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Cataracts are an eye condition that causes the eye’s lens to become cloudy and is a significant cause of vision loss worldwide.
Accurate and timely detection and diagnosis of cataracts can prevent vision loss. However, poor medical care and expensive
treatments prevented cataract patients from receiving appropriate treatment on time. Therefore, an inexpensive system that
diagnoses cataracts at an early stage needs to be developed. This study proposes an automatic method for detecting and classifying
cataracts in their earliest stages by combining a deep learning (DL) model with the 2D-discrete Fourier transform (DFT) spectrum
of fundus images. The proposed method calculates the spectrogram of fundus images using a 2D-DFT and uses this calculated
spectrogram as an input to the DL model for feature extraction. After feature extraction, the classification task is performed by a
softmax classifier. This study collected fundus images from various open-source databases that are freely available on the Internet
and classified them into four classes based on an ophthalmologist’s assessment. All the collected fundus images from various
datasets with open access are unsuitable for cataract diagnosis. Consequently, a module for identifying the fundus images of good
and poor quality is also incorporated into this method. The experimental results show that the proposed system can outperform
previous state-of-the-art works by a significant margin compared to a benchmark of four-class accuracy and achieves the four-class
accuracy of 93.10%.

1. Introduction

Cataract formation is defined by the clouding of the eye’s lens,
which occurs when an excessive amount of protein accumu-
lates in the lens and causes opacity that alters the lens’s natural
shape. This opacity issue may result in the patient’s eyesight
being blurred. According to the Vision 2020 report, cataracts
account for 62.5 million occurrences of visual impairment and
blindness worldwide [1]. Due to an aging population, these
numbers are anticipated to reach 71.5 million by 2022. Due to
the inadequate health infrastructure and a lack of ophthalmol-
ogists [2], a considerable proportion of these cataract patients
remain undetected. Consequently, cataract diagnosis remains
a significant public health concern [3].

Cataracts can be caused by a variety of reasons, including
aging, smoking, radiation, diabetes, and so on. Early detection

and diagnosis of cataracts are critical for achieving significant
advantages in a short amount of time; otherwise, it may result
in permanent vision loss [4]. Therefore, this presents a chal-
lenge to detect and grade the cataract at an early stage.

To date, cataracts are clinically detected and graded
by ophthalmologists using slit-lamp microscopy and pre-
established clinical standards such as the lens opacities classi-
fication system (LOCS) III [5]. This manual process necessi-
tates clinical skills and thus poses a significant challenge,
particularly in developing countries and rural areas where
qualified ophthalmologists are scarce [6]. Furthermore, cata-
ract classification results are subjective and affected by inter-
examiner variability [7]. Overall, the manual approach to
cataract detection and grading, which requires the expertise of
an ophthalmologist, has significantly limited screening access. As
a result of the growing health burden associated with cataracts,
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newmethods to overcome existing limitations and revolutionize
the approach to cataract screening are required.

In recent years, the rise of artificial intelligence (AI) and
its application in medical science has yielded promising
results in specific tasks such as the early detection of breast
cancer, lung cancer, and fatal blood diseases [8, 9]. AI-based
systems have also shown promising results in the automated
identification of age-related disorders such as glaucoma, dia-
betic retinopathy, age-relatedmacular degeneration, and others
in ophthalmology, where a large volume of images and patient
data are available [10]. With the rapid expansion of computa-
tional infrastructure and power, deep learning (DL)-based AI
models are becoming increasingly popular due to their remark-
able ability to extract high-level features and previously
unknown patterns from massive amounts of data. This piqued
the interest of the research community in developing an AI-
based automatic cataract detection and classification system.

In recent years, various researchers proposed various
methods for automatic cataract detection based on different
imaging modalities, such as slit lamp, ultrasound, retro-
illumination, or fundus images [11]. Among these imaging
modalities, fundus imaging has brought considerable atten-
tion in this field, as technologists or even patients themselves
can efficiently operate the fundus camera. In contrast, other
imaging modalities require experienced ophthalmologists to
capture the images [12]. Thus, in order to simplify the pro-
cess of early cataract screening, an automated fundus image-
based cataract detection system is essential. However, fundus
image-based cataract detection and grading systems utilize
retinal features, such as highly complex tinny blood vessels,
which can interfere with other blood vessels and are chal-
lenging to extract. Therefore, there is a need for a technique
that can easily extract information regarding these minute
blood vessels, which are necessary for diagnosing cataracts.

To alleviate the aforementioned problems, a method is
used to calculate two-dimensional discrete Fourier transform
(2D-DFT) spectrograms of fundus images, and then subse-
quently, these 2D-DFT spectrograms are used for feature
extraction. The advantage of using a retinal 2D-DFT spec-
trogram is that it preserves all original information used for
further diagnosis. 2D DFT has the ability to fully transform
the cataract fundus image into the frequency domain, where
the low-frequency spectrum contains most of the image
information, while the high-frequency spectrum provides
more details such as edges, curves, and contours present in
the images [13]. Hence, if 2D DFT is applied to the fundus
images with various degrees of cataracts, then it produces
different types of frequency spectrograms. For instance, a
severe cataract has more opacification in the lens, which
causes more light to be scattered or absorbed by the lens,
resulting in less light reaching the retina. It indicates that the
fundus image will be more distorted, that is, a greater pro-
portion of low-frequency components will be visible. In con-
trast, if the eye is normal, then there is no opacification in the
lens, and more light will reach the retina without scattering
and absorption, resulting in a clear fundus image, that is,
a significant increase in the proportion of high-frequency
components. As cataract degrees increase, the shape of the

spectrogram becomes more regular, and the high-frequency
components occupy a smaller proportion of the spectrogram,
while the low-frequency components occupy a larger pro-
portion [14]. Therefore, high-frequency components present
in the 2D-DFT spectrogram of fundus images work as dis-
criminating features to detect and grade cataracts.

DL is an emerging field of AI that uses artificial neural
networks made up of numerous layers of artificial neurons to
replicate the physiological behavior of the human brain [15].
DL systems are capable of extracting and processing infor-
mation from images, text, and signals. Convolutional neural
networks (CNNs) are popularly used DL models for auto-
matic feature extraction from images [16]. The major advan-
tage of CNN over conventional feature extraction methods is
that it does not require human intervention to extract fea-
tures from the image. The advantages of using CNNs are less
prone to error and speed up the feature extraction. However,
the major problem associated with CNNnetworks is the over-
fitting problem which can be solved by data augmentation.

As a result of the preceding considerations, this work
focuses primarily on an automatic approach for cataract
detection and grading based on frequency spectrograms of
fundus images, which provides a low-cost and timely diag-
nosis. To validate our method, fundus retinal images with
varying degrees of cataracts are acquired from open-source
databases and categorized by a professional ophthalmologist
as normal, mild, moderate, and severe. Figure 1 shows the
sample fundus image of each cataract class. Figure 1(a)
shows the normal fundus image without having a cataract,
in which a large number of tinny blood vessels can be seen
very clearly. Figures 1(b) and 1(c) depict mild and moderate
cataract fundus images in which details of tinny blood vessels
and the optic disc may be seen to some extent, whereas mild
fundus images have more details of tiny blood vessels as
compared to moderate images. Figure 1(d) displays severe
cataract images in which no details of tiny blood vessels are
visible. Hence, the details of tinny blood vessels play a domi-
nant role in cataract classification from fundus images. But,
the extraction of these blood vessels as features is a complex
and tedious process. To overcome the above limitation, the
proposed method uses 2D-DFT spectrograms of fundus
images for feature extraction purposes. The advantage of
2D-DFT spectrogram images is that they contain greater
details regarding the tinny blood vessels in terms of high-
frequency components. Figure 2 shows the 2D-DFT spectro-
gram images for different severity levels of cataracts that are
used for feature extraction and classification.

