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Due to the sharing and open-access characteristics of the wireless medium, wireless sensor networks (WSNs) can be easily
attacked by jammers. To mitigate the effects of a jamming attack, one reliable solution is to locate and remove the jammer
from the deployed area within the WSN. To realize the jammer’s localization in the WSN, many range-free methods have been
proposed. However, most of these methods are sensitive to the distribution of nodes and the parameters of the jammer. For
this reason, a jammer location-aware method based on Fibonacci branch search (FBS) is proposed in this article. First, the
interference region is estimated by using the interference region mapping service of sensors in wireless sensor networks. Then,
the search point is selected in the jamming area and the fitness function is designed according to the average distance from the
search point to the boundary sensor. According to the basic branch structure and interactive search rules, the global optimal
solution is obtained in the jamming area. Finally, the position of the search point with the best fitness value is used as the
estimation of the jammer position. Compared with the existing typical range-free methods, rich simulation experiments
demonstrate that the FBS algorithm is superior in the location-aware method for jammers with a higher precision and a lower
sensitivity to the distribution of nodes and the parameters of the jammer, respectively.

1. Introduction

Wireless sensor networks (WSNs) are seriously threatened
by radio interference attacks due to the sharing and open-
access characteristics of wireless mediums [1–3]. The radio
interference attacks, which are also known as jamming
attacks, can seriously disrupt normal communication
between legitimate sensors. By occupying the wireless com-
munication channel or disrupting the workflow of network
protocols, WSN jamming attacks can be easily initiated [4].
To reduce the impact of jamming attacks on network perfor-
mance and ensure the security of WSNs, various prevention
jamming strategies [5] have been proposed, such as covert
timing channels [6], channel hopping [7], protocol optimi-
zation [8], channel-aware decision fusion [9], and spatial
retreat [10]. In addition to these strategies, jammer location
awareness is an effective method that helps us remove the
jammer based on the jammer’s location [11].

To date, most jammer location-aware problems have
been extensively investigated and several location perception

algorithms have been designed. In general, existing location-
aware strategies can be classified as range-free methods and
range-based methods [12]. Range-based methods usually
estimate the distance information by measuring some phys-
ical attributes of jammer signals [13]. The relevant physical
attributes mainly include received signal strength indicators
(RSSIs) [14], time difference of arrival (TDoA) [15], time of
arrival (ToA) [16], and angle of arrival (AoA) [17]. The loca-
tion of the jammer is calculated by the Euclidean distance or
angle size between legitimate nodes and the jammer. Differ-
ent calculation algorithms will greatly affect the positioning
accuracy. Typical algorithms include triangulation [18], tri-
lateration [19], and algorithms based on multidimensional
scaling (MDS), such as MDS [20], MDS-MAP [21], MDS-
MAP(P) [22], and SMDS [23]. However, due to the small
size of sensors in WSNs, battery life is limited and the life
of the sensor is directly affected by the life of the battery
[24], which further affects the life of the entire network to
maximize the life cycle of the sensor network. Therefore,
the seniors in WSNs are usually not allowed components
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that can realize the distance between the sensors and the
jammer. At the same time, sensors in the jammed area have
difficulty communicating with each other because of jammer
interference. Even though every sensor is equipped with
ranging components, the jammed sensor cannot obtain the
location information of neighboring sensors to locate the
jammer’s position. For these reasons, range-free methods
are more suitable for WSNs to achieve the localization of
jammers in the network [25].

Range-free location-aware algorithms make use of the
geometric relationship of the jammed area to realize the
localization of the jammer. At the same time, the problem
of jamming detection was briefly researched by Wood et al.
[26] and further investigated by Xu et al. [27]. Wood et al.
proposed a scheme that could map a jammed region, and
Xu et al. presented several measurements to detect jamming
attacks in WSNs. To calculate the jammer localization,
Bulusu et al. proposed centroid localization (CL) [28], which
estimates the coordinates of the jammer by calculating the
average relative coordinates of all jammed nodes. CL is easy
to realize, but the localization error is large. To improve the
location-aware accuracy, Blumenthal et al. proposed
weighted centroid localization (WCL) [29], which is based
on the assumption that the influence degree of different
nodes on the localization of the jammer is different. The
closer the node is to the jammer, the greater the weight value
of the node is. WCL needs RSSI to realize the computation
of the weight, which is difficult in some scenarios. To further
improve the location-aware accuracy, Shoari and Seyedi pro-
posed an algorithm based on the minimum enclosing rect-
angle center [12]. In the algorithm, the position of the
jammer is calculated as the center of the smallest enclosing
rectangle covering all of the jamming nodes. Liu et al. pro-
posed virtual force iterative localization (VFIL) to locate
the jammer [30]. The concepts of pull force, push force,
and joint force are defined in the VFIL. The jammed node
produces a pulling force to constantly pull the jammer to
itself, and the boundary sensors push the jammer away from
itself through a push force. The final location awareness of
the jammer is realized through the joint force produced by
the jammed nodes and the boundary nodes in the jammed
area. To reduce the sensitivity of the distribution of nodes
when locating the jammer, Wang et al. proposed a heuristic
optimization evolutionary algorithm named the gravita-
tional search algorithm (GSA) [1]. This method merges
mass interactions and Newton’s law of universal gravitation.
After iterations, the coordinates of the most massive particle
are adopted as the coordinates of the jammer. In addition,
for multijammer scenarios, Cheng et al. designed two
methods to calculate the localization of jammers based
on M-clusters and X-rays [31]. Wang et al. utilized the
k-means clustering algorithm to estimate the location of
the jammer according to the location information of neigh-
boring nodes [32].

