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Cardiopulmonary diseases, including cardiovascular disease (CVD) and chronic obstructive pulmonary disorder (COPD), are
prevalent in the elderly population. Early identification, long-term health monitoring, and health management of cardiopulmonary
disease are crucial for reversing organ damage and preventing further injury. However, most home health monitoring (HHM)
devices need to be paired with a specific smartphone application, which leads to the complexity of monitoring multiple health
indicators and hinders the feasibility of comprehensive multi-indicator analysis. Therefore, this paper designed a human
cardiopulmonary health monitoring system based on an intelligent gateway to reduce the dependence of HHM on smartphones,
achieve synchronous monitoring of multiple health indicators, and improve usability to better serve the elderly population. The
proposed system can simultaneously monitor electrocardiogram (ECG), pulmonary function, blood pressure, and blood oxygen
level (SpO2); process and analyze the data in real-time through the intelligent gateway’s edge computing power; and display the
cardiopulmonary health status in real-time. The intelligent gateway embedded a specially designed CNN-LSTM artificial
intelligence model on the STM32F429 microcontroller to realize real-time identification of ECG signals at the edge. The accuracy
of the pretrained CNN-LSTM model for ECG signal identification is 99.49%, and the model has good performance in terms of
complexity and RAM space occupied. According to the evaluation test, the system can achieve the purpose of monitoring human
cardiopulmonary health, has a wide range of application scenarios, and has great value in promotion and application.

1. Introduction

With the miniaturization of microcontroller, the application
of big data, cloud computing, artificial intelligence (AI) tech-
nology, and the upgrading and improvement of the Internet
of Things (IoT) in the health field, intelligent home health
monitoring has become a reality. Home health monitoring
(HHM) enables users tomonitor their vital signs, such as heart
rate (HR), blood pressure, and blood oxygen level (SpO2),
from home, get initial health risk assessment results, and share
this information electronically with their healthcare profes-
sionals. In recent years, many HHM systems have been
proposed [1–5] and are widely used in monitoring and man-
aging various diseases [6, 7], enabling people to monitor their

health status at home. HHM systems collect and evaluate
multiple health indicators of patients noninvasively and
continuously through wearable devices or sensors, which is
also the trend of the most promising monitoring method.

Our study presents a novel cardiopulmonary health moni-
toring system that utilizes an intelligent gateway to accurately
gather and analyze various health indicators, such as ECG, pul-
monary function, blood oxygen level, and blood pressure. The
edge computing capabilities of the intelligent gateway enable
real-time analysis of these health metrics, and an embedded
pretrained AI model facilitates real-time ECG signal classifica-
tion. With ECG monitoring requiring long-term continuous
data transmission, our system employs an improved CNN-
LSTM model in the gateway to preclassify ECG signals and
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minimize transmission load by downsampling normal ECG
signals. This not only reduces the data transmission load but
also enhances data the availability and the efficiency of data
analysis. Our proposed system enables effective human
cardiopulmonary health monitoring without the need for
smartphones and achieves real-time analysis of multiple health
indicators at the edge.

2. Related Work

2.1. Health Monitoring System. The development of the
health monitoring industry started early, and the origin of
human health monitoring system service can be traced back
to the 1970s. In 1967, doctors at Massachusetts General
Hospital affiliated with Harvard Medical School established
a remote system that could allow patients and doctors to
interact, which became the prototype of the remote monitor-
ing system [8]. Since then, numerous health monitoring
systems have been studied and proposed. For example, the
RTWPMS [1] monitors temperature, blood pressure, and
heart rate in real-time for elderly patients. The AMON sys-
tem [6] is a wearable medical monitoring device that collects
and evaluates vital signs through wrist sensors. Sardini et al.
[7] created a wearable belt for wireless health monitoring at
home. The PlaIMoS [9] is a wearable device that monitors
vital signs related to respiratory health, transmitting data
via Bluetooth to a gateway and then wirelessly to the cloud
for storage and analysis. Guan et al. [10] proposed a remote
health monitoring system for the elderly using smart
clothing, a home gateway, and a health care server. These
proposed systems typically transmit the collected data to
servers in remote data centers for analysis and storage.

With the support of artificial intelligence (AI) [11],
health monitoring systems are becoming increasingly intelli-
gent. Health data can be uploaded to remote servers and
analyzed by trained AI models, which provide doctors with
precise judgments on any abnormalities present in the data.
For example, Lin et al. [12] proposed an ECG monitoring
system that utilizes AI and IoT technologies, achieving a
98.22% accuracy rate through pretrained decision tree
models. Zhang et al. [13] used deep learning to identify toilet
users with an accuracy of 90% in their AI-toilet health
monitoring system. Queralta et al. [14] proposed a fall detec-
tion system with an LSTM recurrent neural network that
achieves a precision of over 90%. However, the AI models
in these systems are typically deployed on remote servers.
Therefore, the analysis of health data and early warning of
health abnormality often rely on the stability of data uploads
and the computing power of the remote server.