The proposed method used the CNN model for extract-
ing the features from the 2D-DFT spectrogram of fundus
images. These features are then classified using the softmax
function into four stages according to the severity of the
cataract. The performance of the suggested method is eval-
uated by using a number of different evaluation matrices,
including accuracy, precision, specificity, sensitivity, and F1
score.

The novelty of this study is in its application of 2D-DFT
spectrograms of fundus images for automatic cataract detec-
tion and grading, which streamlines the process of finer
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details extraction using CNN to achieve high accuracy. This
study makes the following significant contributions:

(1) To develop a novel 2D-DFT spectrograms-based
CNN model for the classification of fundus images
into four classes: normal, mild, moderate, and severe.

(2) Use the quality estimate module to identify fundus
images of good quality among the collected images.

(3) Use data augmentation to expand the dataset by artifi-
cially generating the samples, which helps in improv-
ing the performance of our proposed method.

(4) Use the softmax function for the classification of
images that maps every output in the range between
[0,1] and gives the sum always 1. It is used to classify
multiclass images based on multinomial probability
distribution.

The following is the rest of the paper: Section 2 outlines
the literature reviews and emphasizes the most influential
works that inspired this investigation. Section 3 is the core
of this study and discusses the proposed methodology’s
design and explains every part in greater detail. Section 4
provides a discussion of the results obtained in various
experiments, and finally, Section 5 concludes this study,
highlights the contribution of this research, and outlines
our plans for future work.

2. Literature Work

In recent years, the development of computer-aided (CAD)
systems for cataract diagnosis and grading from retinal
images has achieved widespread popularity in the medical
imaging industry. According to numerous studies published
in this field, automatic cataract detection and grading sys-
tems consist primarily of three steps: preprocessing, feature
extraction, and classification, as shown in Figure 3.

The preprocessing step is used to improve the fundus
image quality through various stages such as resizing,
G-filtering, and normalization. Fundus images collected from
different datasets are of different sizes. Therefore, resizing
step converts them to the same size to make them suitable
for the sequential processing of CNN. G-filtering extracts the
G-channel from RGB fundus images and is used to eliminate
uneven illumination. The G-channel images preserve essen-
tial features of the original images and are the clearest ones
among all channels. In the literature, the feature extraction
step is performed with two distinct kinds of approaches man-
ual approaches (or hand-crafted feature extraction methods)
and automatic feature extraction approaches. Manual
or hand-crafted feature extraction approaches use image
processing-based techniques to extract hand-crafted features
and then classify cataracts using conventional machine learn-
ing algorithms. Automatic feature extraction approaches are
based on DL algorithms that automatically extract features

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 2: Cataract images after applying Fourier transform: (a) no; (b) mild; (c) moderate; (d) severe.

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 1: Cataract fundus images showing different levels of severity: (a) no; (b) mild; (c) moderate; (d) severe.
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without human intervention and then utilize them to train
and test machine learning classifiers for cataract classification.
Therefore, the literature review is separated into two sections
based on feature extraction approaches, namely, (1) auto-
matic cataract detection using conventional methods and
(2) automatic cataract detection using DLmethods. A detailed
review of both types of methods is given below.

2.1. Automatic Cataract Detection Using Conventional Methods.
Conventional methods for the automatic detection and grad-
ing of cataracts rely on the manual extraction of information
utilizing various image processing algorithms and filters.
Many researchers have worked with hand-crafted feature-
based methods, like Cao et al. [17] that used improved
Haar-wavelet transform to extract appropriate features for
automatically grading cataracts. This technique also divides
four-class classification issues into three two-class classifica-
tion problems using a hierarchical strategy and trains neural
network-based classifiers on these three sets of two-class pro-
blems independently. The result of four-class classification is
achieved by integrating all two-class classifiers and archived
two- and four-class accuracy of 94.83% and 85.98%, respec-
tively. Yang et al. [18] proposed amethod in which an enhanced
top–bottom Hat transformation is utilized to enhance the
contrast between the foreground and background of fundus
images, and a trilateral filter is employed to remove image
noise. The images’ luminance and texture are then retrieved
as classification features, and a backpropagation neural net-
work is used to identify cataracts based on these features. This
categorization approach achieves an accuracy of 82.9%. Guo
et al. [19] trained and tested multiclass discriminant analysis
algorithms for detecting and grading cataracts from fundus
images by using wavelet transform and sketch-based features.
The two- and four-class accuracy obtained by this method for
the wavelet transform-based features are 90.9% and 77.1%,
and 86.1% and 74.0% for sketch-based features. Yang et al.
[20] introduced an ensemble learning-based cataract identifi-
cation and grading system that extracts an independent set of
wavelet, sketch, and texture-based features from fundus

images. This method uses an ensemble of a backpropagation
neural network and support vector machine (SVM) classifiers
with the majority of voting and stacking to detect and grade
cataracts with 93.2% and 84.4% accuracy, respectively.

Zheng et al. [14] proposed a method that utilized 2D-DFT
spectrograms of fundus images as classifying features to classify
cataracts. This method reduces the dimensionality of feature
vectors using principle component analysis (PCA), and the
Adaboost algorithm is used to train and evaluate the linear
discriminant analysis classifier in order to accomplish classifi-
cation. The classification accuracy of this approach is 81.52%.
Fan et al. [21] proposed a method that employs PCA to reduce
the dimensionality of retrieved wavelet and sketched-based fea-
tures from fundus images. This approach utilized widely used
classification methods such as SVMs, bagging, random forests,
gradient boosting, and decision trees in order to classify catar-
acts. The major advantage of this method is the reduction in
computation cost. Song et al. [22] introduced a system for cata-
ract classification that utilized an enhanced semi-supervised
learning technique that gained some additional information
from unlabelled cataract fundus images in addition to the three
primary image features of textures, wavelets, and sketches. This
approach combines multiple binary classifiers into a single
potent multiclassifier and achieves 88.60% four-class accuracy.
Manchalwar et al. [23] studied a system that utilized the histo-
gram of oriented gradients features of fundus images and classi-
fied them using minimal distance classifiers in order to find
cataracts. Pratap andKokil [24] employed singular value decom-
position to extract features and a SVM as a classifier to detect
cataracts in fundus images. This approach yields a two-class
classification accuracy of 97.78%.

As per the previous discussion in the literature, the per-
formance of conventional methods is highly dependent on
extracted hand-crafted features. Therefore, these methods
are subject to the following limitations:

(1) The manual extraction and selection of hand-crafted
features is a time-consuming task that demands pro-
fessional judgment on feature validity.
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FIGURE 3: The primary steps of cataract detection and classification systems.
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(2) Tiny blood vessel features on retinal images are
neglected during feature extraction using traditional
approaches, despite the fact that they are essential for
cataract identification and grading.

2.2. Automatic Cataract Detection Using DL Methods. The
DL-based approaches illustrate the characteristics of auton-
omous feature extraction and can circumvent the aforemen-
tioned drawbacks. A number of researchers have worked
hard to come up with DL models for classifying and grading
cataracts. For Instance, Zhang et al. [25] came up with an
eight-layer deep CNN (DCNN) in which the first five layers
are convolution layers, and the last three layers are fully
connected layers. The output of the last fully connected layer
(FC) of DCNN is used as input by the softmax classifier to
make a distribution across the four classes. Ran et al. [26]
devised a method that uses the DCNN and random forest
classifier to grade the cataract into six classes. The accuracy
of this method for grading cataracts into six classes is 90.7%.
Imran et al. [27] introduced a method that combines the
self-organizing map (SOM) and a radial basis neural network
(RBF-NN). This method employs SOM for clustering and
determining the starting center and RBF-NN for classifying
and grading cataracts. The proposed method has an accuracy
of 95.3% for cataract detection and 91.7% for cataract classi-
fication into four classes.