The distributed sensors and the parameters of the jam-
mer can easily affect the performance of range-free methods.
In this paper, to decrease the sensitivity of range-free
methods and improve the location-aware accuracy, a robust
location-aware algorithm based on the Fibonacci branch

search (FBS) is designed. Meanwhile, the reachability and
convergence of FBS are proven mathematically, which fur-
ther verifies the validity of the theory for the FBS strategy.
The location-aware algorithm based on FBS uses the power-
ful global searchability and the high convergence speed of
the technology. It improves the location-aware performance
by preventing the loss of the best trajectory. Aiming at the
abovementioned problems in target node location, the main
contribution of this paper includes three aspects.

(1) In this paper, a robust location sensing algorithm based
on Fibonacci branch search (FBS) is designed to reduce
the sensitivity of distance-independent methods and
improve the accuracy of location sensing. At the same
time, the reachability and convergence of FBS are
provedmathematically, which further verifies the effec-
tiveness of the FBS strategy theory

(2) Based on the FBS algorithm, interactive global search
and local optimization rules are used alternately to
realize global optimization. Finally, the coordinates
of the search point with the highest fitness value
are taken as the coordinates of the jammer. Com-
pared with many existing location aware algorithms,
the proposed method has higher performance in
complex scenes with different parameter settings

(3) Experiments show that the proposed method can
locate the target node when it is unable to range
the target node, and in terms of optimization ability,
due to other similar algorithms, at the same time,
even if the deployment area of the wireless sensor
network has the characteristics of low density and
low communication distance, the positioning error
based on FBS is still less than other algorithms

The rest of this paper is described as follows. Section 2
describes the network model and the jamming model. Sec-
tion 3 illustrates the main principle of the FBS algorithm.
The location-aware method of jammers based on FBS is pre-
sented in Section 4. Section 5 illustrates and discusses the
simulation results. Section 6 presents our conclusions.

2. System Models

The scenario with a WSN and a jammer is shown in
Figure 1, where the jammer is surrounded by sensors. In this
section, the network model and the jamming model are
outlined.

2.1. Network Model. Assume that NS homogeneous
sensors are deployed in the area to form a WSN.
S = ½s1, s2,⋯, sNS

�T ∈NS × 2 are the coordinates of all of
the sensors, and si = ½xsi , ysi �, i = 1, 2,⋯,NS. The sensors can
be aware of their locations through GPS or other location-
aware algorithms, e.g., when the distances between the sen-
sors are obtained, algorithms based on MDS can be used to
realize location awareness. Once deployed, this article con-
siders the location of the sensor to remain unchanged. Every
sensor in the network is equipped with an omnidirectional
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antenna and can communicate with other sensors within a
communication range RS. There are no isolated subnets or
isolated sensors in the network. For sensors that are not in
the communication range, sensors can communicate with
each other in a multihop manner. According to the above-
mentioned assumptions, the network model of the WSN in
Figure 1 is shown in Figure 2.

2.2. Jamming Model. In this model, we assume that the jam-
ming power remains stable and the jammer location stays
static. This jammer continuously transmits radio signals,
which can be implemented using a waveform generator that
continuously transmits radio signals or a normal wireless
device that keeps sending random bits to the channel without
following any MAC layer protocol. Due to the large coverage
of the omnidirectional antenna, the jammer is equipped with
an omnidirectional antenna with the same direction effect.
Under the effect of the jammer, the sensors in the WSN are
divided into three types: jammed sensors, boundary sensors,
and unaffected sensors. Jammed sensors are located in the
jammed area and cannot communicate with any neighboring
sensors. Boundary sensors are usually located at the edge of
the jammed area. Although they struggle with jamming
attacks, the sensors can still communicate with neighboring
sensors. Unaffected sensors outside the jammed area can
receive information from neighboring sensors even if the jam-
mer appears. B = ½b1, b2,⋯, bNB

�T ∈NB × 2 contains the

coordinates of all of the boundary sensors, and bi = ½xBi , yBi �,
i = 1, 2,⋯,NB, where NB is the number of boundary sensors
in the network.