In health monitoring systems, monitoring multiple
health indicators often means a large amount of data to be
uploaded from wearable or portable devices to remote
servers, which require high data transmission bandwidth
and result in high energy consumption, particularly for
health indicators like ECG that need continuous measure-
ment. Therefore, instead of uploading all data to remote ser-
vices for processing and analysis, edge intelligence [15–17]
has attracted our attention. By using edge intelligence, data
can be processed at the gateway, offering a potential solution

that can save on communication costs, reduce latency,
enhance real-time analysis capabilities, and significantly
improve the quality of user service [18, 19]. Edge intelligence
is particularly important in health monitoring, where timely
and accurate diagnosis is essential.

2.2. Artificial Intelligence (AI) in Arrhythmia Classification.
In the application scenario of home health monitoring
(HHM), monitoring cardiopulmonary diseases is the most
common application. Cardiopulmonary diseases mainly
include cardiovascular diseases (CVDs) and chronic obstruc-
tive pulmonary disorder (COPD), which are chronic diseases
with a long course, complex aetiology, and severe health dam-
age. In the screening of CVDs, the ECG signal has become an
essential indicator for monitoring physiological status because
it can reflect the heart’s information. The noninvasive detec-
tion method identifies abnormal heartbeat types from ECG
signals and can help to diagnose whether the human body suf-
fers fromCVDs intuitively and effectively. Although CVDs are
the leading cause of death in humans, most CVDs are accom-
panied by arrhythmia, and 90% of cardiovascular diseases can
be prevented by long-termmonitoring of the ECG signals [12].

Arrhythmia classification algorithms are mainly realized
through machine learning and deep learning models. Tradi-
tional machine learning algorithms require extensive feature
engineering support to design and extract features based on
ECG knowledge from the medical field. Osowski et al. [20]
used two feature extraction methods of high-order statistics
(HOS) and Hermit function, which, respectively, combined
with SVM to generate two neural classifiers. Gao et al. [21]
used RF combined with 150 features for classification.
Myrovali et al. [22] proposed a random forest-based method
to identify PAF patients using ECG recordings during sinus
rhythm. The approach achieved a 93.45% accuracy, with
descriptive statistics of P-wave amplitudes, slopes, and
integrals being effective features for discerning PAF patients
from healthy individuals. Compared with traditional machine
learning, deep learning algorithms are more scalable and can
automatically extract data features, including hidden features
that cannot be found manually. Nguyen et al. [15] used deep
learning to detect AF from 8528 single-lead ECG recordings.
The researchers employed windowing and a two-layer
prediction model (using CNN and SVM) for accurate classifi-
cation, achieving an F1 score of 84.19% under fivefold cross-
validation. Jun et al. [16] proposed a deep 2D CNN method
for ECG arrhythmia classification, using ECG beats converted
to grayscale images as input. The classifier achieved high accu-
racy and sensitivity on the MIT-BIH arrhythmia database.
Ullah et al. [17] used Fourier transform to convert 1D ECG
to 2D and classified eight-class data in the BIH-MIT using a
2D-CNN model, achieving 99.11% accuracy. Wang et al.
[18] propose an end-to-end AF recognition method using a
DPRNN from single-lead ECG, which can effectively recog-
nize AF without human expertise and outperforms state-of-
the-art baseline methods. The model uses a mix-up operation
for data augmentation and can be generalized for other
medical sequence signals. Andersen et al. [19] proposed an
end-to-end model combining CNN and RNN to classify AF

2 Journal of Sensors



or NSR from RRI fragments. The model achieved high accu-
racy of 98.98% on three different databases. Yildirim [23]
improved the detection of abnormal ECG signals by combin-
ing wavelet transform and LSTM. Wavelet decomposition
enhanced the performance of the LSTMmodel, while the pro-
posed wavelet sequence achieved an impressive 99.39% accu-
racy for ECG classification. Cui and Xia [24] proposed a
hybrid CNN and BiLSTM algorithm for ECG abnormality
detection, utilizing CNN’s automatic feature extraction and
BiLSTM’s efficient time series data processing. The model
achieved high accuracy of 98.56% on the arrhythmia dataset
in the MIT-BIH database.

3. System Design

The human cardiopulmonary health monitoring system
comprises the human cardiopulmonary health monitoring
devices, the intelligent gateway, and the cardiopulmonary
health management cloud platform. The system structure
block diagram is shown in Figure 1.

As shown in Figure 1, four types of human cardiopulmo-
nary health monitoring devices are used in the proposed sys-
tem: a wearable ECG monitor, a portable spirometer, a
portable oximeter, and a wearable blood pressure monitor.
These devices are connected to the system via specially
opened Bluetooth communication protocols. These wear-
able/portable devices measure physiological signals and
indicators and transmit the collected data to a gateway via
Bluetooth. The gateway preprocesses the data and displays
the results on the LCD screen. The ECG classification model
embedded in the gateway can identify abnormal ECG signals
in real-time and provide an early warning to the user. Then,
the gateway transmits the data through WiFi to the cardio-
pulmonary health management cloud platform, which ana-
lyzes, manages, and stores the data while providing health
warnings to the users.

