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Wireless Sensor Network (WSN) is a powerful tool to help humans monitor a specific area, and the deployment strategy of sensors
profoundly determines the performance of WSN. How to find the best deployment method has become the research topic for many
scholars. The deployment strategy aims to expand the deployment scope, reduce energy consumption, and reduce duplicate coverage
areas. Many multiobjective heuristic algorithms have been proposed to solve this problem. This paper proposes a multiobjective
adaptive fish migration optimization (MAFMO) algorithm, which adds an adaptive-based repository and crowding degree-selection
strategy for multiobjective optimization. The simulation results reveal that the MAFMO algorithm has more advantages in mallea-
bility and distribution than other famous algorithms. Finally, the algorithm is applied to the WSN deployment problem, and the
simulation results are compared with other algorithms. The results show that a better solution can be found using MAFMO.

1. Introduction

In recent years, wireless sensor network (WSN) have been
fully developed. As sensors get smaller, cheaper, and more
intelligent, WSNs become more widespread [1].

With the development of information technology in
modern society, the deployment requirements of WSNs in
various fields are getting higher and higher [2]. In the field of
detection, people deploy a certain number of wireless sensors
to detect various parameters in the target area, such as air
humidity, temperature, and pollutant content. WSN can be
well used for forest protection and timely prevention of fires.
With the development of smart homes [3], more and more
homes and offices deploy WSN to control indoor tempera-
ture, light, humidity, and flow of people [4]. In addition, in
some industrial production scenarios, WSN can be deployed
to detect essential parameters in the production process.
Enabling the person in charge of industrial production to
obtain the relevant data efficiently and accurately, improves
the management level of industrial production, and signifi-
cantly reduces the production risks. In the positioning field,
several wireless sensors are deployed to achieve full coverage
of the monitoring range, and the sensors are used to locate

something in the area [5]. For example, an alarm will be
triggered when people exceed the detection area in the
real-time positioning of older people and children. Further-
more, wireless sensors can also be installed in moving objects
to determine the trajectory of movement, such as cars. WSN
plays an important role in many fields. With the develop-
ment of WSN, it also constantly faces new challenges and
opportunities [6].

It can be seen that many important areas need to deploy a
certain number of wireless sensors to control the area. Since
wireless sensors are independent, they cannot be charged
once deployed [7]. Therefore, when deploying wireless sen-
sors, the energy consumption of all wireless sensors needs to
be considered. At the same time, the repeated coverage of a
subarea will also cause resource consumption. To satisfy the
coverage requirements, the coverage of the wireless sensor to
the target area needs to be as large as possible. Therefore, it is
necessary to consider the coverage, energy consumption, and
overcoverage areas when deploying wireless sensors in the
target space.

The use of multiobjective optimization algorithms can
generate multiple optimal solutions, which can provide
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more choices and possibilities, allowing decision makers to
make better decisions. Furthermore, these solutions can pro-
vide better robustness for decision makers. In addition, some
researchers have also achieved many research results on
wireless sensor deployment problems through multiobjec-
tive optimization algorithms. Jia et al. [8] proposed multi-
objective optimization for coverage control of WSN with
adjustable sensing radius, and Benatia et al. [9] proposed
multiobjective WSN deployment using genetic algorithm
under connection constraints. In addition, there are also
some improved solutions for single-objective optimization
algorithms for reference. Such as, an improved cuckoo search
algorithm based on compact and parallel techniques [10], a
novel selection optimization differential evolution (DE) algo-
rithm [11], a multigroup discrete symbiotic organisms search
(SOS) algorithm [12], an information feedback models [13],
and so on.

In this paper, a new multi-objective adaptive fish migra-
tion optimization (MAFMO) algorithm is introduced, which
seeks the optimal solution in the multidimensional object
space through the growth and migration of fish schools.
We propose the three important indicators related to WSN
deployment: coverage rate, energy consumption, and over-
coverage rate. The above three indicators are considered
because these three objectives have a great effect on the effi-
cient deployment of wireless sensors.

The rest of the paper is organized as follows: related
work is given in Section 2. In Section 3, we introduce the
MAFMO. The modeling of the important indicators of
WSN is given in Section 4. Experiment results of different
multiobjecive heuristic algorithms in many test functions
are shown in Section 5. Finally, the conclusions of this paper
are given in Section 6.

