolution using the esti-
mated Gaussian kernel to strengthen the power line repre-
sentation of the input features. Figure 6 demonstrates the
variation of the input features in the first layer decoder,
where the first and second columns represent the original
images and the input features of the decoder, the third col-
umn is the result of the 1× 1 convolution of the input fea-
tures, the fourth to ninth columns are the results of the
convolution guided by the five-layer Gaussian kernel and
the subsequent sigmoid operation, and the ninth column is
multiplied with the third column to obtain the tenth column,
the eleventh column is the result of cascading with the lower-
level features and passing 3× 3 convolution, and the last
column is the final output of the network.

From the five sets of results in Figure 6, it can be seen that
the input features of the decoder only form the attention
information to the power lines, which is still relatively rough
in the power line representation and edge details. Also, there
exists the attention information to the background part,
which easily interferes with the segmentation. After 1× 1
convolution, most of the background interference can be
removed, followed by five times kernel convolution in series.
Meanwhile, it can be seen that the kernel convolution grad-
ually strengthens the power line representation and restores
the continuity of power lines in Figures 6(a) and (c), which

effectively compensates for the power line information lost in
the early feature extraction. After a sigmoid operation and
multiplication with the original features, the power line
representation is greatly improved and enhanced, and the
distinction with background interferents is also improved.
Finally, after cascading and convolving with the low-level
features of the CAFEM, the power line details are effectively
recovered, and it can be seen that the dense power lines in
Figures 6(a) and 6(d) are successfully distinguished.

Figure 4 shows the final results of the proposed method.
It can be seen that the detection results of Figure 6(b)–6(e) of
images are very accurate. However, the characteristics of too
thin power lines in Figure 6(a) greatly enhance the difficulty
of extracting the power line features by the method, which
makes the detection results not fine enough, and at the same
time, the uppermost line in Figure 6(a) is completely fused
with the background, which is difficult to observe, and the
method only detects the more ambiguous part of the infor-
mation. The power line background switching part in the
upper left corner of Figure 6(d), due to the effect of lighting
and more similar to the background, the detection result
shows power line breakage here.

4.3.2. Ablation Study. In this section, we justify the effective-
ness of each key component used in our model, and the
ablation experiments are performed on both TTPLA and
PLAID in Table 1. We start with the baseline variant
which simply uses a three-layer convolutional layer
followed by a two-layer decoder, and the results are listed
in row 1 of Table 1, in which the detection performance is
poor. We can find that the CAFEM improves the MaxF by

Image

7.136761

9.289515

7.860721

8.030293

9.709793 9.701136 9.666570 9.635614 9.653902 9.654922 9.709195 9.752323

8.038860 8.135189 8.266788 8.270611 8.174116 8.048344 7.994076

7.868087 7.828229 7.789095 7.809368 7.795077 7.845834 7.903164

9.209711 9.144730 9.129338 9.128795 9.124043 9.149780 9.258264

6.923635 6.687070 6.586634 6.647805 6.631179 6.825524 7.177409
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FIGURE 5: Feature visualization of Gaussian kernel estimation module. (a–e) Five samples randomly selected from the dataset.
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approximately 0.05 on both datasets, MAE by 0.05 and 0.07,
and S-measure by 0.12 and 0.08, respectively. Also, the
context-guided module enhances the MaxF by 0.14 and
0.17 on the two datasets, MAE by 0.01 and 0.17, and S-
measure by 0.27 and 0.17, respectively. Since the Gaussian
kernel guidance relies on the degree of attention of the input
features to the power line representation, which would
otherwise enhance the interference information and affect
the detection results, the overall improvement is small
when only the Gaussian kernel-guided module is added.
However, the proposed method first extracts the power
line representation using the CAFEM and the context-
guided module to form the attention information for
power lines. Then, the Gaussian kernel-guided decoder
module is used to greatly enhance and compensate for the
power line representation. Hence, the overall performance
improvement is significant, with MaxF improving by 0.23
and 0.38, MAE decreasing by 0.0149 and 0.0213, and S-
measure improving by 0.33 and 0.25 in both datasets
compared to the basic network architecture. In short, our
proposed modules are effective for power line detection.

The results of the visual comparison of the ablation
experiment are shown in Figure 7. Since the introduction
of decoder only in Table 1 is less effective, only the power
line detection results for variant 2, variant 3, and variant 5
are shown in Figure 7. It can be seen, consistent with Table 1,
that the introduction of the CAFEM retains extensive spatial
location information for power lines, the introduction of the

CGMmakes for better continuity of power lines. However, it
is the combination of the three modules that yields the final
fine power line segmentation results.