According to the abovementioned assumptions, the jam-
ming model of the WSN is shown in Figure 3.

When a node detects itself as jammed, the node broad-
casts notification messages to its neighboring nodes, as
shown in Figure 4(a). Mapping is conducted by the neigh-
boring sensors of jammed sensors who receive the interfer-

ence message. Each receiver becomes a mapping member
and adds nearby jammed sensors to form a local group. As
shown in Figure 4(b), adjacent sensors contain mapping
messages for the local exchange of group information. Adja-
cent groups are condensed together to form a mapped area,
as shown in Figure 4(c), which can be used as an estimation
of the jammed area [26]. The sensors that constitute the
mapped area are all boundary nodes. The notations that will
be used throughout the paper are summarized in Table 1.

3. Fibonacci Branch Search Algorithm

The Fibonacci optimization method has proven the effec-
tiveness and convergence of solving a series of nonlinear
benchmark functions in one-dimensional space [33]. How-
ever, the method is rarely used in the properties of multidi-
mensional space search optimization problems. In addition
to the structure itself, there are few variants implemented
in localized applications reported in the public literature.

Coordinates-available

Wireless link

Jammer

Sensor

Figure 1: Scenario diagram of a WSN and a jammer.

Sensor
Wireless link

Figure 2: The network model of the WSN.
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In this section, we will briefly introduce the traditional
Fibonacci sequence method and explain the principle and
in-depth understanding of the FBS-based method.

3.1. Basic Principle of the Fibonacci Method. The Fibonacci
sequence, also known as the golden section sequence, was
first proposed by Fibonacci [34], and its general formula is
as follows [35].

F 1ð Þ = F 2ð Þ = 1,
F jð Þ = F j − 1ð Þ + F j − 2ð Þ, j ≥ 3,

ð1Þ

where Fj indicates the jth Fibonacci sequence, which is a
general term.

This paper studies the optimization method of the
Fibonacci sequence to solve the minimization problem of a
unimodal continuous function in the interval. The Fibonacci
sequence optimization method compresses the search inter-
val proportionally according to the Fibonacci sequence
items. Then, the initial optimization point converges to the
best method in a defined interval, which is considered to
be the most effective solution of a one-dimensional unimo-
dal question. We assume that there is a single-peak function
on the interval. First, the technique starts to select two feasi-
ble points and performs the first iteration within a given
range. Then, we need to reduce the area of the initial box to
a sufficiently small box, involving the minimum value of the
unimodal function f ðxÞ (after an iterative step). The smallest
lie can be reduced by providing the function value known in
two different ranges of points. The realization of the classic
Fibonacci sequence optimization algorithm was given in
[36], and no further detailed description is given here.

3.2. The Fibonacci Branch Structure and the FBS Algorithm.
The basic Fibonacci strategy has difficulty effectively solving
the multivariable problem, nor can it reliably evaluate the
best fit of the multimodal function [35]. The FBS algorithm
mainly uses the framework constructed by segmentation
points and endpoints in the basic structure to search for
the global optimal solution. Comparing the fitness value of

each search point by calculation, the search point closest to
the global optimal solution is obtained. In the next iterative
calculation, we set the point with the best fitness value
obtained in this optimization at the top of the search point
set and the points corresponding to the suboptimal fitness
value are arranged in the order from good to bad below
the best. Through continuous iteration, the search point set
is updated in each optimization stage. Then, the algorithm
can complete the optimization of the objective function in
the search space while the Fibonacci branch grows. The basic
structure of the Fibonacci algorithm is shown in Figure 5.

In Figure 5, there are three points in D-dimensional
Euclidean space, x*A, x*B, and x*C . x*A and x*B indicate
the coordinates corresponding to the search endpoint of
the tree structure, which can be generated by the specified
optimization rule, and x*C indicates the coordinates of the
partition point obtained according to the given calculation
criteria. In the search process, they should satisfy the fol-
lowing equation:

x*C − x*A




 



x*B − x*A




 


 =
x*B − x*C




 



x*C − x*A




 


 =
Fp

Fp+1
, ð2Þ

where Fp represents the pth Fibonacci number.
Considering the minimum multimodal function of mul-

tivariable f ðX*Þ in the search space, the calculation formula
of the split point is

x*C =
x*A +

Fp

Fp+1
x*B − x*A

� �
, f x*A

� �
< f x*B

� �
,

x*A +
Fp

Fp+1
x*A − x*B

� �
, f x*A

� �
≥ f x*B

� �
:

8>>><
>>>:

ð3Þ

In [37], a similar algorithm was described but the pro-
cess and theory of the algorithm were not described in detail.
This section expounds on the main part of FBS, expounds on
the implementation content of FBS, and standardizes the
implementation process of FBS.

