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In the domain of modern deep learning and classification techniques, the convolutional neural network (CNN) stands out as a
highly successful and preferred method for image classification in artificial intelligence. Especially in the medical field, CNN has
proven to be an ideal approach for analyzing medical data and accurately identifying diseases. Over the recent years, CNN has
demonstrated significant potential and success in various computer vision tasks, with medical image classification being one of the
prominent applications. In our study, we introduce a novel custom CNNmodel called MedvCNN, designed for classifying different
types of classes. We conduct experiments with various image sizes to explore their versatility. In addition, long short-term memory
(LSTM), a type of recurrent neural network (RNN), is incorporated into our approach. LSTM is specifically tailored to handle
sequential data, making it ideal for time series analysis. However, its capabilities extend beyond time series data and are effectively
applied to various sequential data types, including sequential vectors derived from image data. One of the key advantages of
utilizing LSTM for image classification is its ability to effectively memorize and capture important features in the image data. This
feature is particularly advantageous in medical image processing, where precise and accurate identification of key attributes is
crucial for successful diagnosis and analysis. Furthermore, our experiments reveal that the hybrid custom LSTM model,
MedvLSTM, a RNN algorithm, surpasses other methods in the domain of medical image classification. Our study places significant
emphasis on attaining robust classification performance for medical image data through a sophisticated, parameter free approach,
complemented by an ablation study, and comprehensive statistical analysis. This comprehensive analysis and evaluation allow us to
gain a deeper understanding of the model’s effectiveness and its potential impact in the field of medical image analysis. We
compare these two approaches to a baseline CNN architecture, aiming to streamline the classification process, reduce time
consumption, and improve cost efficiency. Additionally, we present a real-time web-based AutoML framework along with a
practical demonstration. Ultimately, our research provides a thorough investigation of the current state-of-the-art in medical
image analysis accuracy, focusing on the utilization of neural networks and LSTM.

1. Introduction

Medical data are one of the most sensitive and vital in our
modern automation era. The classification of medical images
[1] and tabular data [2] is one of the most challenging tasks
with regard to accuracy, model performance analysis, and
model selection. These research categories are rapidly
advancing in the domain of deep learning and AutoML.

Furthermore, user-friendly and easy access to machine learn-
ing trends have also highlighted this sector. In this era, neural
networks have proven to be very useful in the field of image
analysis due to their ability to extract important features
while disregarding irrelevant ones. This has led to significant
improvements in accuracy and performance in the medical
sector and data analysis [3]. To address the image classifica-
tion and analysis tasks, many deep learning methods have
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been applied, including decision trees [4], hidden Markov
models [5], and deep neural networks (DNN), which are
very popular. However, deep learning approaches have
proven to be impactful in various applications, including
natural language processing [6] and object recognition [7].
On the other hand, model evaluation is crucial for justifying
research experiment results with mathematical calculations
and selecting the best-fitted model for any experiment based
on mathematical observations [8]. There are different model
selection approaches that use various algorithms to optimize
models, but these consecutive evaluation processes can be
inconvenient and have some issues during the training and
testing phases.

In 2019, Yadav and Jadhav [9] conducted a study focusing
on medical image data classification using various CNN archi-
tectures, including VGG-16 and Inception-V3 models. Their
research specifically targeted chest X-ray datasets. They applied
transfer learning, utilizing pretrained models for their study. In
the paper by Zhou et al. [10], they propose an intelligent rec-
ommendation system based on patient–physician-generated
data using a CNN–RNN integrated framework. In this study,
a pretrained CNN model is utilized and fine-tuned using aug-
mented data for brain tumor grade classification [11]. This
approach is to achieve desired performance in medical image
classification even with a less strongly trained CNN structure.
They accomplish this by incorporating an efficient long short-
term memory (LSTM) structure at the end of the CNN. LSTM
helps capture temporal dependencies in sequential data and
enhances the overall classification performance [12]. In recent
research, many studies have employed medical image data for
classification tasks, utilizing pretrained CNN architectures, and
fine-tuning approaches. However, there appears to be limited
emphasis on addressing issues related to time consumption
and cost efficiency in these studies. To prevent such issues,
special methods focusing only on evaluation are used. How-
ever, model selection needs customization depending on the
settings, evaluation approach, and environment. In our experi-
ments, we applied different custom settings for different data-
sets due to their diversity, wide acceptance, and availability,
which are common characteristics in medical data applications
and classification approaches.

This paper aims to demonstrate the impact of deep learn-
ing model architectures and the autocustom CNN technique
on the accuracy of medical data, which has previously been
unexplored. In this study, we work with two types of deep
learning models, LSTM [13] and convolutional neural net-
work (ConvNet) [14], which belong to the class of artificial
neural networks (ANN). Our experiments show significant
improvement in recognition accuracy.

The main focus of our research is as follows:

(1) Developing a low time-consuming and less parame-
ter image classification CNN and LSTM architecture
with a particular emphasis on medical image.

(2) Developing a framework designed to surpass bench-
mark classification methods by utilizing fewer
parameters and conducting operations in signifi-
cantly less time.

(3) Proposing a programing code-free framework that
can be used by anyone without any programing
knowledge.

In detail, we have discussed this in our further section below.
Introduction (Section 1): This section briefly introduces the
research topic and its significance. Literature Review (Section
2): A comprehensive review of the existing literature on the topic
to establish the current state of knowledge and identify research
gaps. Proposed Method (Section 3): Explanation and presenta-
tion of the methodology or approach proposed by the study.
Background of the Main Method’s Algorithm (Section 4):
Detailed information about the algorithms or methods used
in the proposed approach, along with their theoretical back-
ground. Materials and Methods (Section 5): This section
describes the materials used in the study (such as datasets, soft-
ware, and tools) and outlines the specific methods employed.
Experiments and Results (Section 6): Presentation of the experi-
ments conducted to validate the proposed method and the
results obtained from these experiments. New Framework of
AutoML (Section 7): An overview of the new framework devel-
oped for AutoML and its key features. Discussion (Section 8):
Further discussion on the implications of the results and how
they relate to the existing literature. Conclusions (Section 9): A
summary of the findings, contributions, and possible future
directions for research.

2. Overview of Medical Image
Classification Work

Medical data recognition has become a prominent research
area in recent years with the rise of deep learning methods.
These models have shown significant potential in accurately
classifying medical data by leveraging complex architectures
and advanced algorithms. In this section, we discuss the
application of CNN and LSTM networks for medical image
classification. Additionally, we explore the importance of
statistical evaluation and proper review in developing sensi-
tive and complex models for medical data recognition. We
have conducted a review of recent research focused on med-
ical image classification, with an emphasis on advanced tech-
niques for image classification.