3.1. Collection of the Cardiopulmonary Health Indicators.
The proposed system uses wearable/portable health moni-
toring devices as the data collection end of the system to col-
lect cardiopulmonary health indicators, including long-term
electrocardiogram (ECG), forced vital capacity (FVC),
forced expiratory volume in 1 second (FEV1), FEV1/FVC,
peak expiratory flow (PEF), blood oxygen level (SpO2),
and blood pressure.

(1) Long-Term ECG. Long-term ECG refers to continu-
ous long-time (>24 hours) ECG measurement, dur-
ing which the user’s daily actions are not affected,
which increases the likelihood of detecting arrhyth-
mia, myocardial ischemia, and other conditions that
are difficult to be detected in rest ECG examination,
which plays an important role in the prediction and
detection of cardiovascular diseases. In this design,
long-term ECG is measured by the LIFEON® ECG
patch monitor, a small, lightweight wearable medical-
grade ECG recorder with a size of 104mm∗34mm∗

7:5mm and a weight of 30 g. In our design, the ECG
patch automatically establishes a Bluetooth connection

with our gateway when it is turned on, starts long-
term ECG monitoring, and sends ECG data to the
gateway in real-time upon receiving the instruction
from the gateway. The gateway calculates the heart
rate based on the ECG data, displays the ECG
waveform on the screen, and identifies abnormal
ECG signals through an embedded AI model to pro-
vide early warning to users

(2) Pulmonary Function Metrics. Pulmonary function
tests are a series of noninvasive breathing tests that
are the most direct way to assess how well the lung
is functioning. Pulmonary function tests are usually
employed for diagnosing and monitoring chronic
lung diseases in people undergoing lung or airway
symptoms such as cough, shortness of breath, chest
tightness, or difficulty breathing. Spirometry is the
most common type of pulmonary function test,
which measures how much air can be inhaled and
exhaled as well as how easily and fast air is exhaled.
In this design, pulmonary function metrics, includ-
ing forced vital capacity (FVC), forced expiratory
volume in 1 second (FEV1), and peak expiratory
flow (PEF), are measured with a portable spirometer
MIR Spirobank®. The portable spirometer automat-
ically establishes a Bluetooth connection with our
gateway when it is turned on and sends the gas flow
rate when the user exhales into the spirometer after
receiving the instruction from the gateway. The gate-
way calculates the results of FVC, FEV1, PEF, and
FEV1/FVC through gas flow rate and sampling rate
and displays two curves, including the flow-volume
curve and the volume-time curve

(3) Blood Oxygen Level. Blood oxygen level reflects the
concentration of oxygen in the blood. The higher
the oxygen content in the blood, the better the
metabolism of the person. Pulse oximetry is the most
common test used to measure blood oxygen level,
with normal levels ranging from 95% to 100%. Levels
below this range may indicate conditions such as
hypoventilation, lung disease, cardiovascular disease,
or carbon monoxide poisoning. In our system,
Etcomm® Pulse Oximeter is used as the blood oxy-
gen measuring device, which is small in size, easy
to carry, supports one-key measurement, and pro-
vides a real-time display of pulse and blood oxygen
level. The oximeter automatically establishes a Blue-
tooth connection with our gateway when turned on
and sends the SpO2 to the gateway in real-time after
receiving the instruction from the gateway

(4) Ambulatory Blood Pressure. 24-hour ambulatory
blood pressure (ABPM) levels are closely associated
with the risk of cardiovascular and cerebrovascular
diseases, and it also demonstrates the efficacy of anti-
hypertensive drugs within 24 hours [25]. Blood pres-
sure is divided into systolic blood pressure and
diastolic blood pressure. The normal value of systolic
blood pressure is 90 to 140mmHg, and diastolic
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blood pressure is 60 to 90mmHg. In our system, the
Jinyidi® wrist blood pressure watch was adopted to
measure ambulatory blood pressure. The wrist blood
pressure watch automatically establishes a Bluetooth
connection with our gateway when turned on and
sends blood pressure to the gateway in real-time
after receiving the instruction from the gateway

The cardiopulmonary health indicators monitored by
our system are shown in Table 1.

3.2. Hardware Structure of the Intelligent Gateway. A gate-
way is a network node used in wireless communications that
connects two networks with different transmission protocols
together. In our design, the gateway collects data from
different wearable devices via Bluetooth, analyzes the data
in real-time, transmits the data to the cloud platform via
WiFi, visualizes the data, and displays the results.

The hardware of the intelligent gateway consists of an
STM32F429I-Discovery single-chip microcomputer (MCU),
four WH-BLE106 BLE modules, and a USR-WIFI232-A2
WiFi module. The STM32F429I-Discovery MCU is a
high-performance MCU for embedded development.
STM32F429ZIT6 microcontroller featuring 180MHz CPU,
2M bytes of Flash memory, 256K bytes of RAM, and 64-
Mbit SDRAM. In addition to the above high performance,
there are four main reasons for choosing the MCU of this sys-
tem as shown in Figure 2. First, the STM32F429I-Discovery is
equipped with eight UART serial ports to support communi-
cation with multiple health monitoring devices, which fully
meets our system requirements. Second, the STM32F429I-
Discovery has a touchable LCD screen, which enables us to
provide a simplified graphical user interface (GUI) to facilitate
the elderly and to display the monitoring results. Third, the
MCU supports embedded AI models, which mean that the
gateway can perform large-scale computing locally, achieve

edge intelligence of Internet of Thing (IoT) devices, and
reduce the cloud load. Finally, theMCU also supports portable
real-time operating system (RTOS) which is very important
for the development of embedded systems with real-time
requirements [26].