Considering the basic structure of FBS, the process of
obtaining the global optimal solution, including the process
of building searching elements in FBS, is delimited into
two stages: global search and local optimization [38]. These
two stages are the corresponding rules of interaction. Gp is
the set of objective function points to be searched in the
pth iterative optimization stage; lenðGpÞ = Fp is the number
of whole sets, where Fp is the intensity of the Fibonacci wave.
Using the corresponding interactive optimization initial
value and fitness value, the segmentation points are obtained
through formula (3). After a comparison, the algorithm
obtains the best fitness value corresponding to the latest best
solution. In the next iteration stage, the best advantage of the
adaptable value is concentrated in the corresponding front of
the set and the nodes of the suboptimal adaptable value are

Jammed
sensor

Unaffected
sensor Boundary

sensor

Jammer

Figure 3: The jamming model of the WSN.
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placed in the order from good to bad in the optimal selection.
Through the abovementioned operations, we update points
in each optimization stage and increase the Fibonacci path
and community optimization search space.

In the process of FBS optimization, it is necessary to
update the search endpoint according to two interactive
iterative criteria and combine the calculation formula of

the subdivision point to calculate the subdivision point.
The two iterative updating criteria are as follows:

In rule one, the end nodes x*A and x*B of the structure are
indicated as follows:

x*A

n o
=Gp = x*q qj = 1, FP½ �

n o
,

x*B

n o
= X

*
X
*��� ∈

YD
f=1

x*
f
lb, x

*f
ub

h iu( )
,

ð4Þ

Gp is composed of the coordinates of all the search

points in the pth iteration, x*q are the search nodes in set
Gp, and q is the sequence number corresponding to the first

to the pth Fibonacci sequences. x*A takes all points of Gp in

the pth iteration. The other unselected endpoints x*B ran-
domly take nodes, and the length of x*B is equivalent to Fp.
When the dimension is f , D is the dimension of the points

and the search nodes are between x*
f
lb and x*

f
ub. Given that

∀x* ∈ fx*Bg, the component x in point X
*
is a random variable

uniformly distributed in the interval ½x*lb, x
*
ub�

U
, in which

the normal characteristic U represents the uniform distribu-
tion of the variable, and the probability distribution of the
component can be calculated as

Notification
message

Jammed
area

(a) Broadcast notification message

Mapping
messages

(b) Transmission of mapping messages

Mapped
area

(c) Construction of a mapped area

Figure 4: Overview of sensors collaboratively mapping a jammed area.

Table 1: Notations and definitions.

Notations Definitions

NS The number of homogeneous sensors

S The coordinates of all of the sensors

B The coordinates of all of the boundary sensors

NB The number of boundary sensors

R The branch depth

Fj The jth Fibonacci sequences

Gp
The set of objective function points to be searched

in the pth iterative optimization stage

r̂ The estimated result of the jammer’s coordinates

r The real location of the jammer

x*A, x
*
B Search endpoint

x*C Split point
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P xð Þ =U x*lb, x
*
ub

� �
= 1

x*ub − x*lb

: ð5Þ

We can use the end nodes x*A and x*B to determine the
partition points x*S1 through equation (3).

In rule two, in the local optimization stage, assume that
x*best represents the search point with the optimal fitness
value in the iterative process of the algorithm, as follows:

x*best = best Gp

À Á
: ð6Þ

Bestð⋅Þ is the optimal fitness value search node in the
search node set.

Afterwards, we define the end nodes x*A = x*best and find

f x*A

� �
=min f x*q

� �
, q = 1, Fp

Â Ãn o
,

x*B = x*q

���x*q ∈Gp∧x
*

q ≠ x*A

n o
:

ð7Þ

According to the end points defined in formula (7), the par-
tition point x*S2 can be determined according to the split point
calculation formula in the second local optimization stage.

According to the abovementioned two interactive search
rules, two different optimization stages generate 3Fp new

points, involving endpoints x*A and x*B and segmentation
points x*S1 and x*S2. By assessing the cost function of the
new nodes, the fitness of the new points is determined and
the new points are ranked from good to bad according to

XA

Xs1

XB

(a) Fibonacci scatter search global search phase

XA

XB

Xs2

(b) Local optimization phase of Fibonacci scatter search

Figure 6: Schematic diagram of the Fibonacci rambler tectonic process.