Mateen et al. [15] utilized a widely recognized open-source
dataset to investigate the effectiveness of a DNN for detecting
diabetic retinopathy in medical images. Their study proposed
using theVGG19DNNarchitecture, whichwas found to achieve
higher accuracy than other comparablemodels [15]. Li et al. [16]
presented a method for classifying remote sensing images using
CNN, stacked autoencoders (SAE), and deep belief networks
(DBN). Their approach was evaluated on benchmark datasets
for hyperspectral image (HSI) classification [16]. An investiga-
tion was conducted to compare the efficacy of the recommended
LSTM hyperparameter-based time series forecasting technique
against other statistical and computational intelligence method-
ologies. The study found that the LSTM approach outperformed
other tested methods, including ARIMA, ETS, ANN, KNN,
RNN, and support vector machine (SVM), in terms of outcome
measures [17]. Zhao and Du [18] conducted a comparative
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study of deep learning techniques for image classification using
two distinct datasets andmultiple classificationmethods, such as
RAW, principal component analysis (PCA), LDA, SSFC, and
LFDA. The results showed that the SSFC method achieved the
highest accuracy among all the techniques examined [18]. Gho-
linejad et al. [19] proposed a K-fold cross-validation (KFCV)-
based particle swarm optimization (PSO) model that efficiently
operates with a smaller Galactic Co-Prosperity Sphere (GCPS).
The proposed approach was tested on four high-resolution sat-
ellite images, and the results demonstrated that PSO–KFCVwas
robust against initial values and dispersion of GCP. Additionally,
the proposed method outperformed other state-of-the art meta-
heuristic algorithms [19]. Nguyen et al. [20] suggested a feature-
based and attribute-based (FEAT) approach for human activity
recognition (HAR) using the MHealth, Daily and Sport, and
RealDisp datasets. The FEAT system was developed by integrat-
ing SVM, KNN, and random forest (RF) classifiers, which were
trained to recognize new activities with only a few samples from
the target activity. The study found that the RF classifier with
FEAT outperformed earlier techniques in identifying new activi-
ties [20].

In their study, Mehmood et al. [21] conducted an analy-
sis of HAR in the ambulation, transportation, and exercise/
fitness categories of MHealth data. They utilized several mul-
ticlassification techniques to test their results and evaluated
them using seven supervised classifier models. The results of
their study indicated that the fuzzy rule model achieved the
highest accuracy score at 99.79%, followed by RF at 99.7%,
multilayer perceptron neural network at 98.96%, decision
tree at 98.58%, K-NN at 95.95%, SVM at 89.1%, and Naive
Bayes at 53.18% [21].

Zdravevski et al. [22] proposed five time-series strategies
to improve classifier model performance and reduce the

operating costs of ambient assisted living. The authors
employed five classification methods, including K-NN, logis-
tic regression, Naive Bayes, RF, extremely randomized trees,
and SVM, to evaluate the datasets from DaLiAc, MHEALTH,
FSP, SBHAR, and SBHARPT. TheMHEALTH dataset, which
provided 3,232 features after image extraction using multiple
methods, achieved the highest accuracy score at 99.8% [22]. In
their study, Subasi et al. [23] developed an intelligent m-
healthcare the system that utilizes IoT technologies and data
mining techniques to accurately recognize human activities
with a score of 99.89%. They employed various validation
methods, including ANN, SVM, K-NN, C4.5, CART, RF,
and rotation forest, on the MHEALTH dataset. The results
showed that both SVM and RF achieved the highest accuracy
score of 99.89% [23]. The Internet of Medical Things incor-
porates cutting-edge deep learning techniques to classify
health technology. In their study, Raj et al. [24] utilized the
OCS method to improve the accuracy of the DL classifier for
detecting lung cancer, Alzheimer’s disease, and brain images.
Their results demonstrated a significant enhancement in the
classifier’s accuracy [24]. Uddin and Hassan [25] developed a
smart healthcare system that utilizes deep convolutional neu-
ral network (DCNN). They utilized a classification approach
that involved Z-score normalization and Gaussian kernel-
based PCA. Their study utilized body sensors and the
MHEALTH dataset to classify various human activities,
with accuracy scores of 87.99% for ANN, 90.01% for DBN,
and 93.9% for the proposed DCNN [25].

3. Proposed Method

In this study, we propose a sequential model for medical
multiclass image classification, as depicted in Figure 1. Our
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approach begins by focusing on dataset quality and bench-
marking, adhering to state-of-the-art (SOTA) guidelines. We
carefully select seven outstanding datasets to ensure robustness.
Subsequently, data preprocessing is conducted, involving
image class definition, data augmentation, and appropriate
sampling to prepare the datasets for experimentation. The
core of ourmethod lies in the design of a custommodel tailored
for medical image classification, based on a CNN. We thor-
oughly explain the architecture and rationale behind this
model. Additionally, we perform an ablation study to dissect
the CNN strategy and evaluate individual component perfor-
mances. Finally, we present the statistical outcomes of our
experiments, elucidating model accuracy, and key contributing
factors while comparing them to relevant parameters. Our
sequential model allows for a comprehensive analysis of the
proposed approach, providing valuable insights for medical
image classification tasks. In our research, we put a significant
emphasis on the design of a custom CNN that does not rely on
any pretrained models. This allows us to have full control over
the architecture and parameters, tailoring them precisely to suit
the characteristics of the given problem. We carefully experi-
ment with different configurations of convolutional layers and
employ diverse pooling techniques based on the specific
demands of the images we are classifying. Furthermore, we
address the crucial aspect of image processing and consider
ways to optimize the time consumption during the training
and inference stages. By fine-tuning the model architecture
and hyperparameters, we aim to strike a balance between
computational efficiency and accuracy. In addition to solely
utilizing CNN, we recognize the potential of incorporating
LSTM networks into our approach. By employing a hybrid
CNN–LSTM architecture, we leverage the strengths of both
CNN and LSTM for our classification task. This enables us
to better capture temporal dependencies in sequential data
and enhances our model’s ability to handle time series or
sequential information. The LSTM computation and memory
utilization strategy we adopt have shown promising results,
leading to improved accuracy in our experiments. We believe
that this holistic approach, encompassing the custom CNN
design, time efficiency optimization, and hybrid CNN–LSTM
utilization, contributes to the overall success of our model and
makes it a powerful tool for medical image classification tasks.

4. Algorithm Background

This section provides a detailed description and overview of
ANN, specifically CNN and LSTM. We have provided math-
ematical explanations, training approaches, and architec-
tures for image classification.