Four Bluetooth modules and one WiFi module are con-
nected to the MCU through five UART serial ports, respec-
tively, which the MCU controls for data transmission, as
shown in Figure 3. The Bluetooth module WH-BLE106
designed by Wenheng Technology® is a small-size, low-
power, Bluetooth 5.2 module with a high-performance, on-
chip antenna. It supports up to 1Mbps data rate and up to
a 170-meter wireless transmission range, fully meeting our
requirements for data transmission. The WH-BLE106 also
supports four working modes: master mode, slave mode,
broadcast mode, and master-slave all-in-one mode, and
can be configured through AT instructions. It is a simple,
reliable, and ideal solution for IoT applications. The WiFi
module USR-WIFI232-A2 is a small, cost-effective, high-
performance stand-alone WiFi module that supports the
IEEE 802.11 b/g/n standards, enabling simple, secure, and
reliable wireless connectivity. The WiFi module has four
working modes: transparent transmission mode, serial port
command mode, GPIO mode, and HTTPD client mode,
and supports two configuration modes: AT command and
web page setting. Since both the WiFi module and Bluetooth
module come from the same manufacturer, the instructions
of different modules are similar, providing convenience for
our firmware development.

3.3. Firmware Design of the Intelligent Gateway. Firmware is
a piece of software code written into the nonvolatile mem-
ory, such as ROM, EPROM, or flash memory, of the MCU
that controls the device’s hardware. In the design of the
intelligent gateway, the STM32CubeMX visualization tool
is used, which has the functions of initializing code, porting
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Figure 1: Block diagram of the system structure.
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the AI model, porting RTOS, and building the MDK project.
The FreeRTOS [27] real-time operating system is ported
into the MCU and used for image output, data receiving,
processing, uploading, and other time-sensitive tasks. The
programming idea is that the MCU sends control instruc-
tions to the wearable/portable health monitoring devices
according to the status change of the operation button on
the touchable LCD screen of the gateway, as shown in
Figure 4. After receiving data from devices, the gateway pro-

cesses it, displays it on the screen, and packages the data to
upload to the cloud platform. The flowchart of the pro-
grammed firmware is shown in Figure 5.

Data transmission is the core function of the gateway.
The communication technology of the four wearable/porta-
ble health monitoring devices used in this system is Blue-
tooth BLE technology. In the system, the BLE module
works in Bluetooth master mode, while the wearable/porta-
ble health monitoring devices work in Bluetooth slave mode.
Communication between master and slave devices is realized
by adding the MAC address of the slave device bound to the
master device and modifying the UUID of the master device.
To provide a sufficient data rate for wireless transmission,
the baud rate of the serial port of the BLE module is set to
115Kbps. Similar to the BLE module, the WiFi module is
the medium connecting the gateway and the cloud platform
wirelessly when working in station mode. Moreover, the
baud rate of the serial port of the WiFi module is set to
115Kbps to provide a sufficient data rate for wireless trans-
mission. The BLE and WiFi module configurations are done
by putting these modules into command mode and sending
ASCII commands through serial connections. The settings
of the serial ports are shown in Table 2.

The gateway processes the data collected by the health
monitoring equipment, retains only the valid data, packages
the data, and adds various identification codes matching
with the health management cloud platform. The format of
data uploaded to the cloud platform is shown in Table 3.

4. Intelligence of the Gateway

In our cardiopulmonary health monitoring system, intelli-
gent gateway refers to the gateway with an embedded deep
learning model and edge computing capability, which can
realize real-time data processing and intelligent analysis
locally. This technique aims to meet the efficiency require-
ments of health data analysis and reduce the uploading of
invalid data to ease the load on the transmission and the
cloud. Among the four types of health indicators of ECG,
pulmonary function metrics, blood oxygen level, and blood
pressure, long-term ECG requires continuous and high-bit-
rate data transmission support, while other indicators are
measured at intervals. Therefore, we embedded a specially
designed AI model to classify the ECG signal into five
arrhythmia classes (normal beat, left bundle branch block
beat, right bundle branch block beat, premature ventricular

Table 1: Summary of the cardiopulmonary health indicators.

Health indicators Health monitoring device Measurement type Measurement range Data transmission mode

ECG LIFEON® ECG patch monitor Continuous 20mV Bluetooth 4.1

FVC
FEV1
FEV1/FVC
PEF

Spirobank® smart spirometer Regular ±16 L/s Bluetooth 4.0

Blood oxygen Etcomm® pulse oximeter Regular 0-99% Bluetooth 4.0

Blood pressure
Jinyidi® wrist blood
pressure watch

Regular interval
0 kPa-39.9 kPa

(0mmHg-299mmHg)
Bluetooth 4.0

One
touchable

LCD screen

Multiple

UARTs

RTOS

Embedded
AI model

Figure 2: Advantages of the STM32F429I-Discovery.