Syarifah et al. [28] improved the performance of DCNN
using a pretrained CNN architecture termed AlexNet with a
lookahead optimizer on Stochastic Gradient Descent (SGD)
and Active Design and Analysis Modeling (ADAM). The
proposed architecture has a two-class classification accuracy
of 97.5%. The limited size of the dataset is the primary limi-
tation of this method. Junayed et al. [29] presented Catar-
actNet, a new DCNN architecture with fewer layers, training
parameters, and smaller size kernels designed to save com-
puting time and cost. This approach has a classification accu-
racy of 99.13% for cataracts. Pratap and Kokil [30] proposed
a method for classifying four-class cataracts using a pre-
trained AlexNet with transfer learning and an SVM classifier.
This method used the Naturalness Image Quality Evaluator
(NIQE) and the Perceptron Image Quality Evaluator (PIQE),
both of which are blind image quality selection parameters,
to measure the quality of retinal images taken from open-
source datasets. The proposed method has a 92.9% accuracy
in grading the cataract into four-classes. Hasan et al. [31]
examined the performance of four pretrained CNN models,
including DenseNet121, InceptionV3, Xception, and Incep-
tionResNetV2, to diagnose cataracts from retinal images.
Moreover, the authors discovered that InceptionResNetV2
outperforms all other models, with a two-class classification
accuracy of 98.17%. Weni et al. [32] investigated a CNN-
based method for automatically detecting cataracts. The pro-
posed strategy aims to improve diagnostic precision for cat-
aracts while minimizing loss. They were able to achieve an
accuracy rate of 95% by using 50 epochs. However, when
evaluated directly on ten real-time images, the accuracy of
the proposed method is 88%. Varma et al. [33] developed the

fundus images-based automatic cataract classification and
grading system that uses a CNN model that contains lesser
layers and parameters and small size kernels to obtain better
computational cost. The accuracy obtained by this approach
is 92.75% for four-class classification of cataracts. Varma
et al. [34] proposed the custom-CNN architecture for feature
extraction and softmax classifier for classification of catarac-
tous images into four classes according to severity. The accu-
racy achieved by this method is 92.7% for grading cataracts.

It can be observed from the aforementioned literature
that automatic cataract detection using DL methods (partic-
ularly CNNs) is more accurate and efficient than existing
methods. However, challenges still need to be addressed in
the applications of DL models, such as the availability of
large labeled datasets and the difficulty of extracting retinal
features such as tiny blood vessels, which may affect other
blood vessels and depend on the image quality. Although, the
first challenge of the lack of a labeled dataset is alleviated to a
certain extent in recent research using data augmentation
methods. However, the second challenge of extracting tinny
blood vessels from retinal images is still alive and needs to be
resolved to improve the system’s accuracy. Therefore, this
study uses 2D-DFT spectrograms of retinal images in order
to investigate this issue. The advantage of employing 2D-
DFT spectrograms is that they carry details of tiny blood
vessels as high-frequency components, which are easier to
extract and serve as the discriminating features to detect and
grade the cataracts. Besides this, this method employs an
image quality selection module that retains retinal images
of high quality for further processing and discards those of
poor quality.

3. Proposed Work

This section discusses the methodology employed by the
proposed study for cataract detection and grading. The com-
plete methodology consists of five major components: image
acquisition (dataset construction), image quality selection,
preprocessing and data augmentation, feature extraction,
and classification. The outline of the proposed study for the
automatic detection and classification of cataracts is depicted
in Figure 4. Now, let us examine the working of each part in
greater depth.

3.1. Image Acquisition (Dataset Construction). The most
challenging aspect of this problem is the need for a bench-
mark dataset containing a large number of labeled retinal
fundus images. As a result, this study uses randomly selected
retinal images from various publically available datasets,
including HRF [35], STARE [36], MESSIDOR [37], DRIVE
[38], DRIONS_DB [39], and IDRiD [40] datasets, as well
as images obtained from the Internet. The comprehensive
description of the datasets is presented in Table 1.

In the dataset, a total of 1,835 fundus images are com-
piled in such a way that each class has more than 400 images.
The class label assignment for fundus images is overseen by
Dr. P. K. Gupta, a professional ophthalmologist of a private
eye care center, Ghaziabad (UP). The ophthalmologist
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carefully examined each fundus image of different datasets
and looked for key indicators such as opacity, discoloration,
altered fundus reflex, and reflected light abnormalities. He
paid close attention to these indicators and compared them
with his knowledge and experience for class-label assign-
ments. This was completely qualitative method and totally
depends on clinical judgment of ophthalmologist. The detailed
descriptions of created labeled fundus images dataset are given
in Table 2.

3.2. Selection of Good Quality Fundus Images. It has been
observed that image quality is crucial in deep neural net-
works [41]. The disparity in image quality between deep
neural network training and testing degrades the classifier
performance. Maintaining the same degree of image quality
throughout the training and testing phases is therefore highly
desired. The high-quality fundus images are those which
show the clear retinal structures, whereas the poor-quality
images do not show the clear retinal structures due to distor-
tion, noise, defocus, blur, weak and overexposure, and eye-
lash shadow. Consequently, this study includes a quality-
selection module that selects high-quality fundus images
for subsequent diagnostic evaluation in order to improve
the performance.

This quality-selection module includes two subjective
image quality descriptors, namely NIQE [42] and PIQE
[43], to evaluate the quality of fundus images. NIQE is a
blind quality estimator that calculates image quality scores
based on observable departures from statistical regularities in

Accept
Image acquisition

Classification using soft-
max classifier

Image quality selection

Image preprocessing and
data augmentation

Feature extraction from 2D-DFT
spectrogram using CNN model Mild

Moderate

No

Severe

Fundus image dataset

FIGURE 4: Proposed model for automatic cataract detection and classification.

TABLE 1: A comprehensive description of various datasets of fundus images.

S. no. Dataset name Dataset size Image size (pixels)

1. HRF (high-resolution fundus) [35] 45 images 3,304× 2,336

2. STARE (structured analysis of the retina) [36] 397 images 700× 605

3. MESSIDOR [37] 1,200 images (three sets)
Set 1 : 1,440× 960
Set 2 : 2,240× 1,488
Set 3 : 2,304× 1,536

4. DRIVE (digital retinal images for vessel extraction) [38] 40 images (two sets) 565× 584 (both sets)

5. DRIONS-DB [39] 110 images 600× 400

6. IDRiD (Indian diabetic retinopathy image dataset) [40] 516 images 4,288× 2,848

TABLE 2: A complete description of acquired fundus images.

S. no. Category Total fundus images

1. Mild 465
2. Moderate 460
3. No 450
4. Severe 460

Total 1,835
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natural images. It employs a simple and effective spatial
domain natural scene statistics model to provide a set of
“quality-aware” statistical characteristics. In comparison,
PIQE is a nonreference perception-based image quality eval-
uation method used to assess the quality of images from the
real world. The image quality score is calculated using the
mean subtraction contrast normalization coefficient and
belongs in the range [0–100]. It is given that the lower
NIQE and PIQE levels are indicative of better perceptual
quality, whereas the higher scores suggest poor perceptual
quality. According to the experimental findings presented in
references [42, 43], the NIQE and PIQE values for good-
quality images do not exceed 5 and 50, respectively.