4.1. Convolutional Neural Networks. There are a lot of rea-
sons why CNN are one of the most robust DNN architec-
tures applied for solving various problems, especially in the
field of computer vision. The primary reason is that these
networks are made up of multiple layers of CNN, which
leverage convolution operations to extract and learn features
from images. CNN has been used extensively in image clas-
sification and object detection approaches [26]. The archi-
tecture of a typical ConvNet consists of different layers,
including input, convolution, pooling, fully connected
(FC), and output. Figure 2 illustrates an example of a Con-
vNet architecture that is based on our medical MedMNIST
v2 dataset, which contains different class levels. The convo-
lution layer acquires feature maps that work through ele-
mentwise multiplication of kernels from the previous input
or output layer. After the pooling layer, the output is passed
through a FC layer. This layer combines the features
extracted by the convolutional and pooling layers and then
produces the final output. The output layer is usually acti-
vated by an activation function, such as the SoftMax func-
tion, which is commonly used for multiclass classification
problems [27]. During the training phase, the error is calcu-
lated for the weights of the FC layers and learnable filters in
convolutional layers. These weights are then updated by
backpropagation methods and the gradient descent algo-
rithm is applied for optimization [28, 29].

4.2. Long Short-Term Memory. LSTM is a type of recurrent
neural network (RNN) architecture that is well-suited for
modeling sequential data with long-range dependencies
[30]. In medical applications, LSTM networks have been
used for diagnosing complex conditions and identifying
physiological traits in patients, which is often referred to as
phenotyping [31]. In our study, we reframed the multilabel
classification problem as a phenotyping challenge in clinical
time series data [32].
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FIGURE 2: A visualization entire methodology for multiclass medical image classification.
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We develop a classifier using a set of observations
(x(1), …, x(t)) to provide hypotheses about the actual labels
y in Equations (1) and (2):

g tð Þ
l ¼ Φ Wgx

l h tð Þ
l−1ð Þ þWgh

l h t−1ð Þ
l þ bgl

� �
; ð1Þ

i tð Þl ¼ σ Wix
l h

tð Þ
l−1ð Þ þWih

l h
t−1ð Þ
l þ bil

� �
: ð2Þ

In this case, t denotes the index of a sequence step and t
denotes the sequence length for any sample. Memory cells in
our proposed LSTM, RNN have forgotten gates but no peep-
hole connections. Because our problem is multilevel, we
employ a FC layer on top of the top LSTM layer as the
output, followed by an elementwise sigmoid activation func-
tion (Equation (3)):

f tð Þ
l ¼ σ Wlfxh

tð Þ
l−1ð Þ þWlfhh

t−1ð Þ
l þ bfl

� �
: ð3Þ

The update for a layer of memory cells can be calculated
using the below equations hðtÞl , where hðtÞðl−1Þ represents the
prior layer at the same sequence step either an earlier LSTM
layer or the input x(t), and hðt−1Þl represents the same layer
(Equation (4)):

o tð Þ
l ¼ σ Wloxh

tð Þ
l−1ð Þ þWoh

l h t−1ð Þ
l þ bol

� �
: ð4Þ

In these equations, the sigmoid (logistic) function is
applied elementwise as denoted by σ, the tanh function is
applied elementwise as denoted by, and the Hadamard prod-
uct is denoted by the symbol ⊙. Equations (5) and (6) are as
follows:

s tð Þ
l ¼ g tð Þ

l ⊙ i ið Þl þ s t−1ð Þ
l ⊙ f tð Þ

l ; ð5Þ

h tð Þ
l ¼ γ s tð Þ

l

� �
⊙ o tð Þ

l ; ð6Þ

where g is the input node and has a tanh activation, the
words “i,” “o,” and “f” are used to represent the input, output,
and forget gates. LSTM gates mechanism is shown in
Figure 3.

5. Methodology

CNN and other neural network architectures play a crucial role
in learning frommedical image data and developing prediction
models in medical AI and smart health technology. In this
research, we introduce a custom deep learning CNN architec-
ture tailored for medical data analysis, along with a custom
LSTM designed for critical image data analysis. These special-
ized architectures aim to enhance the accuracy and efficiency of
medical data interpretation, contributing to the advancement
of medical artificial intelligence and smart health technologies.

5.1. Data Processing. DNN are feed-forward neural networks
with numerous layers, whereas LSTM are RNN that can
process sequential data. In image classification, data proces-
sing is as important as learning models. Without a proper
dataset and data level we have not trained our model prop-
erly way. In our experiment, we preprocess the dataset.
Because in MedMNIST v2, some datasets do not contain a
good amount of data for a proper experiment. So, we also
have applied dataset preprocessing techniques using some
well-known preprocess methods along with data augmenta-
tion (Flipping, Translating, Rotating) shown in Table 1,
which is illustrated in Figure 4.

After the data augmentation, we enhanced some dataset
data with sampling. For some datasets, we use sampling
because of the imbalance of class and instance. With proper
dataset information, we showed in Table 2.
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The data snippet presented here defines a transformation
pipeline for a PyTorch dataset. The “transforms.Compose”
function creates a sequence of data transforms to be applied
to the input data. The pipeline consists of two transforms:
“transforms.ToTensor()” converts the input data to a
PyTorch tensor and “transforms.Normalize(mean= (0.5),
std= (0.5))” standardizes the input data by subtracting the
mean and dividing by the standard deviation. Data prepara-
tion is a crucial stage in machine learning model construc-
tion. It involves cleaning the data, handling missing values,
and normalizing or standardizing the data. Our data snippet
defines a data transformation pipeline for a PyTorch dataset.
The “transforms.Compose” function creates a series of data
transforms to be applied to the input data in sequence. The
pipeline consists of two transforms: “transforms.ToTensor
()” converts the input data to a PyTorch tensor, and “trans-
forms.Normalize(mean= (0.5), std= (0.5))” standardizes the
input data by subtracting the mean and dividing by the stan-
dard deviation. The mean and standard deviation values
used here are both set to 0.5, which scales each element of
the input data to the range [−1, 1]. Overall, this transforma-
tion pipeline converts input data to PyTorch tensors and
standardizes the data, which can improve the performance
and convergence of deep learning models. The “DataLoader”
class provides an efficient way to load data in batches, shuffle
the data during training, and manage data loading for model
evaluation.

5.1.1. Normalization. This is necessary to employ normaliza-
tion in order to put all of the features within a comparable
range and to prevent large-scale features from taking prece-
dence. We use MedMNIST v2 image data to construct our
dataset. MedMNIST v2 is one of the most comprehensive
free web resources for disease images. There are multiple
applications for the dataset. Construct a powerful image clas-
sifier capable of classifying any image with several variation
class levels. EDA across categories to comprehend visual
distinctions and draw generalizations. Combining photos
of numerous diseases under a larger umbrella group.
Min–max normalization and Z-score normalization are
two common methods for normalizing data. Min–max nor-
malization scales the values in a dataset to a specific range,
such as [0, 1] or [−1, 1]. This method is often used for
datasets with a large range of values or when the data are
not normally distributed. It works by subtracting the mini-
mum value from each data point and then dividing it by the
range of the data (i.e., the difference between the maximum

and minimum values). The choice of normalization method
depends on the specific characteristics of the dataset, the
goals of the analysis, and the type of machine learning model
that will be used. Equation (7) describes the transformation
function:

Z∗
new ¼ Zold − Zmin

Zmax − Zmin

� �
: ð7Þ

Here, the original, maximum, and minimum values of
the feature under consideration are denoted by Zold, Zmax,
and Zmin, respectively. The new normalized value of Zold is
denoted by Z ∗ new. Its values fall between [0, 1].