2. Related Work

2.1. Multiobjective Heuristic Algorithm. Over the past period,
the heuristic algorithm has attracted more andmore attention
of scholars, especially in multiobjective heuristic algorithms.
The multiobjective optimization algorithms are of crucial
importance in real life [14]. Every decision in life will consider
many factors, and the same is true for multiobjective optimi-
zation. Due to the lack of suitable techniques, the multiobjec-
tive problems were converted into single-objective problems
for solving. Therefore, the solution does not balance optimal
solutions for individual objectives well, and can only generate
optimal solutions for single-objective problems. When solv-
ing multiobjective problems, the candidate solution does not
contain only one optimal solution, but also a solution set with
multiple optimal solutions. In the multiobjection heuristic
algorithm, the candidate solution is named as Pareto optimal
solution, and these solutions constitute the Pareto Front in
solution space, as shown in Figure 1.

Coello and Lechuga [15] proposed the multiobjective
particle swarm optimization (MOPSO) algorithm in 2002,
which is a multiobjective based on the particle swarm opti-
mization (PSO) [16], where PSO is a heuristic algorithm
inspired by the bird’s behavior. In recent years, researches

based on the PSO algorithm have emerged in an endless
stream, such as compact adaptive particle swarm optimiza-
tion algorithm [17], dynamic transfer function [18], and so
on. MOPSO uses external repositories and a location-based
approach to maintain diversity. Repositories are used to store
nondominated solutions, and solutions remain malleable by
using a location-based approach. The so-called location-
based method divides the target space of particles into mul-
tiple hypercubes and adds them to the repository according
to the number of particles in the hypercube, making the
solution distribution in the repository more even.

Zhang and Li [19] proposed a multiobjective evolutionary
algorithm based on decomposition (MOEA/D) in 2007, which
decomposes a multiobjective optimization problem into mul-
tiple scalar optimization subproblems and optimizes them
simultaneously. The three main decomposition methods are
proposed, the weighted sum method, the Chebyshev decom-
position method and the boundary intersection method. Each
subproblem is optimized by using only a few adjacent subpro-
blems, and each subproblem in the adjacent region is updated
accordingly.

Deb et al. [20] proposed a fast and elitist multiobjective
genetic (NSGA-II) algorithm in 2002. In this algorithm, the
concept of nondominated solution sorting is proposed. The
goal is to have a nondominated ranking of all individuals.
The higher the degree, the less likely it is to be dominated.
The algorithm proposes an elite strategy to prevent the loss
of excellent individuals in the evolution process. The specific
method of this elite strategy is to continuously merge the
parent population and the offspring population, and then
select the best individual. Furthermore, a crowding degree-
selection strategy is proposed to overcome the shortcomings
of artificially specifying the shared parameters. When select-
ing a solution, select the solution from high to low according
to the degree of nondomination of the solution. If the two
solutions are the same, then select the relatively uncrowded
solution. Therefore, the algorithm performs very well in
maintaining the diversity of the solution set. In 2014, Deb
and Jain [21] proposed an evolutionary many-objective
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FIGURE 1: Pareto front.
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optimization algorithm using reference-point-based nondo-
minated sorting approach (NSGA-III). The algorithm is sim-
ilar to the framework used by NSGA-II. The method of
reference point association is used instead of the solution
of the larger crowding distance value in NSGA-II. NSGA-
III was applied to the problems with three or more objectives.

Mirjalili et al. [22] proposed a multiobjective gray wolf
optimization (MOGWO) algorithm in 2016. The algorithm
mainly simulates the hunting behavior of gray wolves in
nature and produces four leading gray wolves, including
three steps hunting, surrounding prey, and attacking prey.
In the multiobjective algorithm, the wolf moves its position
through the positional relationship with the leader, and the
leader will also continuously update his position. The loop
searches for a nondominated solution in the target space by
continuously updating the wolf pack positions [23].