Search endpoint Search endpointSplit point

xA xc xB

Figure 5: Basic search structure of the proposed Fibonacci branch search.
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Start

Initialize the branch depth R and the 
maximum iterations N

Initialize the search points set Gp and the
branch layer number Fp = len (Gp)

Generate the global random points XB and the 
segment points Xs1 according to iterative rule one

Select the optimum solution from the points formed
by rule one in the first stage

Based on the points with best fitness to generate the
segment points Xs2 by iterative rule two

The top best FP + 1 points generated in the two
optimization stages are saved

and the set Gp is updated to new saved points

No

No
Yes

Yes

Len (Gp) – FR?

Iteration number
reach N ?

Output point with the best fitness value

Stop

Fitness value

Fitness function
model

P = P + 1

Figure 7: Flowchart of the Fibonacci branch search algorithm.

Input: B, R, N ,Gp

Output: r̂
Fp ⟵ lenðGpÞ
for i = 1 : N do

for j = p : R do

Create the overall random nodes x*B and the split points x*S1 by the rule one
Calculate the fitness value for each search point based on the coordinates of the search point to all sensors in B
Find the best result from the nodes formed by rule one
Based on the points with optimum fitness value to adaptable points x*S2 by rule two

Sort the all-search points from good to bad according to the fitness value of every search point
The top best Fj+1 points are retained and the search points set Gj is renewed to the new retained points

end for
end for

Algorithm 1: Location-aware of the jammer based on FBS in WSNs.
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Figure 8: Continued.
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the fitness. We take the Fibonacci series as the total number of
search nodes, and we need to save the most suitable Fp+1 set of
these points. Then, we need to remove other 3Fp − Fp+1 nodes.
The search space set in the pth iteration is updated from the
saved points.

Corresponding to the global and local search stages, a
schematic diagram of the Fibonacci branching process is
shown in Figure 6.

The depth of the Fibonacci branching layer shown in
Figure 6 is set to the expected value at the beginning,
and the total number of nodes in each branching layer
is stored in the Fibonacci sequence. In Figure 6, the white
dotted circle is the search point set in the previous
iteration process, the black solid border circle represents
the endpoint of this iteration x*A, and the gray real circle
represents the global random endpoint x*B. Figure 6(a)
depicts the global search phase, which is the first stage
of the whole process, in which the partition point x*S1
represented by a white circle solid is made up based on
the uniformly distributed points and x*A. In Figure 6(b),
other end nodes are fitted optimally in the local optimi-
zation stage x*A and x*B in the current iterative space is
merged. Then, a new split node x*S2 is obtained through
the iterative rules. The adaptable values of x*A, x*B, x*S1,
and x*S2 are assessed, and the optimal Fp+1 solution of
the objective function evaluation is preserved.

Figure 7 discloses a flow chart of a general process for a
specific implementation of FBS.

3.3. Proof of Reachability and Convergence in FBS for Global
Optimization of Multimodal Functions. In this section,
according to the properties of abovementioned Fibonacci,
the reachability and convergence of Fibonacci are studied.
Through strict mathematical proof, it is proven that the
FBS-based algorithm proposed in this paper can determine
the global optimal solution and ensure that the FBS algo-
rithm converges to the optimal solution.

3.3.1. Accessibility Investigation of the FBS Algorithm. Math-
ematical proof I FBS obtains the set of the solution objective
function space by searching the reachable set in the space.

From the characteristics of the abovementioned algorithm,
we know that after a sufficiently long iteration n < +∞, rule 1
generates uniformly distributed endpoints x*B in a constrained

space, such as ∀X
*
∈ x*B,X

*
= ðx*dÞD×1. D are dimensions of

points, their probability distribution is Pðx*dÞ =Uðx*min, x
*

maxÞ,
and x*d satisfies the following relationship of the objective
function field:

ð
⋯D

ð 1
x*max − x*min

dx*d = 1: ð8Þ

The abovementioned theoretical proof process shows that

∀X
*
∈ x*B obeys X

*
∈ B; optimization set B is the reachable set of

x*B obtained by the FBS algorithm.
In mathematical proof II, for the FBS algorithm, the

overall situation optimality of the objective function in the
search field is feasible.

Assume that the overall optimal solution x*
∗
of the search

field is in the field B. It is proved by theory that the solution x*
∗

is in reachable B. After that, we assume that the probability in a
uniform distribution is P and then assume that the result

obtained by the algorithm is x*
L
. On the basis of the proof,

after a sufficiently long iteration, the probability of FBS reach-
ing the saddle point is P∗ ≤

Qn
i=1ð1 − PÞ to obtain the result

lim
n⟶+∞

P∗ ≤ lim
n⟶+∞

Yn
i=1

1 − Pð Þ = 0: ð9Þ

From this point of view, the FBS algorithm can obtain
the overall best solution of the objective function in the
search space.
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Figure 8: Behavior results of the point location history in FBS.
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Therefore, according to the abovementioned proofs, we
can obtain that the overall optimal solution of the objective
function field is accessible in the search field.