In this study, NIQE and PIQE scores are calculated for all
1,835 fundus images of the dataset, and the findings are
displayed via a scatter plot in Figure 5(a). Retinal fundus
images with a NIQE score of less than or equal to 5 and a
PIQE score of less than or equal to 50 are considered of good
quality, as depicted in Figure 5(b). These carefully selected,
good-quality images are then used for training and testing
purposes of DL models.

Fundus images whose NIQE and PIQE scores fall below
the threshold value (T) are chosen, while the remaining

retinal images are discarded. Figure 6 depicts the operation
of the image quality selection module, which employs a
threshold point (T) with a value between 5 and 50. The
images whose (NIQE score, PIQE score) falls below the
threshold (T) are considered for subsequent processing,
while the remaining images are excluded due to their poor
quality. The selected and rejected retinal images from the
collected dataset are described in detail in Table 3.

3.3. Image Preprocessing, 2D-DFT Transformation, and
Augmentation. After image acquisition and selection, the
fundus images must be preprocessed to increase their quality
and achieve greater generalization. The preprocessing steps
include resizing the images, green channel extraction, nor-
malization, 2D DFT, and data augmentation. First, resizing
operation is performed to unify the fundus images so that
they become suitable for series processing. This study used
the bicubic interpolation method for resizing the fundus
images. Second, the green channel extraction process is
employed to extract the green component from the original
color fundus images to correct nonuniform illumination.
The green component is clearest than the red and blue com-
ponents. The primary benefit of employing the green
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channel is that it delivers more contrast and illumination
features while preserving all vital information of the original
fundus images. In addition, green channel extraction saves
computation time by a factor of one-third because it com-
presses the original image by one-third. Third, normalization
removes the interference of background effects and assigns a
new intensity range to pixels of fundus images, and the nor-
malized pixel intensity value of each pixel of the fundus
image is computed by subtracting the mean intensity value
and dividing the result by the standard deviation of the
intensity values of all pixels in the fundus image. Finally,
2D DFT is used to convert the fundus images into frequency
spectrograms. Figure 7 illustrates the resulting images after
applying various preprocessing steps to a fundus image.

Based on the aforementioned discussion, this study used
the 2D-DFT spectrogram’s features for cataract detection
and grading. For an image with dimensions u and v, the
2D DFT is shown as:

F x; yð Þ ¼ ∑
U−1

u¼0
1∑
V−1

v¼0
f u; vð Þe−k2π xu

Uþyv
Vð Þ: ð1Þ

Here, f (u, v) represents the picture in the spatial domain,
while the exponential term represents the basis function for
each point F (x, y) in Fourier space. The base functions are
sine and cosine waves with increasing frequencies, so F (0, 0)
represents the direct current (DC) component of the image,
which corresponds to the average brightness, while F (M, N)
represents the maximum frequency. In order to improve
DFT spectrogram image representation, The DC-value
(also known as the zero-frequency point) F (0, 0) is displayed
in the image’s center, and as the image point’s distance from

the center point grows, its frequency also increases. This task
is performed in MATLAB as follows:

yf ¼ abs f f tshif t f f t2 image datað Þð Þð Þ; ð2Þ

result ¼ log 1þ yf
À Á

; ð3Þ

The idea of using 2D DFT is taken from general science,
where light propagates in the lens of the eye of a person with
cataracts, it will be scattered or absorbed by opacifications.
This means opacifications in the lens can be treated as a low-
pass filter that passes only low frequency and stops high
frequency. Therefore, fundus photography has no blood ves-
sels on images with severe cataracts because blood vessels are
high-frequency components. The appearance of blood ves-
sels in fundus images increases as cataract severity decreases.
This idea is practically simulated by 2D DFT in the frequency
domain by localizing the blood vessels in the fundus images.
Blood vessels are thin edges that can be seen in fundus
images and are represented by high-frequency components
in frequency domain transformation. For example, if cataract
severity is high, then the fundus image is not clear, and no
blood vessel is seen; whose result is that the spectrogram of
severe cataract fundus image has a very less high-frequency
component. The vice versa is true for normal eye fundus
images. Hence, it is concluded from the earlier discussion
that the structure of the spectrogram becomes more regular
as the cataract degree increases, the high-frequency compo-
nents become less, and the low-frequency components
become larger, as illustrated in Figure 8.

Figure 8(a) shows a normal fundus image that contains
finer details and its corresponding 2D-DFT spectrogram

TABLE 3: A complete description of selected and rejected fundus images of the dataset.

S. no. Category Number of selected fundus images Number of rejected fundus images

1. Mild 400 65
2. Moderate 400 60
3. No 400 50
4. Severe 400 60

Total 1,600 235

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 7: Cataract images after (a) resizing, (b) green channel extraction, (c) normalization, and (d) 2D DFT.
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image shown in Figure 8(b), where significant amplitudes
are away from the zero-frequency center point. Similarly,
Figure 8(c) shows a cataractous fundus image in which fun-
dus fine details are missing, and its corresponding 2D-DFT
spectrogram image showed in Figure 8(d), where there is a
reduction in high spatial frequency contents in the region
surrounding the zero-frequency point.

Finally, the data augmentation step is used to increase the
number of training samples to address generalization and
overfitting issues. The key data augmentation processes,
including rotation, flipping (horizontal), cropping, and shift-
ing, are performed on 2D-DFT spectrogram images.

3.4. Feature Extraction and Classification. Feature extraction
is a critical step of CAD systems that directly impacts the
accuracy of the classification. The application of CNN mod-
els to medical image diagnosis is well-recognized worldwide
[18]. CNNs are deep neural networks that aim to automati-
cally learn a complex hierarchy of features from medical
images in order to diagnose and grade medical disorders.
A CNN typically consists of four primary layers, which are
the convolution, pooling, fully connected, and classification
layers. In CNN, the output of one layer is the input for the
next layer, and this output is known as a feature map (or
activation map). The convolutional layer is responsible for
extracting a number of low-level and high-level features from
spectrogram images (also known as activation maps) via a set
of linear filters. These features include outlines such as edges,
curves, dots, corners, squares, circles, and others. The output
of the 3× 3 convolution filter is given by:

f l;m; nð Þ ¼ ∑
3

k¼1
∑
3

i¼1
∑
3

j¼1
w l; i; j; kð ÞI iþm − 1; jþ n − 1; kð Þ þ b lð Þ;

ð4Þ

where I i;ð j; kÞ is the image intensity value, w l;ð i; j; kÞ repre-
sents weights, and b lð Þ represents the bias of the convolu-
tional layer.

The pooling layer often reduces the dimensionality of acti-
vation maps (i.e., the number of network parameters) via sub-
sampling in order to increase the robustness of retrieved
features. The pooling layer may be implemented in one of
two ways: (i) using a collection of linear filters to determine

the image’s average pixel value below themasked area (average
pooling), and (ii) using a set of nonlinear filters to sort the pixel
values inside a specific region of the input image, and receiving
the pixel value with the highest absolute value as a result (max-
pooling). The working of the maximum-pooling layer for a
2× 2 grid is defined by the following equation:

x l;mþ 1; nþ 1ð Þ

¼ max
f l; 2mþ 1; 2nþ 1ð Þ f l; 2mþ 1; 2nþ 2ð Þ
f l; 2mþ 2; 2nþ 1ð Þ f l; 2mþ 2; 2nþ 2ð Þ

" #
;

ð5Þ

where x l;ð m; nÞ is the maximum pixel value corresponding
to four neighbors in activation map (f ).

The role of the batch normalization (BN) layer is to
normalize the output of the preceding layer of the network
during training in order to boost learning speed and regular-
ize the CNN in order to address the overfitting issue. The BN
layer also facilitates other layers of the network to learn
independently.