4.3.3. Network Efficiency Comparison. First, in order to verify
the lightweight and real-time of the proposed method, the
number of network parameters, floating-point operations
per second (FLOPs), memory consumption, and processing
time per input image are compared between the proposed
method and other deep learning-based comparison algo-
rithms, and the results are shown in Table 2. As can be
seen from the table, since the proposed method does not
use the mainstream backbone network for feature extraction,
and the number of convolutional layers in the network is
small, the number of parameters in the network is small,
only 0.46M, which has a great advantage compared with
other methods. Also, there are fewer operations in the net-
work, which has lower computational complexity and faster
processing time. However, due to the introduction of Gauss-
ian kernel estimation and guidance module in the network, it
leads to an increase in memory occupation, so it only has an
advantage over HED, PFANet, and EGNet, and is slightly
inferior to RCFNet, while the input resolution of PiCANet is
only 224× 224, which is difficult to compare. In summary,
the network architecture of the proposed method has a more
lightweight design, which can meet the lightweight and real-
time requirements for power line detection during UAV
inspection.

TABLE 1: Comparison of power line detection results with other methods on two datasets.

Variant no. CAFEM CGM Decoder
PLAID TTPLA

MaxF MAE S-measure MaxF MAE S-measure

1 0.5793 0.0345 0.5275 0.6688 0.0430 0.6145
2 √ 0.6251 0.0296 0.6434 0.7040 0.0361 0.6938
3 √ 0.7191 0.0244 0.7921 0.8354 0.0254 0.7828
4 √ 0.6079 0.0314 0.6193 0.6912 0.0401 0.6443
5 √ √ √ 0.8071 0.0196 0.8549 0.9412 0.0217 0.8618

Input
features 1 × 1 Conv

Kernel conversion × 5 Sigmoid Multiply
Fusion
featuresImage

(b)

(c)

(d)

(e)

(a)

GT Our

FIGURE 6: Feature visualization of the first decoder. (a–e) Five samples randomly selected from the dataset.
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4.4. Comparison Experiments. To verify the effectiveness as
well as the performance of the proposed method, the tradi-
tional edge detection method Canny [59], the straight line
detection method LSD [60], the VGG16 network-based edge
detection methods HED [55], RCFNet [58], the deep
learning-based saliency detection methods PFANet [56],
PiCANet [57], and EGNet [32] are selected as comparison
methods. All deep learning-based networks are trained and
tested on PLAID and TTPLA, in which PiCANet is more
special and can only use 224× 224 resolution input images.

4.4.1. Comparison Experiment on PLAID.
(1) Visual Comparison. To qualitatively validate the effective-
ness of the proposed network, we visualize the results gener-
ated by our method and other methods on PLAID in
Figure 8. As illustrated in Figure 8, introduced by the
CAFEM and context-guided module, the proposed method
could distinguish dense power lines and segment them with
fine edges. Compared with other methods in Figure 8(a)–8(f ),
the segmentation results of our method can perform more
complete and accurate segmentation of power lines instead
of segmenting the background or getting rid of segmenting
the power lines. Meanwhile, the Gaussian kernel-guided
decoder improves the continuity of the segmentation results,
which can be clearly seen in Figures 8(a) and 8(e) with
PiCANet and EGNet.

(2) Quantitative Evaluation. The performance compari-
son experiments of different methods on the PLAID are
shown in Table 3, where bolded are the optimal results

and underlined data are the suboptimal results. From the
table, it can be seen that the proposed method has the best
performance because it performs directional learning for the
structural features of power lines and improves 0.0019,
0.0062, and 0.0211 in three indexes in turn compared with
the suboptimal method. The F-measure index suboptimal
RCFNet has a large amount of background interference
information, the MAE index suboptimal PFANet and the
S-measure index suboptimal PiCANet have poor continuity
of detected power lines and incomplete detection. Overall,
our method outperforms other methods.

4.4.2. Comparison Experiment on TTPLA.
(1) Visual Comparison. To qualitatively validate the effective-
ness of the proposed network, we visualize the results gener-
ated by our method and other methods on the PLAID in
Figure 9. As illustrated in Figure 9, the scenes of TTPLA are
more complex with many interfering factors compared to
PLAID, while our method outperforms other methods in
Figure 9(a)–9(d) with exactly accurate segmentation results.
Specifically, the results of our method show better continuity
and realize complete segmentation without background
information interference. However, when the power lines
are similar to the background, our method tends to miss
part of the power line detection. Despite this situation, our
method still exhibits optimal detection and segmentation
performance.