5.1.2. Parameterize CNN Architecture. ConvNet for the med-
ical image classification, we have designed the medical vari-
ational convolutional neural network (MedvCNN). After
some potential fine-tuning, we set up the customized archi-
tecture for medical multiclass image classification in Figure 5.
There are five convolutional layers and three FC layers in this
CNN model. The input to the network is a 4D tensor with
the dimensions (batch size, in channels, height, and width)
where “in channels” is the number of input channels and
height and width are the image dimensions. The first layer
consists of 16 Kernel along with 3× 3 followed by batch
normalization and the ReLU activation function. This layer’s
output is passed to the second layer, which is a convolutional
layer with 16 filters of size 3× 3, batch normalization, ReLU
activation function, and max pooling with kernel size 2× 2
and stride 2. The third layer consists of 64 convolutional
filters of size 3× 3, followed by batch normalization and
the ReLU activation function. This layer’s output is passed
to the fourth layer, which is a convolutional layer with 64
sizes of 3× 3 filters, batch normalization, and ReLU activa-
tion functions. The fifth layer is a convolutional layer with 64
sizes of 3× 3 filters and one padding, followed by batch
normalization, the ReLU activation function, and max pool-
ing with a 2× 2 kernel, and a stride of 2. The fifth layer’s
output is flattened and sent into the FC layers. The FC layers
consist of two hidden layers with 128 units and the ReLU
activation function, as well as an output layer with num class
units, where num classes are the number of classes in the
classification task. Class probability predictions are the out-
put of the last FC layer. In Figure 5, we illustrated the full
MedvCNN architecture. The loss function utilized is task
dependent. If the classification problem involves many labels
and binary classes, the binary cross-entropy with logits loss
(BCE_with_log_its_loss) is utilized. If not, cross-entropy
loss (Cross_Entropy_Loss) is utilized. The employed opti-
mizer is stochastic gradient descent (SGD) with a learning
rate of lr and a momentum of 0.90. Customs model setting
for CNN stepwise explanation are given below:

Group 1: This group consists of a convolutional layer
with one input channel and 16 output channels, followed
by a ReLU activation function. The convolutional filter
size is 3× 3 and the stride is 1× 1.

TABLE 1: Data augmentation parameters setting.

Augmentation techniques ranges

Rotateaug 45°
RotateHorizontaaug 45°
RotateLeftaug 90°
RotateRightaug 90°
Translateaug y, z (16.2, 5.5)
HorizontalFlipaug True
VerticalFlipaug True
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Enhanced images Data augmentation

Horizontal flip Vertical flip Rotate 90° left Rotate 90° right

FIGURE 4: Data preprocessing for image enhancement (augmentation techniques: horizontal flip, rotate 45°, vertical flip, rotate 45° horizontal,
rotate 90° left, rotate 90° right, translate).

TABLE 2: Image amount after doing data augmentation.

Dataset Instances Class level Augmentation info Training images Validation images Testing images

PathMNIST 107,180 9 No 89,996 10,004 7,180
ChestMNIST 112,120 14 No 78,468 11,219 22,433
OCTMNIST 109,309 4 No 97,477 10,832 1,000
PneumoniaMNIST 5,856 (36,506) 2 Yes 26,500 5,600 4,960
TissueMNIST 236,386 8 No 165,466 23,640 47,280
OrganAMNIST 58,850 11 No 34,581 6,491 17,778
BreastMNIST 780 (60,202) 2 Yes 35,600 14,300 10,302

Input

Output

Convo 16 × 16

Max pooling
Convo 16 × 16

Max pooling

Convo 64 × 64

Convo 64 × 64

Convo 64 × 64

FC
FC

FC

FIGURE 5: Convolutional neural network (MedvCNN) model architecture.
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Group 2: This group consists of a convolutional layer
with 16 input channels and 16 output channels, followed
by a ReLU activation function and a max pooling layer
with a filter size of 3× 3 and a stride of 1× 1.
Group 3: This group consists of a convolutional layer
with 16 input channels and 64 output channels, followed
by a ReLU activation function. The convolutional filter
size is 3× 3 and the stride is 1× 1.
Group 4: This group consists of a convolutional layer
with 64 input channels and 64 output channels, followed
by a ReLU activation function. The convolutional filter
size is 3× 3 and the stride is 1× 1.
Group 5: This group consists of a convolutional layer
with 64 input channels and 64 output channels, followed
by a max pooling layer with a filter size of 3× 3 and a
stride of 1× 1.
FC layer 1: Dense layer with 128 neurons and ReLU
activation.
FC layer 2: Dense layer with 128 neurons and ReLU
activation.
FC layer 3: Dense layer with num_classes neurons.

For more clarification, we show all parameters in Table 3.
Mathematical explanations for the choice of architecture

in a CNN for medical data classification are given below:

(i) Convolutional Layers.

In a CNN, each convolutional layer applies a set of filters
(also known as kernels) to the input image. Mathematically,
this operation is represented as a convolution in Equation (8):

FeatureMap¼ Convolution InputImage; Filterð Þ: ð8Þ

(1) Number of filters: The number of filters in each layer
determines the depth of the feature maps produced.
More filters lead to a greater capacity to learn diverse
features.

(2) Kernel size: The size of the filter (usually 3× 3 or
5× 5) influences the size of the receptive field and
the type of features that can be detected.

(3) Stride: The stride determines how the filter slides
across the input image. A larger stride reduces the
spatial dimensions of the feature map.

(4) Activation function: After convolution, an activation
function (commonly ReLU—rectified linear unit) is

applied elementwise. It introduces nonlinearity into
the model Equation (9):

Output¼ ReLU Convolution Input; Filterð Þð Þ: ð9Þ

(ii) Pooling Layers.

Pooling layers (often MaxPooling) reduce the spatial dimen-
sions of feature maps while retaining the most important
information. This is done using a pooling operation, usually
max or average pooling. Mathematically, Equation (10) is
given as follows:

PooledFeatureMap¼ Pooling FeatureMapð Þ: ð10Þ

The size of the pooling window determines the down-
sampling factor. For example, a 2× 2 pooling window
reduces the dimensions by half.

(iii) FC Layers.

FC layers perform a weighted sum of the input features,
followed by an activation function (often softmax for classi-
fication). Mathematically, Equation (11) is given as follows:

Output ¼ Activation WeightedSum Inputð Þð Þ: ð11Þ

The number of neurons in each FC layer affects the
model’s capacity to learn complex decision boundaries.
More neurons can capture intricate patterns but may lead
to overfitting with insufficient data.

(iv) Regularization Techniques.