The FC consists of a group of neurons that are linked to
all the neurons corresponding to the activation maps present
in the preceding layer. The primary role of the FC layer is to
produce a compact feature representation of the whole input
image. Typically, the outputs of previous FC layers and con-
volutional layers are processed by a rectified linear unit
(ReLU) activation function, which is specified by:

y ¼ x; x ≥ 0

0; x<0

(
; ð6Þ

where x represents the input to the ReLU activation function
and y represents the output created by the ReLU activation
function. However, this study used clipped ReLU activation
functions instead of simple ReLU to overcome from vanishing
gradient problem. The clipped ReLU function is defined as:

y ¼
0 x<0

x 0 ≤ x<c

c x ≥ c

8><
>: ; ð7Þ

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 8: Fundus image and corresponding 2D-DFT spectrograms. (a) Normal fundus image, (b) 2D-DFT spectrogram of normal fundus
image, (c) severe cataract fundus image, and (d) 2D-DFT spectrogram of a severe cataract fundus image.
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where c is the clipping ceiling value that is used for thresh-
olding operations.

However, the softmax activation function is implemen-
ted at the end of CNN to calculate the probability distribu-
tion for each of the final FC outputs, as stated by:

vi ¼
eui

∑
N

n¼1
eun

; ð8Þ

where ui is the i
th output of the last FC, vi is the correspond-

ing softmax activation, and N is the number of classes.
The cross-entropy loss function is used to determine the

deviation of predicted outputs of the softmax function from
actual outputs and is defined as:

e ¼ −∑
N

j¼1
v̂j logvj; ð9Þ

where vj is the actual probability for j
th output of the last FC layer

to belong particular class. The cross-entropy loss is then mini-
mized using a backpropagation algorithm with optimization

functions, namely, SGD, ADAM, and so on, to update themodel
parameters necessary for effective image classification.

In this study, a custom-CNN architecture is proposed
that contains lesser layers, parameters, and smaller size ker-
nels to achieve better computational cost and accuracy to
automatically detect and grade cataracts into four stages:
normal, mild, moderate, and severe from fundus (2D-DFT
spectrograms) images. Therefore, this architecture contains a
set of six consecutive convolutional layers with 2× 2 max-
pool layers in between them, as shown in Figure 9. The
convolutional layers used in this architecture consist of 16,
16, 32, 64, 128, and 256 filters with kernel size 3× 3 and
padding as same for each of the six layers, respectively.
The max-pool layers with kernel size 2× 2 and stride of
two are employed between convolutional layers to reduce
the size of the data representation, which also lowers the
number of trainable parameters. The outputs of all six con-
volutional layers are compiled into a feature map, which is
then used to feed a series of FCs. These layers are utilized to
identify and classify cataracts. Three sets of FCs and dropout
layers are created, with the FCs containing 500, 200, and 50
neurons, respectively, to capture the filtered cataract features.
Furthermore, three dropouts are set to 0.7, 0.6, and 0.5 to
reduce the risk of model overfitting by removing the output
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ax layer
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Fully connected layer

Fully connected layer

M
ax pool layer
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onvolution layer
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M
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C
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M
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C
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FIGURE 9: A schematic representation of the proposed CNN model.

TABLE 4: The detailed specification of various layers of the proposed CNN model.

S. no. Layers Filters Activation function Stride Activations

1. Convolution layer-1 16 KS: 3× 3, clipped ReLU – 256× 256× 16
2. Max-pooling layer-1 – KS: 2× 2 2 128× 128× 16
3. Convolution layer-2 16 KS: 3× 3, clipped ReLU – 128× 128× 16
4. Max-pooling layer-2 – KS: 2× 2 2 64× 64× 16
5. Convolution layer-3 32 KS: 3× 3, clipped ReLU – 64× 64× 32
6. Max-pooling layer-3 – KS: 2× 2 2 32× 32× 32
7. Convolution layer-4 64 KS: 3× 3, clipped ReLU – 32× 32× 64
8. Max-pooling layer-4 – KS: 2× 2 2 16× 16× 64
9. Convolution layer-5 128 KS: 3× 3, clipped ReLU – 16× 16× 128
10. Max-pooling layer-5 KS: 2× 2 2 8× 8× 128
11. Convolution layer-6 256 KS: 3× 3, clipped ReLU – 8× 8× 256
12. Max-pooling layer-6 – KS: 2× 2 2 4× 4× 256
13. Fully connected layer-1 – 500; clipped ReLU – 1× 1× 500
14. Dropout – 0.7 – 1× 1× 500
15. Fully connected layer-2 – 200; clipped ReLU – 1× 1× 200
16. Dropout – 0.6 – 1× 1× 200
17. Fully connected layer-3 – 40; clipped ReLU – 1× 1× 50
18. Dropout – 0.5 – 1× 1× 4
19. Fully connected layer-4 – 4; softmax – 1× 1× 4
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of 70%, 60%, and 50% of hidden layer neurons with each
update during the training phase. The last FC layer contains
four neurons for nonlinear classification. All layers employ
the clipped ReLU activation function, with the exception of
the classification layer, which uses the softmax function. A
detailed description of the underlying architecture of the
proposed CNN model is given in Table 4.

The previously described technique is depicted in
Figure 10 and can be summed up as follows:

(1) First, the good-quality fundus images, which are the
output of the quality selectionmodule, are preprocessed,

and their associated 2D-DFT spectrogram images are
obtained.

(2) Second, the augmented dataset of 2D-DFT spectro-
gram images is fed into the proposed CNN model for
automatic feature extraction.

(3) Third, in order to facilitate automatic feature extrac-
tion, the suggested CNN architecture makes use of
layers that are convolutional, batch normalization,
clipped ReLU, max-pool, and fully connected.

(4) The last FCL has four neurons with a softmax activa-
tion function that computes the probability distribu-
tion for each class in order to classify spectrogram

No
Discard the images

Yes

Fundus image dataset

Preprocessing steps

Resize the image

Normalized image

2D-discrete fourier transform

Augmented image

CNN model training

Convolution layer

Batch normalization layer

Clipped ReLU layer

Max-pooling layer

Fully connected layer

CNN-based feature learning network

Training sample features

Softmax classifier

Output result as cataract detection and classification

Is selected images are of good quality

FIGURE 10: A detailed diagram of the proposed method.
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images into four classes such as normal, mild, mod-
erate, and severe.

4. Experimental Results

In this section, the results of various experiments conducted
with the proposed method are presented and discussed. All
of the experiments in this study have been conducted on a
computer equipped with an Intel 7th Generation Core i7-
7700 processor, a 4GB NVIDIA GTX 1050 Ti graphics card,
64GB of RAM, and aWindows 10 (64-bit) operating system.
The simulation programs for the proposed method have
been developed and executed on MATLAB R2019a, which
includes Image Processing, Neural Network Toolboxes, and
Deep Learning Toolboxes.

4.1. Criteria for Performance Evaluation. The method
employed in this study has been trained and evaluated on
both retinal and their corresponding 2D-DFT spectrogram
image datasets. The performance of the method has been
evaluated based on the following performance metrics: accu-
racy, sensitivity, specificity, precision, and F1-score [11].