Figure 3: The hardware of the intelligent gateway.
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Figure 4: The main control interface of the gateway.
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contraction, and other abnormal beats) at the gateway so
that our gateway can provide ECG abnormal warning in
real-time. At the same time, for ECG data that is classified
as normal (normal ECG accounts for more than 90% of
the total ECG data) by the embedded AI model, the gateway
reduces the data rate from 2kbit/s to 1 kbit/s through down-
sampling, thus reducing the load on the WiFi module and
cloud platform.

4.1. CNN-LSTMModel. In this work, we aimed to embed the
trained model into the MCU to work in real-time in the
home environment so we need to consider not only the
accuracy of the model but also the size of the model in the
MCU and the effect of the model in practical application.
In our system, since the ECG is a 1D time series signal in
which adjacent ECG waveforms have a certain correlation,
we directly use 1D-CNN to process 1D ECG data and com-
bine the 1D-CNN with the LSTM to design a CNN-LSTM
model for the ECG arrhythmia classification. The CNN-
LSTM network structure is shown in Figure 6.

The designed CNN-LSTM comprises two parts: the first
part is the CNN section and the second part is the LSTM
layers. The input is fed directly into a convolutional layer,
followed by three consecutive pooling layers and convolu-
tional layers. The convolutional layers extract temporal-
dependent features from the signal, and the pooling layer
reduces the dimension of the output to half the input, reduc-
ing the complexity. The first convolutional layer has a kernel
size of ksize,1 = 5 and output nfilters,1 = 4 features. The second
convolutional layer has a kernel size of ksize,2 = 7 and output
nfilters,2 = 16 features. The third convolutional layer has a
kernel size of ksize,3 = 10 and output nfilters,3 = 32 features.
The fourth convolutional layer has a kernel size of ksize,4 = 12
and output nfilters,4 = 64 features. The three pooling layers per-
form the max-pooling operation using a kernel size of psize = 3
with strides of two. The ECG signals become a characteristic
sequence of 13∗64 after processing by the convolution layers
and pooling layers of the CNN part. The output from the
CNN section is fed into a bidirectional LSTM layer with n
units of 10 hidden units. In the LSTM, the information of
these features is stretched to 64 pieces and passes through a
dropout layer, which can reduce invalid features, ensure the
recognition speed of ECG signals, and prevent overfitting.
The features processed by the LSTM section pass through 3
dense layers, which can perform nonlinear processing on the
previously extracted features and extract the correlation
between these features. Finally, the feature information of

the output 5∗1 is sent to the Softmax layer to classify the data
for 5.

4.2. Materials and Methods

4.2.1. Datasets.We used data from the MIT-BIH arrhythmia
database [28] as the data source to train the proposed CNN-
LSTM model for ECG arrhythmia classification. The data-
base contains 48 ambulatory ECG recordings collected from
47 patients at a sampling rate of 360Hz. Each recording con-
tains a beat annotation file that shows the R-wave position
and the label of the beat type. In our work, we only selected
ECG records from lead II, and we segmented the ECG signal
according to the position of the R-wave, taking 100 points
before the R point and 199 points after the R point to obtain
a relatively complete ECG beat signal. The MIT-BIH
arrhythmia database labels ECG beats as more than a dozen
types, we selected the top ten categories of data on the quan-
tity of these ECG beats, the number of beats under each type
is imbalanced: 71% of ECG beats are normal beat, 8% of ECG
beats are left bundle branch block beat, 7% of ECG beats are
right bundle branch block beat, 7% of ECG beats are prema-
ture ventricular contraction, 3% of ECG beats are paced beat,
2% of ECG beats are atrial premature beat, 2% of ECG beats
are fusion of ventricular and normal beat, and almost 0% of
ECG beats are ventricular flutter wave, fusion of paced and
normal beat, and nodal (junctional) escape beat.

Since an imbalanced dataset will cause the AI model
biased towards the majority class and underperform in pre-
dicting minority classes, we reduced the number of normal
beats and grouped the original 10 classes of heartbeats into
five bigger classes, namely, normal beat (NOR), left bundle
branch block beat (LBB), right bundle branch block beat
(RBB), premature ventricular contraction (PVC), and others
(O). The class of others contains paced beat, atrial premature
beat, fusion of ventricular and normal beat, ventricular flut-
ter wave, fusion of paced and normal beat, and junctional
escape beat. The number of beats under each class is shown
in Table 4. In addition, we downsampled the ECG waveform
from 300 points to 100 points to match the sampling rate of
the LIFEON® ECG Patch Monitor that we use in the cardio-
pulmonary health monitoring system.

4.2.2. Experimental Setup. The proposed CNN-LSTM model
was deployed in Python with TensorFlow [29]. We divided
the dataset into two parts: the training set and the test set
in a 4 to 1 ratio; 20% of the training data is randomly
selected as the validation set. The training set is used to train
the model on an NVIDIA GPU, and then the performance
of the model in the gateway is evaluated by the test set after
the pretrained model is ported to the MCU of the gateway.