Regularization techniques like dropout and batch normaliza-
tion can be mathematically represented as follows: dropout:
In each training iteration, dropout randomly sets a fraction
of neurons’ outputs to zero. This can be expressed as shown
in Equation (12):

Output ¼ Input ×mask; ð12Þ

where the mask is a binary random variable. Batch normaliza-
tion normalizes the activations of each layer. Mathematically, it
involves subtracting the mean and dividing by the standard
deviation of the batch. These mathematical explanations high-
light the operations performed in each layer of a CNN and how
they contribute to feature extraction, dimensionality reduction,
and regularization. The choice of architecture, including the
number of layers and their hyperparameters, is often guided
by empirical experimentation and the need to strike a balance
between model complexity and performance.

To assess the predictive accuracy of our MedvCNN and
MedvLSTM parallel network model, we utilize the following
evaluation metrics in Tables 4 and 5: mean square error

TABLE 3: MedvCNN model parameter setting.

Groups Layer Kernel size Stride

Group 1 Conv2d(1,16) ReLU (3, 3) (1, 1)
Group 2 Conv2d(16,16) ReLU MaxPool2d (3, 3) (1, 1)
Group 3 Conv2d(16,64) ReLU (3, 3) (1, 1)
Group 4 Conv2d(64,64) ReLU (3, 3) (1, 1)
Group 5 Conv2d(64,64) MaxPool2d (3, 3) (1, 1)
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(MSE), root mean square error (RMSE), and mean absolute
error (MAE).

It is evident that with the incorporation of various convolu-
tional techniques, the loss function consistently decreases, result-
ing in improved generalization. In Results section, our accuracy
calculations are primarily based on the loss function. In most
cases, we employ the MSE as our preferred metric for error
calculation.

5.2. Parameterize LSTM Architecture. RNN a prominent
subsection of the deep learning family is primarily con-
cerned with sequential data. Processing long-term sequen-
tial data is another skill that may be consistently learned via
practice. The fact that some of these results have been
attained using the conventional RNN model is an intriguing
finding. Vanishing gradient problems have already been
addressed by newer recurrent network models like LSTM
and GRU, therefore they are not a worry while training an
RNN for our task. The faults that can be backpropagated
through sequence and layers are preserved through the use
of gates by LSTM and GRU [33]. They enable recurrent
networks to carry on learning over numerous bands of
hyperspectral pixels without the danger of overfitting by
keeping a more constant error. The benefit of using
LSTM over RNN is that they can store more data while
processing it. This makes it possible for LSTM to more
efficiently understand intricate patterns and connections
in data, which is crucial for image classification jobs. Also,
LSTM classifies images more accurately than RNN because
they learn the critical features while disregarding the unim-
portant ones. This is due to the fact that LSTM outperforms
RNN in capturing long-term dependencies [34]. Figure 6
represents the medical variational long short-term memory
(MedvLSTM) entire hybrid architecture for multiclass
image classification. The input image is maintained in the
batch normalization layer. This batch normalization layer
uses the transformation process and maintains the activa-
tion function’s standard deviation.

The activation function near the range between (0 and
1) thus normalizing this process. The output size of the
batch normalization is the same as the input size, making
it unusable for LSTM cells. After the dimensional input,
we passed the image through the LSTM cell. Tanh (i.e., the
hyperbolic tangent) widely used activation function and
LSTM cell dropout over fitted data to prevent overfitting
because LSTM uses a dropout process [35]. LSTM espe-
cially remembers the long-term dependencies along with
the regional size of the input image and the entire pattern.
After that, the LSTM layer is connected with the convolu-
tional layer. This convolutional layer creates a kernel that
produces a tensor of output. As an activation function
rectified linear unit (ReLU) has been used in this convolu-
tional layer.

While LSTM are skilled at catching temporal patterns in
sequential data, like time series, CNN excel at capturing
spatial patterns in data, such as those seen in images [36].
Our hybrid model may recognize complicated patterns in
both the spatial and temporal domains by integrating the
two networks to make use of each architecture’s advantages.
The extraction of hierarchical characteristics from the data is
made possible via a hybrid model. The CNN layers may learn
edges, textures, and other low-level characteristics, and these
features are then fed into LSTM layers so they can learn
higher level temporal relationships based on the sequential
nature of the input. A more efficient and effective feature-
learning process may result from this hierarchical approach.
CNN is susceptible to overfitting, particularly when working
with little data [37].

On the other hand, LSTM can be generalized more effec-
tively in certain circumstances. It may be possible to reduce
overfitting by integrating the two models, which would
improve performance on untested data. Variable-length
sequence processing, which is a typical need in many real-
world applications, is a task that LSTM is well suited for. Our
hybrid model may handle sequential data of varied duration,
such as text with different sentence lengths, by working with

TABLE 4: The evaluation loss function of the MedvCNN model with different numbers of convolutional layers.

CNN layers First layer Second layer Third layer Fourth layer Fifth layer MSE/h2 RMSE/h MAE/h

1 CNN (16) – – – – 6.04 3.63 2.01
2 CNN (16) CNN (16) – – – 5.79 3.44 1.79
3 CNN (16) CNN (16) CNN (64) – – 5.90 3.05 1.56
4 CNN (16) CNN (16) CNN (64) CNN (64) CNN (64) 4.60 2.99 1.40

TABLE 5: The evaluation loss function of the MedvLSTM model with different numbers of convolutional layers.

CNN layers First layer Second layer Third layer Fourth layer Fifth layer MSE/h2 RMSE/h

1 CNN (16) – – – – 6.04 3.63
2 CNN (16) CNN (16) – – – 5.79 3.44
3 CNN (16) CNN (16) CNN (64) – – 5.90 3.05
4 CNN (16) CNN (16) CNN (64) CNN (64) CNN (64) 4.60 2.99
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an LSTM in combination with CNN. In some circumstances,
developing a hybrid model as opposed to developing distinct
models for various tasks may be more computationally effi-
cient. Sharing parameters can speed up training and save
memory requirements if CNN and LSTM can use the same
feature extraction layers. The foundation of our hybrid
model might be pretrained CNN models for image recogni-
tion tasks, which are freely accessible [38].

Instead of having to train everything from scratch, we
can concentrate on optimizing the LSTM component for our
real-time medical image classification by using pretrained
CNN layers. A classical model could still be more appropri-
ate in some circumstances, while alternative cutting-edge
designs like transformer-based models might be more effec-
tive for specific sequence-based activities [39].

5.3. Experimental Setup. In this section, we explained our
CPU setup for multiclass medical image classification. All
the models are implemented and computing platform with
Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and an
NVIDIA GeForce GTX 1080i GPU (16GB memory).
During the experiment, for each epoch, we take 28 batch
size mini-batch SGD to train the network for 50 epochs.
The initial learning rate is 0.001 and we take it for every
three epochs with dropout and without dropout.

6. Results

In this section, we describe our model accuracy performance
with benchmark datasets. Beginning part, we also discussed
the experimental setting and last, we explained the ablation
study about the performance of our model.