Liu et al. [24] proposed a decomposition-based MOEAD
algorithm. The algorithm adapts the topology of the reference
vector and the scalar function to enhance the search ability of
the algorithm. Addressed a noticeable performance degrada-
tion of the original algorithm in problems solving irregular
Pareto fronts. For large-scale multiobjective optimization
problems, He et al. [25] proposed an adaptive offspring gen-
eration method. This method enables multiobjective algo-
rithms to generate excellent candidate solutions in high-
dimensional spaces effectively. For large-scale multiobjective
optimization, Yang et al. [26] focused on decision variables. In
2021, a fuzzy decision variable framework for large-scale mul-
tiobjective optimization was proposed, and the evolution pro-
cess was divided into fuzzy evolution and precise evolution. In
addition, to solve the problem of too many decision variables
and poor versatility in the large-scale multiobjective optimi-
zation problems, Li et al. [27] proposed a large-scale MOEA
framework based on reference-guided offspring generation in
2022. Guiding the sampling of promising solutions during
offspring generation is by constructing multiple reference
vectors in the decision space.

2.2. Adaptive Fish Migration Optimization. The adaptive fish
migration optimization (AFMO) was proposed by Chai and
Zheng [28] in 2020. Compared with the original FMO algo-
rithm, this algorithm introduces the weight value that changes
with the number of iterations to enhance the local search
ability. In AFMO, the fish school seeks the optimal solution
by exploring the area around the optimal individual, and
continuously updates the optimal individual, which enhances
the fish school’s search ability in the local range.When the fish
moves, there will be better or worse situations. If the fitness
value becomes better, thenmove will be in the direction closer
to the current individual. If the fitness value becomes worse,
then move will be in the opposite direction.

Vtþ1
i ¼ w ⋅ ptbest − pti

À Á
⋅

eti
Emax

þ fvi − fvr
jfvi − fvrj

⋅ c ⋅ rand ⋅ ptr − ptið Þ;

ð1Þ
ptþ1
i ¼ pti þ Vtþ1

i : ð2Þ

The Equation (1) shows the velocity update formula of the
fish school in AFMO, and the Equation (2) shows the position
update formula of the fish school, where w is the weight factor,
which decreases from 2 to 0.4 with the increase of the number of
iterations, and ptbest is the optimal individual, eti represents the
energy of the individual. The greater the energy, the farther the
distance traveled.Emax represents themaximumenergy, which is
used to measure whether the individual enters the next growth
stage. fvi and fvr represent the fitness value of the i-th individual
and the fitness value of the randomly selected individual in t
iterations. c is a constant value and rand is a random number
from 0 to 1.

When an individual does not obtain a better fitness value
after moving to a new position, then the individual energy
needs to be updated. The energy update formula is shown in
the Equation (3):

etþ1
i ¼ eti þ R1 ⋅ Emax ⋅

fvi − fvbest
fvmax − fvbest

; ð3Þ

g ¼ ½ðgþ 1Þmod 5�þ; if eng>2 × Emax

g; otherwise:

(
ð4Þ

The R1 is a random number between 2 and 12, and fvmax
is the maximum fitness value. Equation (4) represents the
formula for updating the growth stage of the fish. When the
energy consumption of the fish reaches a certain amount, it
will grow to the next stage. The growth stage of the fish is
divided into four stages. The probability of initialization is
also increasing.

2.3. WSN Deployment. Unlike traditional networks, WSN is
set up for specific applications, including object tracking,
environmental detection, industrial detection, and 3D terrain
localization [28]. WSN is also limited by its properties, such
as battery capacity, communication range, communication
protocol [1], and so forth. Different network models will
have different impacts on the lifetime of WSN because dif-
ferent communication protocols communicate in different
ways, such as channel monitoring, collision mechanism,
and idle listening [29]. Figure 2 shows the deployment of
sensors in the monitoring area.

In the resource-constrained WSN, ensuring energy maxi-
mization and collection of information are the essential
requirements to achieve WSN deployment [30]. In recent
years, there has been more and more research on WSN reli-
ability, among which there are two typical technologies:
retransmission and redundancy [31]. Most of the current
research is based on retransmission, and the research on
redundancy technology is relatively less. When WSN is based
on retransmission technology, lost data will be recovered
through retransmission, but it will also cause network conges-
tion and secondary energy loss. In addition, when WSN is
based on redundancy technology, it will use some coding
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methods to recover the lost data. Using this method will sig-
nificantly reduce the energy consumption of retransmission.