We chose support vector machine (SVM) and random
forest in traditional machine learning, convolutional neural
networks (CNN) in deep learning, and our improved
CNN-LSTM for this system for comparative experiments.
In the random forest algorithm, the number of decision trees
is 1000. The SVM selects the radial basis function and the
gamma parameter set to 1. In both CNN and CNN-LSTM,
the number of training is set to 100, and the ReLU activation

Table 2: Serial port setting.

Setting Value

Baud rate 115200

Data rate 8 bits

Parity None

Stop bits 1

Flow control None
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function is selected because it is convenient for hardware
implementation.

4.2.3. Evaluation Parameters. The evaluation parameters
used in this experiment include accuracy, precision, recall,
and F1-score.

Accuracy is a crucial metric for neural network models,
which measures the degree of classification accuracy on a
testing dataset. During the training process, we hope that
the accuracy of the model can continuously improve, indi-
cating that the model can better recognize and classify data.
The importance of accuracy lies in its direct impact on the
reliability and practicality of the model. If the accuracy of
the model is low, it cannot effectively classify and predict

input data, thus losing its application value. On the other
hand, if the accuracy of the model is high, it can be used
to solve many real-world problems, such as image recogni-
tion, speech recognition, and natural language processing.
Accuracy is defined as follows:

Accuary =
TP + TN

TP + FP + FN + TN
ð1Þ

TP means true positive, TN means true negative, FN
means false negative, and FP means false positive.

Precision is crucial for neural network models as it mea-
sures the accuracy of the model’s predictions. A high preci-
sion score means that the model has a low false positive
rate, indicating that the predicted results are reliable and
trustworthy. In many real-world applications, such as medi-
cal diagnosis or financial forecasting, even small errors can
have significant consequences. Therefore, achieving high
precision can be critical for ensuring the effectiveness and
safety of a neural network model in these contexts. Precision
is defined as follows:

Precision =
TP

TP + FP
ð2Þ

Recall is an important metric for evaluating the perfor-
mance of a neural network model. It measures the percent-
age of relevant instances that the model can correctly
identify from the total number of relevant instances in the
dataset. In other words, recall measures how well the model
is able to detect all actual positives. Recall is particularly
important in applications where missing a positive instance
can have serious consequences, such as detecting fraud or
diagnosing a disease. In these scenarios, a high recall value
ensures that the model is able to detect the majority of

Table 3: The format of data uploaded to the cloud platform.

Data type Lead code Data type code Device code Check bit

ECG

0xAA 0xEE

0x01 0x80 0x01

0xAE
Pulmonary function metrics 0x02 0x80 0x01

Blood oxygen 0x03 0x80 0x01

Blood pressure 0x04 0x80 0x01

LSTM

max
pool

max
pool

max
pool

100⁎1 100⁎4 50⁎16 25⁎32 13⁎64

conv1d conv1d conv1d conv1d

Dropout

CNN

Softmax

Prediction

N⁎1 N⁎1

Dense

64⁎1

Figure 6: The architecture of the proposed CNN-LSTM model.

Table 4: The number of beats under each class.

Arrhythmia classes Number of beats Proportion

Normal beat (NOR) 8000 20.9%

Left bundle branch block beat 8075 21.1%

Right bundle branch block beat 7259 18.9%

Premature ventricular contraction 7130 18.6%

Others (O) 7883 20.6%

Table 5: Comparison of the prediction results for the different
models.

Methods Accuracy/% Precision Recall F1-score

Random Forest 99.15 0.98 0.98 0.98

SVM 99.17 0.98 0.98 0.98

CNN 99.50 0.99 0.99 0.99

CNN-LSTM 99.49 0.99 0.99 0.99
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positive instances, reducing the chances of false negatives
and increasing the accuracy of the model’s predictions.
Recall is defined as follows:

Recall =
TP

TP + FN
ð3Þ

The F1-score is a critical metric for evaluating the effec-
tiveness of a neural network model. It combines both preci-
sion and recall into a single score, providing a balanced
assessment of the model’s performance. A high F1-score
suggests that the model achieves both high precision and
high recall, indicating that it can effectively identify all rele-
vant instances while minimizing false positives and false

negatives. This is particularly important in applications
where there is a trade-off between precision and recall, such
as medical diagnosis or spam detection. By optimizing for
the highest F1-score, neural network models can strike a bal-
ance between minimizing false positives and false negatives,
resulting in more accurate and reliable predictions. There-
fore, F1-score is an important metric to consider when
evaluating the overall effectiveness of a neural network
model. The F1-score is defined as follows:

F1 =
2 ∗ precision ∗ recall
precision + recall

ð4Þ
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Figure 7: The accuracy curve of CNN (a) and the proposed CNN-LSTM (b).
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4.3. Experimental Results. The comparison of the results of
the four models is shown in Table 5. Although machine
learning algorithms such as random forest and SVM have
a good performance in ECG classification, they need to
extract the features of ECG signals before classification,
which requires the computing power and computing time
of the gateway, resulting in increased gateway load and
decreased real-time performance. Deep learning algorithms,
by contrast, are better suited to applications on the gateway.
The accuracy curve and the loss curve of the CNN and the
CNN-LSTM are shown in Figures 7 and 8. It can be seen
that the stability of the CNN-LSTM is much higher than that
of the CNN in the process of training and validation.