6.1. Comparative Performance Analysis of Applied Models. In
this section, we discuss our performance and compare it with
other applied work which is done by other researchers. The
terms “area under the ROC curve” (AUC) and “accuracy” are
used to refer to the evaluation metrics that are utilized here
(ACC). The area under the curve, or AUC, is a measure that
does not depend on a threshold in order to evaluate contin-
uous prediction scores, but the area under the curve (ACC)
utilizes a threshold in order to evaluate discrete prediction
labels (or argmax). In contrast, ACC and AUC are less likely
to suffer from class imbalance. In Table 6, we summarize our
excrement with MedMNIST v2 and compared with bench-
marking SOTA data, and our MedvCNN outperforms sev-
eral image datasets. Besides this MedMNIST v2, we also
show the MedMNIST dataset accuracy for Table 7 along
with the MedvCNN outcome. We run several same excre-
ments and set a standard deviation with our main accuracy.
Table 8 shows the performance of MedvLSTM with the

Disease 1

Disease 2

Disease n
Input

Batch
normalization layer

LSTM
ConvNet

Max pooling
layer 

FC

FIGURE 6: Long short-term memory (MedvLSTM) model architecture.

TABLE 6: Benchmark test accuracy on four datasets of MedMNIST v2 for improving CNN.

Methods
PathMNIST ChestMNIST OCTMNIST PneumoniaMNIST

AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 [40] 0.983 0.907 0.768 0.947 0.943 0.743 0.944 0.854
Autosklearn [40] 0.934 0.716 0.649 0.779 0.887 0.601 0.942 0.855
Google AutoML vision [40] 0.944 0.728 0.778 0.948 0.955 0.763 0.947 0.878
MedvCNN (our) 0.985 0.841Æ 0.23 0.574 0.949Æ 0.30 0.947 0.847Æ 0.20 0.986 0.945Æ 0.15

Bold values signify the high accuracy.
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MedMNIST v2 dataset. Given that our datasets do not include
any particularly extreme examples of class imbalance, the aver-
age class composition (ACC) has the potential to be another
valuable indicator as well. Even though there are a great many
extra measurements, we only utilize AUC and ACC since doing
so enables us to examine everything in the simplest way that is
possible. This is despite the fact that there are a great many
additional metrics. Therefore, in order to make it easier to com-
pare the efficacy of different methods, we present both the aver-
age area under the curve (AUC) and the average area under the
curve (ACC) for theMedMNIST v2 dataset [41]. In Tables 6–8,
we present our experiment results, comparing them with other
benchmark methods on the MedMNIST dataset. In the case of
MedvCNNwith PathMNIST, our accuracy is slightly lower than
ResNet-18, with a difference of approximately 0.6%. However,
on the ChestMNIST dataset, our model performs exceptionally
well, surpassing existing models with an accuracy of over 94%.
Moreover, for OCTMNIST and PneumoniaMNIST, our
approach outperforms Autosklearn, Google AutoML Vision,
and ResNet-18, demonstrating the effectiveness and superiority
of our proposedmethod on these datasets. In our experiments, we
observed that BreastMNIST, TissueMNIST, and OrganAMNIST
datasets all perform admirably with MedvCNN, achieving an
accuracy of over 80%. These results demonstrate the efficacy of
our proposed MedvCNNmodel in accurately classifying medical
images from these datasets. In Table 8, we can observe that the
hybrid CNN–LSTM model, which incorporates PathMNIST,
ChestMNIST, OCTMNIST, and PneumoniaMNIST datasets,
demonstrates superior performance in terms of accuracy. This
accuracy is notably close to that of the improved CNN
accuracy. The results highlight the effectiveness of our hybrid
CNN–LSTM approach, showcasing its potential in accurately
classifying medical images from these datasets. In Table 9, we
present a comparison of loss values derived from related studies.

We executed this model using the medical dataset
(Pneumonia_MNIST) and generated Table 9 to showcase the
results. Additionally, we provide insight into the loss values in
conjunction with the specific neuron parameter settings
employed in our research.

6.2. Ablation Study. Ablation study is a commonly used
parameter tuning in grid search strategy used to choose the
parameters (batch size, epochs, learning rate, optimizer, and
dropout). Furthermore, the ablation study ensures the pro-
posed method’s model robustness. For all four case studies,
we use the seven datasets and use the average result for
accurate measurement.

6.2.1. CASE 1: MaxPooling2D. This case studied different
pooling layers in CNN along with our model MaxPooling2D
layer.Vld_Acc (%) and Vld_Ls (%) are better perform for our
MaxPooling2D. The Tst_Acc (%) [Test Accuracy] and
Tst_Ls (%) [Test Loss] results outperform then other polling
layers. We calculate this accuracy for the overall dataset and
input our result on average in Table 10.

6.2.2. CASE 2: Flatten Layer. In this examination, a flattened
layer has been added after the feature maps of the previous
FC layers. We also change this layer with some other layers
and get the entire result (Table 11).

6.2.3. CASE 3: Loss Functions. To utilize the proper Loss
function, we study several different types of loss functions
in our experiment. After the experiment, we get a better
result using the CrossEntropy Loss which shows the outper-
forming result in Table 12.

6.2.4. CASE 4: Optimizers and Learning Rates. To examine
the best learning rate and optimizer, we use two types of
optimizers. After the experiment, we take SGD and 0.001

TABLE 7: Benchmark test accuracy on three datasets of MedMNIST v2 for improving CNN.

Methods
Breast_MNIST Tissue_MNIST OrganA_MNIST

AUC ACC AUC ACC AUC ACC

Autosklearn [40] 0.836 0.803 0.828 0.532 0.963 0.762
MedvCNN (our) 0.898 0.831Æ 0.22 0.888 0.595Æ 0.58 0.990 0.878Æ 0.57

TABLE 8: Benchmark test accuracy on each dataset of MedMNIST v2 for improving LSTM.

Methods
Path_MNIST Chest_MNIST OCT_MNIST Pneumonia_MNIST

AUC ACC AUC ACC AUC ACC AUC ACC

MedvLSTM (our) 0.962 0.841Æ 0.22 0.924 0.886Æ 0.58 0.908 0.917Æ 0.18 0.906 0.945Æ 0.06

TABLE 9: Comparison of the prediction performance loss value of different models for LSTM.

Models MSE/h RMSE/h MAE/h Main parameter settings

LSTM [42] 9.18 3.03 2.45 LSTM layer (one layer) Neurons (32)
Bi_LSTM [43] 8.46 2.90 2.34 Bi_LSTM layer (one layer) Neurons (32)
LSTM_attention [44] 7.66 2.77 2.23 LSTM layer (one layer) Neurons (128)
MedvLSTM (our) 5.53 2.23 2.20 LSTM layer (three layers) Neurons (128)
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learning rate for better performance. Table 13 shows the
experiment results.