(2) Quantitative Evaluation. The performance compari-
son experiments of different methods on TTPLA are shown

(a)

(b)

(c)

Image GT Variant 2 Variant 3 Variant 5

FIGURE 7: Visual comparison of the ablation experiments. (a–c) Three samples randomly selected from the dataset.

TABLE 2: Efficiency comparison results of different methods.

Method Resolution Param (M) FLOPs (G) Memory (M) Processing time (s)

HED [55] 512× 512 14.71 80.39 573.33 0.022
PFANet [56] 512× 512 16.29 145.32 756.00 0.055
PiCANet [57] 224× 224 47.21 54.04 208.96 0.084
RCFNet [58] 512× 512 14.83 102.71 367.48 0.029
EGNet [32] 512× 512 111.66 619.96 2041.28 0.177
Our 512× 512 0.46 6.31 376.06 0.013
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in Table 4, in which can be seen that compared with the
suboptimal method RCFNet, our method has optimal per-
formance with 0.07, 0.001, and 0.02 improvement in MaxF,
MAE, and S-measure, respectively. Among the other meth-
ods, Canny and LSD are severely affected by the background
interference in TTPLA and perform much worse than
PLAID in terms of metrics. HED also has a large detection
error and high MAE values, and the performance of PFANet,
PiCANet, and EGNet is gradually improving but is still infe-
rior to the suboptimal method RCFNet.

4.5. Discussion. A lightweight power line detection method is
proposed, and the experimental results demonstrate that the
proposed method can achieve good segmentation results
while maintaining lightweight. We have applied the proposed

network into the embedded development board NVIDIA
Orin NX. Though the computation capability of embedded
board is lower than desktops, the computation time of the
proposed network is about 0.04 s on average, which is
acceptable for real-world applications. Thus, in this way, the
method can further cooperate with transmission line external
obstacle detection, clearance distance measurement, and
autonomous flight of UAV. However, due to the constrained
modeling capability of the shallow network, when encountering
multidirectional power lines, or at the intersection of power
lines and transmission towers, the proposed method may be
subject to misdetection owing to the presence of linear
structural features similar to those of power lines in the
transmission towers. Hereto, we will continue to investigate
this later, possibly using the transformer module to extract

TABLE 3: Performance comparison experiments on PLAID.

Methods MaxF MAE S-measure

Canny [59] 0.5331 0.0415 0.5716
LSD [60] 0.4300 0.0422 0.6030
HED [55] 0.4819 0.0620 0.6236
PFANet [56] 0.6967 0.0266 0.6959
PiCANet [57] 0.7992 0.0271 0.8338
RCFNet [58] 0.8002 0.0377 0.7719
EGNet [32] 0.7320 0.0270 0.7738
Our 0.8021 0.0204 0.8549

The bold values are the optimal results and underlined values are the suboptimal results for each metric.

Image       GT Canny LSD       HED PFANet PiCANet RCFNet EGNet Our
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FIGURE 8: Visualization comparison results on PLAID. (a–f ) Six samples randomly selected from the dataset.
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global features and enhance the global modeling capability of
the network.

5. Conclusions

In this paper, we proposed a direction consistency-guided
lightweight power line detection network, which used a
CAFEM to extract power line features early in the network
while maintaining the location and structure information of
power lines. A two-stage context-guided module processed
input features with different resolutions to learn the local
features, surrounding context, and global context of the
power lines simultaneously, forming the initial attention
information for the power lines. Then, the Gaussian kernel
estimation module was used to search out the main direction
of power lines in the features, and the Gaussian kernel with a
similar structure to power lines was subsequently used in the
decoder module to enhance the power line representation, to
maintain the power line continuity. Meanwhile, low-level
features were introduced to recover the power line details
to ensure the accuracy of segmentation results. Moreover,
PLAID was constructed and TTPLA was introduced for
experiments. The ablation experiments on these two data-
sets verified the effectiveness of each module proposed, and the
comparison experiments with other algorithms proved the supe-
riority of our method, with more accurate power line segmenta-
tion, higher completeness, and lower mis-segmentation rate for
background, which could eliminate interference.
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