In the WSN deployment process, each wireless sensor is
independent, and the data transmission is difficult, so a
method is needed to connect each wireless sensor. In the
past period, researchers have studied this problem in-depth
and developed the concept of clustering. The purpose is to
divide multiple wireless sensors into several clusters and
select a cluster head for each cluster. The wireless sensors
in the same cluster will transmit data to the cluster head to
realize the connection between wireless sensors. To better
divide wireless sensors into clusters, there are currently two
clustering algorithms: K-means and K-medoids algorithm.
In this article, we use the k-medoids method. Although
K-means is very efficient, it is sensitive to outliers [32]. The
K-medoids algorithm considers the most central object in the
cluster, so it is less sensitive to outliers [33].

3. MAFMO

To achieve multiobjective optimization of the AFMO algo-
rithm, we applied a repository strategy and a crowding
degree-selection strategy to AFMO. The repository strategy
is to open up dedicated storage space and store the nondo-
minated solutions found so far [34, 35].

If there is a set of solutionsQ for amultiobjective problem,
A 2 Q, then A is considered to be a nondominated solution if
and only if the following conditions are satisfied [36]:

(i) All dimensions of A are better than or equal to the
dimensions of other solutions.

(ii) Among all dimensions of A, at least one dimension is
superior to the other solutions.

The second component is the crowding degree-selection
strategy, which partitions the nondominated solution space
into multiple grids. It calculates how crowded the particles
are by the number of particles in the grid. The size of the
repository is custom. During the iteration, compare the non-
dominated solution produced by this iteration with the

solution in the repository, and update the repository accord-
ing to the following conditions:

(i) Store solutions directly in the repository when the
number of solutions in the repository is less than
the repository size.

(ii) If the number of solutions in the repository equals
the size of the repository, compare the congestion
levels, remove the more congested solutions from
the repository, and put the less congested solutions
into the repository, making the final solutions more
evenly distributed.

Based on the above two components, we propose the
MAFMO algorithm. The following formulas update the
velocity and position of the particles:

Vtþ1
i ¼w ⋅ ptbest−pti

À Á
⋅
eti

Emax
þ ∑ fvi− fvrð Þ
j∑ fvi− fvrð Þj ⋅c ⋅ rand ⋅ ptr−ptið Þ;

ð5Þ

ptþ1
i ¼pti þVtþ1

i ; ð6Þ

where w is the weight factor, which decreases from 2 to 0.4 as
the number of iterations increases. In the single-objective
algorithm, ptbest is the current global optimal solution of the
population, while in the multiobjective algorithm, we define
it as a random solution in the nondominated solution repos-
itory and reselect it at each iteration. rand is a random func-
tion between 0 and 1. ptr is an individual randomly selected in
the population, and fvr is the fitness function value of ptr . It
can be seen from the second half of Equation (5) that the
randomly selected individual ptr can play a positive or nega-
tive role in the current particle. In the formula, we decide
whether to play a positive or negative role by adding up the
fitness values of each target of the current particle and then
looking at their signs.

According to the description of the AFMO algorithm in
the previous chapter, when no individual with a better fitness
value is found, the fishwill update its energy consumption. The
growth stage also increases accordingly. The updated formula
for the growth stage of the fish is shown in Equation (4). The
update of the fish’s energy expenditure is given by the follow-
ing equation:

etþ1
i ¼ eti þ R1 ⋅ Emax ⋅

∑
fvi − fvbest
fmax − fvbest

D
;

ð7Þ

where R1 is a random number between 0.2 and 0.4, fmax is the
set of the maximum fitness values of all individuals currently,
D represents the number of objectives, and fvbest represents
the fitness of randomly selected individuals in the repository.
The calculation range of the summation symbol in the for-
mula is also the overall target quantity. The purpose of this is
to be able to take into account the effects of all target
dimensions.

FIGURE 2: Sensor coverage of an area.
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4. Problem Statement

In this paper, coverage rate, energy consumption, and over-
coverage rate are regarded as the evaluation criteria for WSN
performance, and the detail is presented below [37]. Among
them, the coverage rate and energy consumption ensure two
important goals when deploying WSN, such as covering a
more extensive range and having a longer life cycle. If the
coverage rate and energy consumption are not well opti-
mized, it can be said that the WSN is not perfect. The over-
coverage rate can limit the increase in deployment costs.
Preventing WSN is from continuously increasing deploy-
ment costs to meet coverage and energy consumption.