6.3. Performance Evaluation. In this section, we discuss our
experiment result evaluation process along with the confu-
sion matric and accuracy metrics. Last, we show ROC for the
model performance analysis. Resulting in the accuracy met-
ric in Table 14, we apply the prominent machine learning
evaluation formula. In Equations (13) and (14), TP refers to
true positive and TNmeans true negative. Another FP is false
positive and FN means false negative.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð13Þ

Precision¼ TP
TPþ FP

: ð14Þ

To determine the recall value, we applied Equation (15):

Recall¼ TP
TPþ FP

: ð15Þ

A confusion matrix is frequently used to assess the mod-
el’s performance. The confusion matrix is generated by com-
puting the TP, TN, FP, and FN values. In this matrix, TP and
TN represent the number of samples that are accurately
identified as positive and negative, respectively. On the other
hand, FP and FN refer to the number of samples that are
incorrectly classified as positive and negative, respectively
[45]. In our accuracy metrics (Table 14), we showed seven
MedMNIST v2 datasets precision, recall and F1-score
PathMNIST and ChestMNIST, TissueMNIST and Orga-
nAMNIST, respectively, showed 88%, 94%, 59%, and 86%
which outperformed other previous studies along with

TABLE 11: Experiment with the position setup of flatten layer.

Layer names Vld_Acc (%) Vld_Acc (%) Tst_Acc (%) Tst_Ls (%) Performance

GlobalAveragePooling2D 80.89 0.20 88.95 0.69 Accuracy_dropped
AveragePooling2D 76.69 0.74 80.01 0.36 Accuracy_dropped
Flatten layer 95.89Æ 0.18 0.10 98.56Æ 0.22 0.14 Identical
GlobalMaxPooling2D 90.12 0.30 92.51 0.20 Accuracy_dropped

Bold values signify the high accuracy and identical results.

TABLE 12: Experiment with different loss functions.

Loss_functions Vld_Acc (%) Vld_Acc (%) Tst_Acc (%) Tst_Ls (%) Performance

Cosine similarity 92.09 0.20 88.95 0.19 Accuracy_dropped
Mean squared error 93.86 0.12 96.11 0.11 Accuracy_dropped
Cross-entropy loss 96.88Æ 0.06 0.11 97.56Æ 0.22 0.80 Identical

Bold values signify the high accuracy and identical results.

TABLE 13: Experiment with altering the optimizers and learning rates.

Optimizers Learning_Rates Vld_Acc (%) Vld_Acc (%) Tst_Acc (%) Tst_Ls (%) Performance

Adam
0.00001 92.09 0.20 93.95 0.13 Accuracy_dropped
0.0001 93.86 0.12 96.11 0.11 Accuracy_dropped
0.001 96.88 0.11 96.98 0.12 Accuracy_dropped

SGD
0.00001 93.09 .25 94.99 0.19 Accuracy_dropped
0.0001 90.66 0.15 95.13 0.16 Accuracy_dropped
0.001 97.56Æ 0.04 0.10 97.95Æ 0.22 0.12 Identical

Bold values signify the high accuracy and identical results.

TABLE 10: Experiment with different Pooling2D layer.

Layer names Vld_Acc (%) Vld_Acc (%) Tst_Acc (%) Tst_Ls (%) Performance

GlobalAveragePooling2D 95.89 0.10 95.95 0.29 Accuracy_dropped
AveragePooling2D 94.69 0.34 95.01 0.35 Accuracy_dropped
MaxPooling2D 96.89Æ 0.22 0.30 97.56Æ 0.32 0.20 Identical
GlobalMaxPooling2D 96.01 0.36 96.50 0.26 Accuracy_dropped

Bold values signify the high accuracy and identical results.
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multiclass image classification. The other two datasets Pneu-
moniaMNIST and BreastMNIST binary classifications results
are quite good and four class OCTMNIST midlevel image
classification accuracy is better than the other models. The
seven dataset statistical analyses have been done based on
our MedvCNN medical image classification model. After
that, we represent a visualization of the performance with the
confusion matrix in Figure 7. Among the seven datasets, we
have randomly selected and analyzed two binary datasets and
twomulticlass datasets for confusion matric calculation. In this
case, the test dataset contains different amounts of data along
with different class levels. BreastMNIST dataset has 10,302 test
data and our CNN model successfully classifies 10,156 image
data and PneumoniaMNIST classifies 4,929 data from 4,960
test data. In the multiclass classification (OCTMNIST dataset
and TissueMNIST), the successful classification rate outper-
forms then another multiclass classification experiment. In
Figure 8, the ROC curve presents the proposed MedvCNN.
The first image (a) shows a multiclass binary-class (OCTM-
NIST Dataset) and the second one (b) is a binary-class (for
ChestMNIST dataset) performance curve. The ROC curve is
constructed with two axes (x-axis and y-axis). The range of
these curves’ values is from 0 to 1. If the value is closer to 0
thatmeans it performing poorly. In parallel, the closer the value
is to 1, that means better the performance of the model is. For
the performance analysis, we randomly select one binary clas-
sification and onemulticlass dataset for ROC curve calculation.
In our case, our model curves have quite high performance
both in binary and multiclass.

6.4. Time and Complexity Evaluation. In this section, we
delve into the analysis of time complexity and model param-
eters specific to the CNN architecture. Time complexity
refers to the computational time required for a given algo-
rithm or model to process data. In the context of CNN
architectures, understanding the time complexity is crucial

TABLE 14: Accuracy metrics of the entire model for each dataset.

Scenario Class Precision Recall F1-score

PathMNIST

0 0.97 0.96 0.96
1 0.88 0.87 0.87
2 0.95 0.90 0.91
3 0.70 0.72 0.73
4 0.68 0.86 0.87
5 0.92 0.90 0.91
6 0.88 0.85 0.86
7 0.78 0.80 0.81
8 0.86 0.88 0.87

Accuracy 0.88
Macro avg 0.84 0.86 0.86

ChestMNIST

0 0.70 0.75 0.74
1 0.89 0.88 0.89
2 0.96 0.92 0.93
3 0.94 0.95 0.94
4 0.92 0.91 0.90
5 0.84 0.86 0.87
6 0.90 0.91 0.92
7 0.95 0.92 0.93
8 0.93 0.90 0.90
9 0.92 0.93 0.92
10 0.97 0.95 0.96
11 0.91 0.89 0.90
12 0.94 0.91 0.93
13 0.87 0.78 0.90

Accuracy 0.94
Macro avg 0.88 0.95 0.94

TissueMNIST

0 0.62 0.85 0.71
1 0.46 0.01 0.01
2 0.45 0.28 0.34
3 0.50 0.63 0.56
4 0.43 0.35 0.39
5 0.39 0.21 0.27
6 0.76 0.53 0.63
7 0.50 0.57 0.53

Accuracy 0.59
Macro avg 0.51 0.43 0.43

OrganAMNIST

0 0.64 0.85 0.73
1 0.87 0.54 0.67
2 0.71 0.79 0.75
3 0.89 0.75 0.81
4 0.59 0.69 0.63
5 0.61 0.68 0.64
6 0.96 0.85 0.90
7 0.95 0.96 0.96
8 0.98 0.98 0.98
9 0.80 0.78 0.79
10 0.66 0.58 0.62

Accuracy 0.86
Macro avg 0.79 0.77 0.78

TABLE 14: Continued.