Since the pretrained classificationmodel is designed for our
gateway, the complexity of the model running and the space it
occupies in the MCU also need to be considered. Through the
evaluation of the CNN model and the CNN-LSTM model in
STM32CubeMX, the complexity and space of these two
models running in the MCU are shown in Figure 9. According
to the results, the complexity of the CNN-LSTM model is
514326 MACC, which is much smaller than the complexity
of CNN model 1245116 MACC. Moreover, the flash occupa-
tion of the CNN-LSTM model is smaller than that of the
CNN model. Therefore, we apply the proposed CNN-LSTM
model in the gateway for ECG signal classification considering
the high stability and low complexity of the CNN-LSTM.
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Figure 8: The loss curve of CNN (a) and the proposed CNN-LSTM (b).
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4.4. Implementation in the Gateway. In order to run the pre-
trained CNN-LSTM model in the MCU, we use X-CUBE-AI
to generate optimized AI code and integrate it into our
application. X-CUBE-AI is a STM32Cube expansion pack-
age that automatically converts pretrained AI algorithms
into C code that can be run in the MCU. After integrating
the pretrained CNN-LSTM model into the MCU, the gate-

way realizes the intellectualization. With the embedded
CNN-LSTM model, our intelligent gateway is capable of
processing and classifying the ECG data in real-time.
Figure 10 shows the processing flow of ECG data after the
gateway receives the ECG signal.

As shown in Figure 11, the gateway preprocesses incom-
ing raw ECG signals include wavelet denoising, R peak

Compression:

Validation inputs:

Validation outputs:

Complexity: 1245116 MACC
Flash occupation: 327.61 KiB (2.00 MiB present)
RAM: 5.29 KiB (192.00 KiB present)
Achieved compression: 2.12
Analysis status: done

8

Random numbers

None

(a)

Complexity: 514326 MACC
Flash occupation: 262.16 KiB (2.00 MiB present)
RAM: 6.91 KiB (192.00 KiB present)
Achieved compression: 1.04
Analysis status: done

Compression:

Validation inputs:

Validation outputs:

8

Random numbers

None

(b)

Figure 9: The comparison of the CNN (a) and the CNN-LSTM (b) on MCU.
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Send compressed ECG data
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number of
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Classification of
ECG slice data

Heart rate
calculation

Figure 10: ECG data processing flow in the intelligent gateway.
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detection, ECG beat signal slice, and heart rate calculation.
The gateway screen displays the waveform, the heart rate,
and a number of abnormal ECGs detected by the AI model.
Every 5 seconds, the gateway sends ECG data, including
downsampled normal ECG data and all abnormal ECG data
to the cloud platform. Since incoming ECG signals are often

accompanied by different types of noise, such as power line
interference, muscle noise, andmotion artefacts, it is necessary
to denoise the ECG signals before formal analysis. The selec-
tion of a suitable wavelet is crucial for achieving optimal
denoising performance in signal processing using the discrete
wavelet transform (DWT). Commonly used wavelets include
the Haar wavelet, Daubechies wavelet, and Symlet wavelet.
In our previous work [30], we studied and compared the per-
formance of different noise reduction methods and found that
the db8 wavelet is very suitable for noise reduction of motion
artefact in ECG signals. So in our intelligent gateway, we use
db8 wavelet to decompose the noisy ECG signal into six levels,
set the 1st detail coefficients and the 6th approximation coef-
ficient to zero, and reconstruct the ECG signal with the rest
coefficients to obtain the denoised ECG signal. The perfor-
mance of the implemented wavelet denoising on noisy ECG
data is demonstrated in Figure 11.

After denoising, the intelligent gateway uses the classical
Pan-Tompkins [31] algorithm to detect the position of the R
peak in the ECG waveform. The Pan-Tompkins algorithm
detects QRS complexes based on digital analyses of slope,
amplitude, and width. The performance of the Pan-
Tompkins algorithm implemented in the intelligent gateway

0

0.0

0.5

1.0

1.5

−0.5

−3

−2

−1

0

1

2

250 500 750 1000

Denoised ECG

Original ECG

1250 1500 1750

0 250 500 750 1000 1250 1500 1750

Figure 11: The performance of the implemented wavelet denoising on noisy ECG data.
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Figure 12: The performance of the implemented Pan-Tompkins algorithm on R peak detection.
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Figure 13: Serial port feedback of ECG signal classification results.
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is demonstrated in Figure 12. According to the position of
the R peak, we then slice the ECG signal by cutting out 33
points before the R peak and 67 points after the R peak
(including the R peak point). Finally, the sliced ECG beat
signal is ingested into the embedded CNN-LSTM model to
classify the ECG beat signal into five classes.