Accuracy ¼ T:P:þ T:N:
T:N:þ T:P:þ F:N:þ F:P:

: ð10Þ

Sensitivity or recallð Þ ¼ T:P:
T:P:þ F:N:

: ð11Þ

Specif icity ¼ T:N:
T:N:þ F:P:

: ð12Þ

Precision ¼ T:P:
T:P:þ F:P:

: ð13Þ

F1 score ¼ 2 ×
precision × sensitivity
precisionþ sensitivity

: ð14Þ

Considering both the actual (target) class label and the
predicted class label, the input images are divided into four
categories: true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). The percentage of accu-
rately predicted classes based on the total number of test
images is referred to as accuracy. Precision is the percentage
of correctly predicted positive classes based on the total num-
ber of positive cases, whereas sensitivity is the percentage of
correctly predicted positive classes based on all positive pre-
dictions made from test images. In the field of medical

diagnostics, accuracy and sensitivity are the most important
performance measures. The F1 score has become a common
evaluation metric in the field of medical diagnostics due to
the ease with which it can be compared to other metrics. This
score condenses information about precision and recall (sen-
sitivity) into a single value. For medical professionals, an FN
is more distressing than an FP; hence, sensitivity (recall) is
given precedence over precision (accuracy). FPs can be elim-
inated with more testing, whereas missed conditioned (FN)
results can be catastrophic for the patient. In light of this,
performance evaluation criteria in this study included preci-
sion, recall, specificity, and F1-score in addition to accuracy.

4.2. Performance Measures. This study evaluates the perfor-
mance of the proposed method as well as other existing meth-
ods, including standard SVM, AlexNet-softmax, VGGNet-
softmax, and ResNet-softmax, in order to demonstrate the
comparison. It is also mentioned that all algorithms are
trained and tested on our collected dataset due to the need
for more relevant benchmark datasets. In order to illustrate
the benefits of the proposed method, all of the algorithms are
trained and tested using fundus images, whereas the proposed
method is trained and tested using 2D-DFT spectrogram
images corresponding to fundus images from the dataset.
Table 5 shows the performance comparison of the previously
discussed algorithms using various evaluation matrices as dis-
cussed above. It can be observed from Table 5 that the pro-
posed method has achieved promising results as compared to
all other algorithms. The proposed method obtained 93.10%,
93.13%, 97.71%, 93.09%, and 93.08% of accuracy, sensitivity,
specificity, precision, and F1-score.

In addition, Table 5 makes it abundantly clear that the
CNN-based algorithm outperforms hand-crafted feature
extraction-based methods; this is why the standard SVM
method, which relies on the hand-crafted feature extraction
method, has the lowest performance. The capacity of CNN-
based algorithms to automatically extract features that pro-
vide various semantic representations of fundus images is the
main factor contributing to their superior accuracy compared
to other image processing methods. However, all CNN mod-
els continue to struggle with the accurate extraction of retinal
features, such as tiny blood vessels. 2D-DFT spectrograms
corresponding to the fundus images contain details of tinny
blood vessels in the form of high-frequency components,
which is easier to extract and work as discriminating features
for cataract detection and grading. Consequently, the pro-
posed method used 2D-DFT spectrograms of fundus images
as input to the CNNmodel to extract features successfully and
classify them into distinct classes.

TABLE 5: Comparative analysis of existing and proposed algorithms (the results are given in percentages).

Methods Accuracy Precision Sensitivity Specificity F1-score

Standard SVM 87.34 86.63 86.35 88.57 86.47
AlexNet with softmax 91.32 92.05 91.22 91.44 91.63
ResNet with softmax 92.05 92.02 91.31 91.75 91.65
VGGNet with softmax 91.76 91.63 91.14 92.35 91.38
Proposed method 93.10 93.09 93.13 97.71 93.08
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4.3. Significance of Image Quality. The image quality has a
substantial impact on the testing accuracy results of any DL
model. Table 6 shows the results of testing accuracies of the
proposed method when the model is trained and tested with
2D-DFT spectrograms of different image quality datasets. It
is decided after reviewing Table 6 that the testing accuracy of
the proposed model is adequate when 2D-DFT spectrograms
from datasets of the same quality are used for training and
testing the model. However, a considerable deterioration in
testing accuracy is observed when the proposed model is
trained and tested using 2D-DFT spectrograms from differ-
ent image quality datasets. This deteriorated testing accuracy
may also be the result of the classifier’s poor performance.
Although, it is more difficult to determine the correct cause
for the deterioration in testing accuracy [11]. Therefore, this
study incorporates a quality-selection module that segregates
images into good-quality and poor-quality images in order to
reach a correct decision regarding testing accuracy.

4.4. Computation Time. The computation time required to
complete each stage of the proposed method is outlined in
Table 7. It is observed from Table 7 that the proposed
method requires 160 s for model training and 35 s for model
validation. Table 7 also depicts that the proposed method
requires 0.75 s for the feature extraction and classification
of a 2D-DFT spectrogram image corresponding to a fundus
image. Figure 11 illustrates a comparison chart that com-
pares the computation time of various methods. It is
observed from the comparison chart that the computation
time of the proposed method is much shorter than that
of other methods, such as traditional SVM, AlexNet,
VGG19Net, and ResNet50. As a result, the proposed method
is suitable in terms of the amount of time required for
computation.

4.5. Results Analysis and Discussion. In the first stage of the
proposedmethod, a quality selectionmodule is used to evaluate
the quality of the fundus images and select 1,600 good-quality

images from the dataset that is used in subsequent processing
steps. Next, the preprocessing stage improves the quality of
fundus images by using resizing, green channel extraction,
and normalization operations. Thereafter, 2D-DFT transform
is applied to fundus images to obtain spectrogram images cor-
responding to fundus images, and then augmentation is per-
formed to expand the size of the dataset. Now, this dataset of
augmented 2D-DFT spectrogram images is randomly parti-
tioned into an 80 : 20 ratio to train and test the proposed
CNN model. During the training phase, the proposed CNN
model is trained on the training dataset in batch mode with a
batch size of 128, and network weights are adjusted inside the
interval [−1 1]. In addition, this CNN model is trained with a
total of 150 epochs and optimized using an ADAM optimizer

TABLE 7: A detailed description of the computation time of each step
of the proposed method.

Process
Total computation

time (s)

Training 160
Validation 35
Single image feature extraction and
classification

0.75

0 0.5 1 1.5 2 2.5
Traditional SVM classifier

AlexNet
VGG19

ResNet50
Proposed method

Computation time (s)

M
et
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d 
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FIGURE 11: Comparison of proposed method computation time (sin-
gle-image) to other methods.

TABLE 8: A detailed description of hyper-parameters configuration.

Configuration Value

Learning rate 0.003
Epochs 150
Batch size 128
Optimizer ADAM
Classification function Softmax
Network weights [−1 1]

TABLE 6: Test accuracy of the proposed method using different
quality fundus images.

Image quality of
training dataset

Image quality of test dataset
Accuracy of

classification (%)

Good images Good images 93.10
Good images Poor images 82.62
Poor images Good images 88.16
Poor images Poor images 90.54

Mild
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Moderate
Target class
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No

Severe

Severe
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FIGURE 12: Confusion matrix of the proposed method.
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with a learning rate of 0.003. A detailed description of other
fine-tuned hyperparameters is given in Table 8. Multiclass clas-
sification task in CNN is performed by softmax activation
function that is used as a loss function aligned with the
cross-entropy function. It is observed from Table 5 that the
proposed method performs better in terms of classification
accuracy than the conventional SVM classifier by 5.79%,
AlexNet-softmax by 1.79%, VGG19Net-softmax by 1.35%,
and ResNet50-softmax by 0.99%. The confusion matrix of
the proposed method, as well as its accuracy and loss curves
during training and validation, are depicted in Figures 12 and
13, respectively.

The total computation time includes both the time
required for extracting features and the time required for
classifying images. Figure 11 presents a comparison of the
amount of computation time required by various methods. It
can be seen from Table 7 that the amount of time required to
classify a test sample by a conventional SVM classifier, Alex-
Net, VGG19, ResNet50, and the suggested technique is 2.1,

0.95, 1.61, 1.05, and 0.75 s, respectively. Therefore, it is con-
cluded that the classification of 2D-DFT spectrogram images
using the proposed method takes less time than the conven-
tional SVM classifier-based method due to the automatic
feature extraction used in the proposed method. It also takes
less computation time than other pretrained networks due to
its significantly minimized size and trainable parameters.