4.1. Space Division. To facilitate the calculation of objective
function, the deployment space is divided into multiple grids
[38]. Each grid is abstracted as a point, each one square meter
in size. If the deployment space is L ×Wm2, then it is divided
into L ×W grids.

4.2. Coverage. Coverage is an important metric to evaluate
whether our deployed WSN is reliable [39]. Calculate the dis-
tance between the grid and the wireless sensor. The grid is
covered when the distance is less than the sensor radius [40].
At this time, the coveragematrix can be updated. The following
equation gives the updated formula for the coverage matrix:

Cði; jÞ

¼ 1; if a sensor or sink node is deployed at position xði; jÞ
0; otherwise;

(

ð8Þ

where i and j are in the range 0;½ L� and 0;½ W�, respectively,
and then we solve for the overall sensor deployment coverage

through the coverage matrix:

cover ¼ ∑l
i¼1∑w

j¼1C i; jð Þ
L ×W

: ð9Þ

4.3. Energy Consumption. When WSN is deployed, the bat-
tery power supply is difficult. Especially with many wireless
sensors, the difficulty of charging can be imagined [41].
Therefore, we need to pay more attention to the energy
consumption of sensors when deploying WSN [42]. Wireless
sensors can be divided into sending and receiving sensors
[43]. The sending sensor transmits the data collected to the
receiving sensor [44, 45], and the star connection is used
between the receiving sensor and the sending sensor. In
the k-medoids algorithm, the population is divided into mul-
tiple clusters [46], each cluster is assigned a cluster head, and
the particles closest to the cluster head are added to the
cluster [33]. The following equation calculates the energy
consumption:

exp ¼ ∑M
j¼1∑N

i¼1j Rj − Si
À Áj

M
: ð10Þ

4.4. Overcoverage. According to the above-mentioned
approach, we know that the energy consumption of wireless
sensors is a significant indicator for deploying WSN [47].
Repeated coverage of an area when deploying a wireless sensor
network will waste the resources and reduce the service life of
the WSN. Therefore, we propose the overlapping area calcula-
tion formula and the formula is as follows:

Initialize the school of fish

while less than the maximum number of iterations do

for each particle do

Update the position of the current particle by Equation (5) and Equation (6).

end for

if any of the new solutions are located outside the hypercubes then

Update the gird to cover the new solution.

end if

if A dominated pbest then

Update energy consumption.

Update growth stage.

end if

The particle that reaches the fourth stage is initialized.

Update the repository.

if the repository is full then

Run the grid mechanism, and update the repository.

end if

end while

ALGORITHM 1: MAFMO.
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Dði; jÞ

¼ þ 1; if sensor or sink node is deployed at position xði; jÞ
þ 0; otherwise;

(

ð11Þ

Oc ¼ ∑l
i¼1∑w

j¼1D i; jð Þ
L ×W

: ð12Þ

4.5. Fitness Function of the Problem. The above three objec-
tives have the same characteristics as the multiobjective algo-
rithm, they cannot be optimal simultaneously. Therefore, we
must balance these three objectives for the optimal deploy-
ment scheme. We propose a multiobjective weighted calcula-
tion formula. In Equation (13), the influence of each objective
function on the formula result is balanced by adding the
corresponding weight to each objective function. For exam-
ple, if we have high requirements on the coverage of the target
area, then we can increase the weight of the target “coverage”.
Finally, by comparing the results of Equation (13), we can find
the optimal deployment scheme, that is, the deployment
scheme with the smallest result after weighted evaluation.
After adding weights to the objective function, we can flexibly
select the optimal solution to deal with various application
scenarios.

Fin ¼ W1 × coverþW2 × expþW3 × Oc: ð13Þ

5. Simulation Results and Discussion

In this section, the MAFMO algorithm is utilized to find the
optimal deployment strategy with three objectives of WSN.
The performance of the new algorithm and the ability of the
new algorithm to solve practical problems are tested, respec-
tively. The article uses Matlab software and experiments on a
PC with an Intel Core i5-8500 3.0GHz central processing
unit (CPU) and 8 GB RAM.