3.3.2. Convergence Analysis of the FBS Algorithm. Assuming
that FBS achieves a sufficiently long iteration n < +∞ to find
the overall optimal solution, the existing G of the basic con-
struction generated by FBS could become a gradually opti-
mized node set fx*Tg = fx*t jx*best ∈ Stg, t = 1, 2,⋯, n. x*best
is the best result of the iteration set. Afterwards, we construct

the probability PðtÞ = PðjX*
∗
− x*tj ≥ ςÞ of FBS converging to

the overall best result. ς indicates a small pinned variable.
According to the rules PðtÞ = P

X
*ðtÞ + PςðtÞ, PX

*ðtÞ is the
chance of creating an equidistribution of random nodes of
the field defined by rule 1, while PςðtÞ is the chance of
creating an equidistribution of random nodes of the field
defined by the radius parameter ς of rule 2. Thus, when there
are t iterations of FBS, the search point does not reach the

ς interval region around the global optimal solution, X
*∗

,

~PðtÞ = PðjX*
∗
− x*t j ≥ ςÞ; then, lim

t⟶+∞
~PðtÞ = 0 is obtained

and the following results are obtained:

P n<+∞ð Þ > P tð Þ = 1 − ~P tð ÞP n<+∞ð Þ > 0: ð10Þ

Letting t⟶ +∞, we can obtain

P n<+∞ð Þ = 1: ð11Þ

It is proven that FBS converges to the overall best
result with a probability of 100%.

Through the proof in Sections 3.3.1 and 3.3.2 above, the
results show that the designed FBS algorithm is feasible and
convergent and finally can obtain the overall best result.

4. Jammer Location-Aware Method Based on
Fibonacci Branch Search

FBS-based jammer location awareness mainly includes three
steps: a selection of initial search points, a clarification of the
fitness function, and a search point update.

In the process of location awareness, to narrow the search
scope, the search points should be all within the mapped area.
In the pth iteration, we assume that Fp search points are
selected in the mapped area randomly and the coordinates
of the ith search point are pi = ½xPi , yPi �, i = 1, 2,⋯, Fp.

To evaluate the performance of the estimation result of
the jammer’s location quantitatively, the fitness function is
designed in this section. When a jamming attack is con-
ducted, the jammed area is approximately a circle and the
distance between the jammer and the farthest boundary
node is approximately equal to the jamming radius. Based
on the analysis result in Section 2.2, we can obtain the coor-
dinates of the boundary nodes. Then, the distances between
the boundary nodes and the search point are calculated as
the fitness function.

In the pth iteration, there are Fp search points in the
mapped area and the coordinates of the ith search point
are denoted as pi = ½xPi , yPi �, 1 ≤ i ≤ Fp. Then, the fitness
function at the pth iteration for the ith search point is
denoted as

Fiti pð Þ = 1
NB

〠
NB

j=1
dij pð Þ − �di pð Þ�� ��, i = 1, 2,⋯,NB, ð12Þ

where NB is the number of boundary nodes, ½xBj , yBj � are
the coordinates of the jth boundary node, and dijðpÞ is
the distance between the ith search point and the jth
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Figure 9: Behavior results of the point location history in GSA.

Table 2: Simulation experiment parameters.

Param. Value

Size of area 1 km × 1 kmð Þ
Number of sensors NS 100

Transmitting range of sensors RS 150m

Jamming range of jammer RJ 150m

Routing protocol OSPF
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boundary node. �diðpÞ is the average distance between the i
th search point and all of the boundary nodes. dijðpÞ is
calculated as

dij tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPi pð Þ − xBj

� �2
+ yPi pð Þ − yBj
� �2

r
, ð13Þ

and �diðtÞ is calculated as

�di tð Þ =
1
NB

〠
NB

j=1
dij tð Þ
À Á

: ð14Þ

After the fitness value of each search point is calcu-
lated, all of these points are sorted in a descending order

from the best to the worst; the top Fp+1 points are saved,
while the Fp+1 search points form a new set Gp+1 for the
next optimization.

In the process of location awareness, the goal is to search
for the search point of the smallest fitness value. The pseu-
docode of the FBS-based location-aware algorithm is shown
in Algorithm 1. The input is the boundary sensors’ coordi-
nate set B, the branch depth R, the maximum iterations N ,
and the initial search point set Gp, and the output is the esti-
mated result of the jammer’s coordinates r̂.

The coordinates of the search node with the best adapt-
able value are selected as the coordinates of the jammer
which is represented as r̂.