The effectiveness of the proposed method is demon-
strated by comparing it to the state of art methods. Table 9
presents a comparison of the various state-of-the-art cataract
classification methods with the proposed method using com-
monly available evaluation matrices. It is important to note
that these state of art methods are developed using the
researchers’ private datasets, which are unavailable to the
general public. Therefore, these methods are implemented
and tested on our dataset. Pratap and Kokil [30] employed
a pretrained AlexNet with transfer learning to extract fea-
tures from fundus images, followed by an SVM classifier for
classification. The given method attained an accuracy of
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FIGURE 13: (a) The curve of training and validation accuracy of the CNN of the proposed method. (b) The curve of training and validation loss
of the CNN of the proposed method.

TABLE 9: Comparison summary between the proposed method and existing state-of-the-art methods.

S. no. Authors Year Algorithms Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

1. Pratap and Kokil [30] 2019 Alexnet-SVM 92.87 92.88 93.04 93.04
2. Cao et al. [17] 2020 Improved Haar wavelet 85.98 84.65 95.29 86.01
3. Pratap and Kokil [44] 2021 DCNN-SVM 92.90 92.90 93.06 93.06
4. Varma et al. [34] 2023 D-CNN-softmax 92.7 93.5 92.75 92.75
5. Proposed method 2022 CNN with 2D DFT 93.10 93.13 97.71 93.09
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92.87% for detecting and grading four-class cataracts. Cao et
al. [17] used an enhanced Haar-wavelet transform to extract
features and developed a hierarchical technique for dividing
a four-class classification problem into three two-class clas-
sification problems. This approach attained a four-class cat-
aract grading accuracy of 85.98%. Pratap and Kokil [44]
suggested a novel method for investigating the performance
of cataract detection and grading systems in noisy environ-
ments. This approach employs a collection of independent
SVMs that are trained locally and globally on features
extracted by different pretrained CNNs in the presence of
varying noise levels. The choice of a CNN network is highly
determined by the noise level present in fundus images. The
results of this method show that it is robust to noise and has a
maximum accuracy of 92.90% for four-class cataract detec-
tion and grading. Varma et al. [34] proposed custom-CNN
architecture for feature extraction and softmax classifier for
classification of cataractous images into four classes accord-
ing to severity. The accuracy achieved by this method is
92.7% for grading cataracts. Overall results shown in Table 9
indicate that the proposed technique consistently outper-
forms state-of-the-art alternatives.

5. Conclusion

This study introduced the novel concept of employing 2D-
DFT spectrograms of fundus images rather than the original
images to detect and grade cataracts automatically using a
convolutional neural network. The benefit of using 2D-DFT
spectrograms is that they contain details of tiny blood vessels in
the form of high-frequency components, which are easier to
extract and serve as the distinguishing features to detect and
grade cataracts. The cataract dataset is initially compiled from
various open-source datasets, followed by quality selection and
preprocessing steps to improve the quality of fundus images.
The 2D DFT is then utilized to convert fundus images into
spectrogram images, which are then fed into the convolutional
neural network for feature extraction. The softmax classifier is
then used to classify cataracts based on the extracted features.
The proposed method demonstrated better results in terms of
both automatic feature extraction and classification accuracy
when compared with pretrained CNNmodels, including Alex-
Net, VGGNet, and ResNet50 for cataract detection and classi-
fication. The experimental results revealed that the proposed
method surpassed existing methods in terms of accuracy
(93.10%), sensitivity (93.13%), specificity (97.71%), precision
(93.09%), and F1-score (93.09%). It is also worthy here to
mention here that the proposed method takes lesser computa-
tion time due to lesser layers, parameters, and smaller size
kernels for training and testing of CNN model as compared
to other DL methods.

The proposed method can reduce costs and simplify the
process of cataract detection and grading, which is advanta-
geous for rural residents who lack access to qualified
ophthalmologists. The future work of this study will involve
installing this application in rural areas for inexpensive cata-
ract diagnosis using Internet of things-based techniques. In
addition, the major area for improvement of the proposed

method is its training and testing on a limited dataset. There-
fore, it will be necessary to evaluate the proposed method
with real-time and larger datasets in the near future to eval-
uate its effectiveness in real-time scenarios.

Data Availability

Data supporting the findings of this study is available upon
request to the corresponding author.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors were involved from the initial ideation to the final
draught, and each is equally responsible for the final output.

Acknowledgments

This study is supported by Dr. A.P.J. Kalam Technical Uni-
versity, Lucknow, India, under Visvesvaraya Research Pro-
motion Scheme (AKTU/Dean-PGSR/VRPS-2020/5751).

References

[1] F. F. A. Foster, “Vision 2020: the cataract challenge,” Community
Eye Health, vol. 13, no. 34, pp. 17–19, 2000.

[2] WHO, Global Data on Visual Impairments 2010, World
Health Organization, 2012.

[3] P. Vashist, S. S. Senjam, V. Gupta, N. Gupta, and A. Kumar,
“Definition of blindness under National Programme for
Control of Blindness: do we need to revise it?” Indian Journal
of Ophthalmology, vol. 65, no. 2, pp. 92–96, 2017.

[4] Y.-C. Liu, M. Wilkins, T. Kim, B. Malyugin, and J. S. Mehta,
“Cataracts,” The Lancet, vol. 390, no. 10094, pp. 600–612, 2017.

[5] M. Karbassi, P. M. Khu, D. M. Singer, and L. T. Chylack Jr.,
“Evaluation of lens opacities classification system III applied at
the slitlamp,” Optometry and Vision Science, vol. 70, no. 11,
pp. 923–928, 1993.

[6] S. Resnikoff, V. C. Lansingh, L. Washburn et al., “Estimated
number of ophthalmologists worldwide (International Council
of Ophthalmology update): will we meet the needs?” British
Journal of Ophthalmology, vol. 104, no. 4, pp. 588–592, 2020.

[7] I. L. Bailey, M. A. Bullimore, T. W. Raasch, and H. R. Taylor,
“Clinical grading and the effects of scaling,” Investigative
Ophthalmology & Visual Science, vol. 32, no. 2, pp. 422–432,
1991.

[8] D. Ardila, A. P. Kiraly, S. Bharadwaj et al., “End-to-end lung
cancer screening with three-dimensional deep learning on low-
dose chest computed tomography,” Nature Medicine, vol. 25,
pp. 954–961, 2019.

[9] C. G. Yedjou, S. S. Tchounwou, R. A. Aló, R. Elhag,
B. Mochona, and L. Latinwo, “Application of machine learning
algorithms in breast cancer diagnosis and classification,”
International Journal of Science Academic Research, vol. 2,
no. 1, pp. 3081–3086, 2021.

[10] J. H. L. Goh, Z. W. Lim, X. Fang et al., “Artificial intelligence
for cataract detection and management,” Asia-Pacific Journal
of Ophthalmology, vol. 9, no. 2, pp. 88–95, 2020.

Journal of Sensors 15



[11] J. K. P. S. Yadav and S. Yadav, “Computer-aided diagnosis of
cataract severity using retinal fundus images and deep learning,”
Computational Intelligence, vol. 38, no. 4, pp. 1450–1473, 2022.

[12] A. Güven, “Automatic detection of age-related macular
degeneration pathologies in retinal fundus images,” Computer
Methods in Biomechanics and Biomedical Engineering, vol. 16,
no. 4, pp. 425–434, 2013.