5.1. Relevance Test.Over the past period, various deployment
objectives have been used by many researchers. For example,
cost, connectivity, life cycle, load balancing, monitoring
quality, and so forth. Due to the nature of the multiobjective
heuristic algorithm, there needs to be a negative correlation
between the optimized objectives. We conducted a negative
correlation test on the deployment objectives used in this
paper to choose an appropriate solution.

The so-called negative correlation means that when one
increases, the other decreases. Figure 3 shows that there is a
negative correlation between every two objectives. Figure 3(a)
shows the relationship between the coverage rate and the
number of repeated coverage nodes. Figure 3(b) shows the
relationship between coverage rate and energy consumption.
Figure 3(c) shows the relationship between the number of
repeated coverage nodes and energy consumption.

5.2. The Ability to Find the Pareto Front. To verify the ability
of the proposed MAFMO algorithm to find the Pareto front,
we use the ZDT, Schaffer and Kursawe algorithms for

verification. During verification, the Pareto front given by the
test function is printed in the figure, and the gray line is used
to measure whether the solution obtained by the MAFMO
algorithm is distributed on the Pareto front. The above
several test functions are the commonly used multiobjective
test functions, including various convex, nonconvex, and
piecewise test functions. In Figure 4, the red asterisks
represent nondominated solutions in the repository, and f 1
and f 2 represent the fitness values of the two objective
functions. Figure 4 shows that no matter what kind of test
function, the solution obtained by using the MAFMO
algorithm can be uniformly distributed on the Pareto front,
which almost coincides with the gray line (Pareto front).

5.3. Performance of MAFMO Algorithm. Furthermore, we
test the distribution and malleability of the MAFMO
algorithm. Distribution is an indicator to measure whether
the solution set is uniformly distributed on the Pareto front.
Malleability is an indicator to measure whether the solution
set is densely distributed in the Pareto front boundary region.
The evaluation indicators of multiobjective optimization
mainly include counting indicators, convergence indicators,
diversity indicators, and comprehensive indicators. The
evaluation indicators of distribution and malleability we use
here are the evaluation indicators that belong to diversity. For
the evaluation indicators of distribution and malleability,
researchers have proposed many calculation formulas, and
here we choose SP and M∗

3 calculation formulas. SP is to
measure the distribution of the algorithm by comparing the
distance between the two closest solutions in the solution set
[48].M∗

3 calculates the sum of the distances between the farthest
individuals in the solution set on each objective [49]. The
calculation formula is as follows:

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Sj j

i¼1

di − d
À Á

2

Sj j − 1

s
; ð14Þ

M∗
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

k¼1
max fk xið Þ − fk xjð Þk k

s
: ð15Þ

We used the evolutionary multiobjective optimization
platform (platEMO) to test the indicators [50]. The platEMO
platform is an open-source and free code base that integrates
a large number of multiobjective algorithms, evaluation
indicators, and test functions. During testing, we compare
MOPSO, MOWOA, and NSGA-II algorithms using ZDT,
Schaffer, and Kursawe as test functions. Tables 1 and 2
show that in terms of distribution, MAFMO is better than
the other three functions except for Schaffer, and in terms of
malleability, ZDT1 and Kursawe are better than the other
three multiobjective functions.

5.4. WSN Deployment Under Multiobjective Algorithm. In
the experiment, we consider setting the deployment space
as a 2D map, the size of the deployment range is defined as
100×100meters, the population number is set as 50. The
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number of iterations is 1,000 generations. Next, we use
MAFMO, MOPSO, MOWOA, and NSGA-II for optimization
[51]. In order to be able to choose the most suitable solution
from the many solution sets, we assign weights to different
objective functions. Here, we set the proportion of coverage
weightW1 to 0.4 and the proportions of energy consumption
and repeated coverage weight W2 and W3 to 0.3.

Next, we test the performance of the multiobjective heu-
ristic by setting the number of sensors, sensor radius, and the
number of receiving sensors in the WSN to different values.