The implementation of FBS is completed by generating
search elements and search branches. Assuming that the
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Figure 10: Schematic diagram of positioning process based on FBS.
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optimization space is considered Ne when FBS is used in
location awareness of the jammer, the comparison dimen-
sion in the search element is set as Nc; then, the algorithm
complexity of FBS is approximate OðCf NeðNcÞ2Þ, where
Cf =∑N

i=1ðFiÞ is the final sum of the searched elements in
the Fibonacci search branch under the maximum number
of loop iterations. Thus, it can be seen from the abovemen-
tioned FBS complexity analysis that the computational com-
plexity of our proposed optimization algorithm mainly
depends on the dimension of the search element and the
maximum number of iterations.

5. Simulation Experiments

In this section, we analyze the performance of the proposed
FBS algorithms using abundant computer simulations. The
simulation is realized in EXata, which is an excellent simula-
tor for wireless networks, and the analysis of the simulation
result is realized in MATLAB.

5.1. Location History of the Search Points in FBS for the
Rastrigin Function. In this part, the proposed edge-back
method with global optimization capabilities proves that
the use of location historical search points in the optimiza-
tion iteration process finds the global optimal solution
instead of falling into the benchmark of local optimization
and is combined with the gravity search algorithm (GSA).
The benchmark function selected in this part is the Rastrigin
function, which has multiple local optimal solutions and a
globally optimal solution.

The performance of the proposed fullback movement
trajectory search points is scattered in the best solution,

and the search space for the optimal convergence point in
Rastrigin is shown in Figure 8. This digital display of the
fullback model can simulate the three-dimensional position
of the historical search point and the trajectory profile in
different iterations. To compare the performance of the
FBS-based algorithm, we compared the algorithm with
GSA and the result of GSA is shown in Figure 9. In FBS
and GSA, the initial position of the search point is set at
the extreme local optimal point.

As shown in Figures 8 and 9, the search points
constantly explore the potential areas in the solution space
and finally cluster around the global optimal value in a
multimodal Rastrigin mode. The experiments displayed in
Figure 9 show that with the increase of the number of itera-
tions, the point cluster of the GSA algorithm is gradually in
the extreme point and continues to maintain the local opti-
mal conditions, with almost no particles searching for the
global optimal extreme point. Based on a local optimum of
the Rastrigin function, it is further proven that the algorithm
is essentially trapped by the local optimum condition and
falls into the local search space. It can be found under the
same conditions from the search point trajectory and the
3D version shown in Figure 8. Although the Rastrigin func-
tion is asymmetric and multichannel and has different
mountain levels, it is found that the global best challenge
comes from many local variables. The minimum value is
in the search space. It is worth noting that with the help of
a global random search, FBS can be jumped out from the
local optimal solution at the extreme point and from the
notch solution at the local optimal point. Throughout the
historical process of locating search points, in the two-
dimensional and three-dimensional space iterations, the
points converging to the global optimal condition and the
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regions initializing the optimal growth point are often scat-
tered in the extreme points and gradually move to the opti-
mal solution in the search space. After the first 50 iterations,
more than half of the agents are close to the global optimal
valley and begin to converge to the optimal valley. As the
number of iterations increases, an increasing number of
agents gather and disperse near the extreme point, especially
in the global optimal target region. Finally, the search point
finds the global optimum solution and converges to the
global optimum, which can be investigated and reasoned
by introducing the concept of global randomness into an

endpoint generated by FBS rule 1. To ensure the conver-
gence of the algorithm, local development and optimization
capabilities are emphasized at other endpoints. Because the
global random point performs a global search in space, it
usually moves from a less suitable universe to a more suit-
able universe. The best universe will be saved and moved
to the next search. Therefore, these capabilities and behav-
iors will help the FBS algorithm not fall into a local optimum
and quickly converge to the optimal target point.

Simulation and discussion prove the effectiveness and
convergence of the FBS algorithm. The algorithm proposed
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in this article can find the global optimal solution in the
solution space.

5.2. Parameters Setting and Benchmark in the Location-
Aware Method. For every experiment, the sensors and the
jammer are all randomly deployed in the ð1 km × 1 kmÞ area.
The simulation experiment parameters of the sensors and
the jammer are listed in Table 2.

To realize the quantitative analysis of location-aware
results, the average location-aware error is utilized to evalu-
ate the performance of each method, which is denoted by E
and given by

E = r − r̂k k
N Eð Þ , ð15Þ

where NðEÞ is the number of simulation experiments, r is
the real location of the jammer, and r̂ is the jammer coordi-
nate calculated by the algorithm. In addition, the cumulative
distribution functions (CDFs) of the average location-aware
error are also considered.

5.3. Performance Comparison and Result Analysis. Use the
FBS-based noncooperative target node location algorithm
to locate the communication node in the wireless sensor net-
work and take Figure 10 as an example to describe the loca-
tion process.