[13] A. M. Abdul-Rahman, T. Molteno, and A. C. B. Molteno,
“Fourier analysis of digital retinal images in estimation of cataract
severity,” Clinical & Experimental Ophthalmology, vol. 36, no. 7,
pp. 637–645, 2008.

[14] J. Zheng, L. Guo, L. Peng, J. Li, J. Yang, and Q. Liang, “Fundus
image based cataract classification,” in 2014 IEEE Interna-
tional Conference on Imaging Systems and Techniques, pp. 90–
94, IEEE, Santorini, Greece, 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
NIPS’12: Proceedings of the 25th International Conference on
Neural Information Processing Systems, pp. 1097–1105, Curran
Associates, Inc., Lake Tahoe Nevada, 2012.

[16] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical
image analysis,” Annual Review of Biomedical Engineering,
vol. 19, pp. 221–248, 2017.

[17] L. Cao, H. Li, Y. Zhang, L. Zhang, and L. Xu, “Hierarchical
method for cataract grading based on retinal images using
improved Haar wavelet,” Information Fusion, vol. 53, pp. 196–
208, 2020.

[18] M. Yang, J.-J. Yang, Q. Zhang, Y. Niu, and J. Li, “Classification
of retinal image for automatic cataract detection,” in 2013
IEEE 15th International Conference on e-Health Networking,
Applications & Services (Healthcom 2013), pp. 674–679, IEEE,
Lisbon, 2013.

[19] L. Guo, J.-J. Yang, L. Peng, J. Li, and Q. Liang, “A computer-
aided healthcare system for cataract classification and grading
based on fundus image analysis,” Computers in Industry,
vol. 69, pp. 72–80, 2015.

[20] J.-J. Yang, J. Li, R. Shen et al., “Exploiting ensemble learning
for automatic cataract detection and grading,”ComputerMethods
and Programs in Biomedicine, vol. 124, pp. 45–57, 2016.

[21] W. Fan, R. Shen, Q. Zhang, J.-J. Yang, and J. Li, “Principal
component analysis based cataract grading and classification,”
in 2015 17th International Conference on E-Health Network-
ing, Application & Services (HealthCom), pp. 459–462, IEEE,
Boston, MA, 2015.

[22] W. Song, Y. Cao, Z. Qiao, Q. Wang, and J.-J. Yang, “An
improved semi-supervised learning method on cataract fundus
image classification,” in 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), pp. 362–
367, IEEE, Milwaukee, WI, USA, 2019.

[23] M. D. Manchalwar and K. K. Warhade, “Histogram of
oriented gradient based automatic detection of eye diseases,”
in 2017 International Conference on Computing, Communica-
tion, Control and Automation (ICCUBEA), pp. 1–5, IEEE,
Pune, India, 2017.

[24] T. Pratap and P. Kokil, “Automatic cataract detection in
fundus retinal images using singular value decomposition,” in
2019 International Conference on Wireless Communications
Signal Processing and Networking (WiSPNET), pp. 373–377,
IEEE, Chennai, India, 2019.

[25] L. Zhang, J. Li, I. Zhang et al., “Automatic cataract detection
and grading using deep convolutional neural network,” in 2017
IEEE 14th International Conference on Networking, Sensing and
Control (ICNSC), pp. 60–65, IEEE, Calabria, Ital, 2017.

[26] J. Ran, K. Niu, Z. He, H. Zhang, and H. Song, “Cataract
detection and grading based on combination of deep
convolutional neural network and random forests,” in 2018
International Conference on Network Infrastructure and Digital
Content (IC-NIDC), pp. 155–159, IEEE, Guiyang, China, 2018.

[27] A. Imran, J. Li, Y. Pei, F. Akhtar, J.-J. Yang, and Q. Wang,
“Cataract detection and grading with retinal images using
SOM-RBF neural network,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 2626–2632, IEEE,
Xiamen, China, 2019.

[28] M. A. Syarifah, A. Bustamam, and P. P. Tampubolon, “Cataract
classification based on fundus image using an optimized
convolution neural network with lookahead optimizer,” AIP
Conference Proceedings, vol. 2296, Article ID 2020034, 2020.

[29] M. S. Junayed, M. B. Islam, A. Sadeghzadeh, and S. Rahman,
“CataractNet: an automated cataract detection system using
deep learning for fundus images,” IEEE Access, vol. 9, pp. 128799–
128808, 2021.

[30] T. Pratap and P. Kokil, “Computer-aided diagnosis of cataract
using deep transfer learning,” Biomedical Signal Processing
and Control, vol. 53, Article ID 101533, 2019.

[31] M. K. Hasan, T. Tanha, M. R. Amin et al., “Cataract disease
detection by using transfer learning-based intelligent methods,”
Computational andMathematical Methods in Medicine, vol. 2021,
Article ID 7666365, 11 pages, 2021.

[32] I. Weni, P. E. P. Utomo, B. F. Hutabarat, and M. Alfalah,
“Detection of cataract based on image features using convolutional
neural networks,” IJCCS (Indonesian Journal of Computing and
Cybernetics Systems), vol. 15, no. 1, pp. 75–86, 2021.

[33] N. Varma, S. Yadav, and J. K. P. S. Yadav, “Fundus image-
based automatic cataract detection and grading system,” AIP
Conference Proceedings, vol. 2724, no. 1, Article ID 030001,
2023.

[34] N. Varma, S. Yadav, and J. K. P. S. Yadav, “A reliable
automatic cataract detection using deep learning,” Interna-
tional Journal of System Assurance Engineering and Manage-
ment, vol. 14, pp. 1089–1102, 2023.

[35] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson,
“Robust vessel segmentation in fundus images,” International
Journal of Biomedical Imaging, vol. 2013, Article ID 154860,
11 pages, 2013.

[36] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating
blood vessels in retinal images by piecewise threshold probing
of a matched filter response,” IEEE Transaction on Medical
Imaging, vol. 19, no. 3, pp. 203–210, 2000.

[37] E. Decencière, X. Zhang, G. Cazuguel et al., “Feedback on a
publicly distributed image database: the messidor database,”
Image Analysis & Stereology, vol. 33, no. 3, pp. 231–234,
2014.

[38] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and
B. van Ginneken, “Ridge-based vessel segmentation in color
images of the retina,” IEEE Transactions on Medical Imaging,
vol. 23, no. 4, pp. 501–509, 2004.

[39] E. J. Carmona, M. Rincón, J. García-Feijoó, and
J. M. Martínez-de-la-Casa, “Identification of the optic nerve
head with genetic algorithms,”Artificial Intelligence inMedicine,
vol. 43, no. 3, pp. 243–259, 2008.

[40] P. Porwal, S. Pachade, R. Kamble et al., Indian Diabetic
Retinopathy Image Dataset (IDRID), IEEE Dataport, 2018.

[41] S. Dodge and L. Karam, “Understanding how image quality
affects deep neural networks,” in Eighth International Conference
on Quality of Multimedia Experience (QoMEX), pp. 1–6, IEEE,
Lisbon, Portugal, 2016.

16 Journal of Sensors



[42] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a
“Completely Blind” image quality analyzer,” IEEE Signal
Processing Letters, vol. 20, no. 3, pp. 209–212, 2013.

[43] N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya,
and S. S. Medasani, “Blind image quality evaluation using
perception based features,” in 2015 Twenty First National
Conference onCommunications (NCC), pp. 1–6, IEEE,Mumbai,
India, 2015.

[44] T. Pratap and P. Kokil, “Efficient network selection for
computer-aided cataract diagnosis under noisy environment,”
Computer Methods and Programs in Biomedicine, vol. 200,
Article ID 105927, 2021.

Journal of Sensors 17