5.4.1. Different Number of Sensors. When deploying a WSN,
the number of sensors has a significant impact on the per-
formance of the WSN. In the experiments, we used 30, 40,
and 50 sensors for verifying the performance of multiobjec-
tive heuristic algorithms, the sensor radius is set to 10, and
the number of receiving sensors is set to 10. Then find 50

optimal deployment schemes through four algorithms and
calculate the final fitness value according to the correspond-
ing weighting formula. The comparison results of the four
algorithms are shown in Figure 5.

Figure 5 shows that under the use of different numbers of
sensors, the variation of the results obtained by the four
algorithms is relatively gentle. Regardless of the number of
sensors, the fitness value obtained by the MAFMO algorithm
is better than the other three algorithms.

5.4.2. Different Sensor Radius. In this subsection, we fix the
total number of sensors and the number of receiving sensors.
Set the sensor radius to a different value. Since the sensor
coverage area is a circle, when the radius of the sensor is set
to a different size, the gap between the sensor and the sensor
will be different. In the experiments in this subsection, we set
the sensor radius to 8, 10, and 12, and we used 40 sensors,
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FIGURE 3: (a, b, and c) The relationship between objectives.
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including 10 receiving sensors. The experimental procedure
is similar to the previous subsection.

Figure 6 shows that when the radius of the sensor is 8, the
MAFMO algorithm is better than MOWOA and MOPSO,
but slightly worse than NSGA-II. When the radius of the

sensor is 10, the MAFMO algorithm is significantly better
than the MOWOA and NSGA-II algorithms. However, there
is still a particular gap compared with the MOPSO algo-
rithm. When the sensor radius is 12, the MAFMO algorithm
is better than the other three.
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FIGURE 4: (a, b, c, and d) MAFMO test results using ZDT1, ZDT2, Schaffer and Kursawe test functions.
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5.4.3. Different Number of Receiving Sensors. In the experi-
ments in this subsection, we use different numbers of receiv-
ing sensors to test the WSN deployment effect under each
multiobjective algorithm. The receiving sensor mentioned
here is the cluster head mentioned in the clustering. Different
numbers of receiving sensors have different effects on WSN
deployment. Here, we experiment with 5, 8, and 10 receiving
sensors. The experimental results are shown in Figure 7.

Figure 7 shows that when the number of receiving sen-
sors is 5, the solution results of the four algorithms are almost
the same. The MAFMO algorithm is better than the MOPSO
and NSGA-II algorithms, but slightly worse than the
MOWOA algorithm. When the number of receiving sensors
is 8, the experimental result of the MAFMO algorithm is

better than that of MOWOA and NSGA-II, and it is almost
the same as that of MOPSO. When the number of receiving
sensors is 10, the MAFMO algorithm is better than the other
three.

6. Conclusion

This paper proposes a newmultiobjective heuristic algorithm
MAFMO based on the AFMO algorithm and tests it through
the ZDT, Schaffer and Kursawe test function. The test results
show that the MAFMO can be quickly and uniformly dis-
tributed on the Pareto front. We apply the proposed

TABLE 1: The experiment results of different algorithms in distribu-
tion test.

Function MAFMO MOPSO NSGA-II MOWOA

ZDT1 0.0057 0.0067 0.0067 0.0103
ZDT2 0.0042 0.0095 0.0061 0.0171
Kursawe 0.0458 0.0135 0.0273 0.0468
Schaffer 0.0179 0.0933 0.0201 0.0974

Bold value represents the optimal solutions of the four algorithms under the
same test problem.

TABLE 2: The experiment results of different algorithms in ductility
test.

Function MAFMO MOPSO NSGA-II MOWOA

ZDT1 1.4142 1.2639 0.4012 1.1025
ZDT2 1.2125 1.1757 0.1484 1.3235
Kursawe 3.0621 2.5547 2.4229 2.8286
Schaffer 2.4474 3.5791 2.5687 3.7816

Bold value represents the optimal solutions of the four algorithms under the
same test problem.
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multiobjective heuristic algorithm to WSN deployment, tak-
ing into account the deployment requirements of sensor cov-
erage, energy consumption, and repeated coverage. Finally,
compared with the WSN deployment scheme using MOPSO,
MOWOA, and NSGA-II multiobjective heuristic algorithms.
The results show that the deployment schemes solved by the
MAFMO algorithm work better under the same weight
addition.
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