To evaluate the performance of the pretrained CNN-
LSTM model after embedding it into the MCU, we directly
feed the preserved test set into the gateway through the UART
port. The results of the ECG classification model are output by
the serial port assistant, as shown in Figure 13. The out_data
array stores the probability that the ECG signal is classified
into each category in order. The detailed performance of the
embedded ECG classification model is presented using confu-
sion matrices for all five classes, as shown in Figure 14.

5. System Test

To test the intelligent gateway based cardiopulmonary
health monitoring system, we performed a 24-hour home
health monitoring trial, which included 24-hour long-term
ECG monitoring, interval pulmonary function tests, interval
blood oxygen measurements, and 24-hour ambulatory blood
pressure monitoring.

The cardiopulmonary health monitoring system is
designed to facilitate the use of the elderly population, so
the intelligent gateway is equipped with a touchable LCD
screen that provides a simplified graphical user interface to
display monitoring results and give messages on abnormal
results. To start the ECG monitoring, the user clicks the
“ECG” button on the main control interface, and the intelli-
gent gateway starts to receive ECG data from the ECG patch
monitor and conduct real-time analysis and upload of the
ECG data. The screen displays the ECG waveform, heart
rate, and the number of abnormal ECGs in real-time, as
demonstrated in Figure 15.

Since our system supports simultaneous measurement of
multiple health indicators, users can schedule pulmonary
function tests as needed. To start the pulmonary function
test, the user only needs to go to the main control interface,
click the “Pulmonary Function” button, and then start the
test using the portable spirometer. The intelligent gateway
receives data, processes and displays the results on the
screen, and uploads the pulmonary function data to the
cloud platform. The pulmonary function test results, includ-
ing the flow-volume curve, volume-time curve, FVC, FEV1,
FEV1/FVC, and PEF indicators, are displayed on the screen,
as shown in Figure 16.

To perform a blood oxygen level measurement, the user
only needs to click the “Blood Oxygen” button on the main
control interface and measure the blood oxygen level using
the portable pulse oximeter. The intelligent gateway acquires
data, presents the results, and keeps track of the number of
abnormal blood oxygen levels detected based on the established
range of 95-100% for normal blood oxygen saturation. Addi-
tionally, it uploads the gathered data to the cloud platform.
The display of the blood oxygen level is shown in Figure 17;
the interface shows the results of each measurement.
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Figure 15: The ECG display interface on the intelligent gateway.
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In our system, the wrist blood pressure monitor supports
ambulatory blood pressure measurement, which automati-
cally measures the blood pressure every half hour. The user
only needs to click the “Blood Pressure” button on the main
control interface, and the gateway starts receiving data from
the blood pressure watch. The intelligent gateway exhibits
the measurements obtained and tracks the count of abnor-
mal blood pressure levels based on the standard range of sys-
tolic blood pressure between 90 and 140mmHg and diastolic
blood pressure between 60 and 90mmHg. It also uploads the
collected data onto the cloud platform. The blood pressure
display interface is shown in Figure 18.

6. Summary

In this paper, an intelligent gateway based human cardiopul-
monary health monitoring system is designed. This system

realizes synchronous monitoring of multiple health indicators,
such as long-term ECG, pulmonary function metrics, blood
oxygen level, and ambulatory blood pressure. The designed
intelligent gateway is based on the MCU STM32F429I, with
four built-in Bluetooth modules for data collection, one WiFi
module for data transmission, and one touchable screen for
user operation and display of monitoring results. The intelli-
gent gateway embedded a specially trained CNN-LSTMmodel
to realize real-time ECG signal classification at the edge. The
accuracy of the pretrained CNN-LSTM model for ECG signal
classification is 99.49%, and the model has good performance
in terms of complexity and RAM space occupied. According
to the evaluation test, the system has achieved the expected
design goal.

The proposed human cardiopulmonary health monitor-
ing system has four advantages:

(1) Data Accuracy Assurance. Our system establishes a
partnership with mature technology enterprises and adopts
widely recognized medical-grade health monitoring equip-
ment as the data acquisition equipment of this design

(2) Improved Usability. Our system is independent of
smartphones and complex applications, making it easy for
the elderly population to use

(3) Improved Timeliness of Data Analysis. The intelligent
gateway realizes real-time analysis through edge computing
and an embedded AI model, ensuring timely warning of
health abnormalities

(4) Support Comprehensive Data Analysis. Our system
implements multi-indicator data collection and upload

Users can specify monitoring plans based on their health
conditions, and the cloud platform can usemulti-indicator data
for comprehensive health management of users. In summary,
our proposed intelligent gateway based cardiopulmonary
health monitoring system has a wide range of application sce-
narios and great value in promotion and application. In our
future work, we will use our system to conduct comprehensive
monitoring and analysis of health indicators and study the pre-
diction and management of cardiovascular and chronic respi-
ratory diseases using comprehensive health indicators.

Data Availability

The data presented in this study is openly available in
https://physionet.org/content/mitdb/1.0.0/, accessed on 24
Feb. 2005.

Figure 16: The pulmonary function display interface on the intelligent gateway.

Figure 17: The blood oxygen level display interface on the
intelligent gateway.

Figure 18: The blood pressure display interface on the gateway.
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