Figure 10(a) shows the global search stage during the first
iteration. First, randomly select a search point (node 1) in the
mapping area as the search endpoint. Then, randomly select a
node (node 2) as the search endpoint and obtain the split point
(node 3) according to the calculation formula of the split
point. The fitness values of node 1, node 2, and node 3 are cal-
culated and sorted, and the fitness value of node 2 is the best,

which is used as the endpoint for local optimization. As shown
in Figure 10(b), randomly select a search point (node 4) as the
endpoint, find the split point (node 5) according to criterion 2,
sort the fitness values of all nodes, and select the best two
nodes (node 4 and node 5) used as the endpoints of the second
iteration. In the global search process of the second iteration of
Figure 10(c), two search points (node 6 and node 7) are ran-
domly selected and the split point between node 4 and node
6 (node 8). The dividing point between node 5 and node 7
(node 9). Calculate and sort the fitness values of all nodes in
the area. In the second local search stage of Figure 10(d), node
6 with the best fitness value is selected as the endpoint. Ran-
domly select the search point (node 10) as another search
point, and find the split point between node 6 and node 10
(node 11). Calculate and sort the fitness values of node 4, node
5, node 6, node 7, node 8, node 9, node 10, and node 11, and
select node 6, node 10, and node 11 as the search for the third-
iteration endpoint.

For every scenario, 103 experiments are conducted, and in
every scenario, we compare the performance of FBS with CL,
WCL, MER, VFIL, and GSA. The CDF of the average
location-aware error when NS = 100, RJ = 150m is shown in
Figure 11(a). Figure 11(b) shows the average location-aware
errors of different location-aware algorithms. As we can see
from the results, the error of the FBS-based location-aware
algorithm is lower than those of the other algorithms.

Assuming that the area size is constant, the sensor num-
ber can be used to reflect the sensor density in the area. To
analyze the influence of different node densities on the per-
formance of different algorithms when the jamming range of
the jammer is set as 150m, the number of sensors is set as
200 and 300. The CDF of location-aware errors for different
node densities is presented in Figure 12 after conducting 103
experiments independently. Figure 12(a) presents the CDF
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of location-aware errors when NS =200, and Figure 12(b)
presents the CDF of location-aware errors when NS =300.
The average location-aware error change with different node
densities is shown in Figure 13. As we can find in Figure 13,
the average location-aware error of FBS is smaller than other
algorithms, which means that the performance of FBS is
better than the other algorithms. CL, WCL, MER, and VFIL
are more sensitive to the distribution of sensors than GSA
and FBS.

To analyze the influence of different jamming ranges on
the performance of different algorithms, the number of
sensors in the area is set as 100 and the jamming ranges are
set as 150m, 200m, and 250m. After conducting 103 experi-
ments independently, the CDF of location-aware errors for
different jamming ranges is presented in Figure 14.
Figure 14(a) presents the CDF of location-aware errors when
RJ =200m, and Figure 14(b) presents the CDF of location-
aware errors when RJ =250m. The average location-aware
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error change with different jamming ranges is shown in
Figure 14(b). As we can see in Figure 15, the average
location-aware error of FBS is smaller than that of the other
algorithms, which illustrates the better performance of FBS;
when RJ = 250m, the average location-aware error of FBS is
approximately 15m.

6. Conclusion and Future Work

Predicting the active location of jammers and removing
them can ensure the safety of WSNs. This paper proposes
an evolutionary algorithm FBS based on the Fibonacci
sequence method, which reduces the sensitivity of existing
algorithms to the deployment and parameters of WSN jam-
mer location awareness. Although this FBS has been studied
in part of the literature, the accessibility and convergence of
the FBS algorithm have not been proven. In this paper, the
reachability and convergence of FBS are strictly proven,
which further verifies the validity of the theory and supports
the previous view. In the process of jammer location aware-
ness, the boundary sensors in the jammed area are identified
by the map service of the jammed area and the fitness func-
tion is constructed by the distance from the search point to
all boundary sensors. After iteration, the position of the best
fitness search point is estimated as the position of the jam-
mer. The experimental results are compared with the Cl,
WCL, mer, vfil, and GSA algorithms. The experimental
results show that the location-aware algorithm based on
FBS has a good performance, and the location-aware result
is more accurate than that of the other algorithms.

In the real world, the jammer may be in a mobile state all
the time, which increases the difficulty of positioning the
jammer. At the same time, wireless sensor networks have
hardware limitations on battery power due to cost; complex
jammer location-aware algorithms will consume a lot of
energy. Therefore, designing a simple and efficient algorithm
that can get awareness of the location of mobile jammers is
our future research direction.
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