Scenario Class Precision Recall F1-score

PneumoniaMNIST

0 0.93 0.96 0.97
1 0.90 0.92 0.93

Accuracy 0.93
Macro avg 0.91 0.94 0.95

BreastMNIST

0 0.80 0.82 0.81
1 0.85 0.89 0.87

Accuracy 0.82
Macro avg 0.82 0.85 0.84

OctMNIST

0 0.54 0.94 0.69
1 0.82 0.80 0.81
2 0.78 0.16 0.26
3 0.78 0.84 0.81

Accuracy 0.82
Macro avg 0.73 0.68 0.5
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for assessing the computational efficiency of the model. It
involves calculating how the processing time scales with
input size. The time complexity of a CNN depends on
several factors, including the number of layers, the size of
each layer, and the operations performed in each layer (e.g.,
convolutions, pooling, and FC layers). It is important to
provide a breakdown of the time complexity at different
stages of the CNN model, explaining which components
contribute most to the computational cost. Model parame-
ters are the weights and biases that the CNN learns during
the training process. Analyzing model parameters is essen-
tial for assessing the model’s capacity and potential for
overfitting. Calculate the total number of parameters in
your CNN model. This includes the weights and biases in
each layer. In Table 15, we present the model parameters
(Per (M)) and training time (in seconds). M is denoted
million, and s is denoted second. We mention here every
epoch training time average.

7. AutoML Framework Design

In this section, we explained the framework of AutoML with
deep learning and website combination. In Figure 9, we show
this process about the working process. Medical image clas-
sification website involves a user visiting the website and
uploading an image for classification through the homepage.
The image is received by the back-end of the website which
includes a pretrained image classification model. The model
analyzes the image and generates a classification label and
probability. Medical image classification website involves a
user visiting the website and uploading an image for classifi-
cation through the homepage (Figure 10). The image is
received by the back-end of the website which includes a
pretrained image classification model. Algorithm 1 shows
the coding explanation. Upon receiving the image, the back-
end processes it through the pretrained model’s inference
pipeline. The model performs a series of sophisticated
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FIGURE 7: Confusion matrix of applied model. (a) For BreastMNIST dataset, (b, c) for TissueMNIST and for PneumoniaMNIST dataset, and
(d) for OCTMNIST dataset.
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mathematical operations, such as convolutions and activa-
tions, to analyze the image’s pixel values and extract high-
level features relevant to medical diagnosis. The model then
generates a classification label representing the most likely
medical category or condition depicted in the image. Addi-
tionally, the model produces a probability score that reflects
its confidence in the assigned label. The model analyses the
image and generates a classification label and probability.
The result is displayed on a results page generated by the
backend and served by the front end. The website’s server
handles incoming requests, processes the image classifica-
tion, and serves the results to the user. The user can repeat
the process by submitting another image for classification.

8. Discussion

Our research focuses on medical public image datasets, and
we have developed our custom CNN and hybrid LSTM
model. The reason for creating a new custom model is that
existing CNN models like Res-Net, AlexNet, and VGG-Net,
which are pretrained on generic image datasets, do not per-
form optimally when faced with different types of image sizes

and high-resolution medical data. Medical images often have
unique characteristics and higher resolution than the images
used to pretrain standard models. Consequently, off-the-
shelf CNN models may not capture the relevant features
effectively, leading to suboptimal performance on medical
data. To address this limitation, we have designed a custom
CNN architecture tailored specifically to handle medical
images with varying sizes and high levels of detail.

Additionally, to further enhance our model’s perfor-
mance, we have incorporated LSTM components into the
architecture. LSTM are powerful sequential models that
can effectively capture temporal dependencies in the data,
which is particularly relevant in medical imaging where con-
text and sequential patterns can play a vital role in diagnosis
and analysis. By leveraging both custom CNN and LSTM
components, our hybrid model aims to improve the accuracy
and robustness of medical image analysis. We believe that
this approach will yield more accurate results and potentially
aid medical professionals in making better-informed deci-
sions based on the visual information provided by the
images. To ensure the robustness and classification perfor-
mance of our model, we conduct a thorough evaluation using
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FIGURE 8: Illustration of receiver operating characteristics curve (ROC) for multiclass (a) and binary-class (b).

TABLE 15: Time and complexity evaluation metric.

Methods
PathMNIST ChestMNIST OCTMNIST PneumoniaMNIST

Train time (s) Per (M) Train time (s) Per (M) Train time (s) Per (M) Train time (s) Per (M)

ResNet-18 2,180.30 11.2 2,080.33 11.2 1,880.10 11.2 2,380.13 11.2
Autosklearn 1,589.02 9.4 1,429.25 9.4 1,389.26 9.4 1,601.20 9.4
Google AutoML vision 1,709.24 10.6 1,826.21 10.6 1,726.08 10.6 1,869.02 10.6
MedvCNN (our) 455.06 5.56 512.06 5.56 489.02 5.56 556.9 5.56
MedvLSTM (our) 689.03 7.23 786.02 7.23 689.23 7.23 786.23 7.23
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traditional machine learning techniques and statistical anal-
ysis. Our evaluation process involves assessing the model’s
performance across seven different classes of data. We mea-
sure the accuracy of our model to determine how well it

performs on the test dataset. A high accuracy score indicates
that the model is making correct predictions for a significant
portion of the data. In addition to accuracy, we also examine
other performance metrics like precision, recall, and

Home page

Image uploader Results pageFront-end

Back-end 

Image
classification

model  

Server

FIGURE 9: Framework architecture for AutoML medical image classification.

FIGURE 10: Web application for AutoML medical image classification.
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F1-score. These metrics provide a more comprehensive
understanding of the model’s behavior for each class. Preci-
sion measures the proportion of true positive predictions
among all positive predictions, while recall (also known as
sensitivity) represents the proportion of true positive predic-
tions among all actual positive instances in the data. The F1-
score is the harmonic mean of precision and recall, offering a
balanced evaluation of the model’s performance. Further-
more, our study addresses the issue of time consumption,
which is a significant concern when dealing with medical
image datasets. Many pretrained models require consider-
able time for adaptation to new datasets, and they may per-
form poorly when faced with small or differently sized data.
However, our model is specifically designed to tackle this
problem. We understand that many medical institutes may
not have access to high-performance devices, and generating
results in a timely manner is crucial. Therefore, our model
takes into consideration the constraints of resource availabil-
ity and aims to provide efficient and accurate results even
with limited computing resources. Moreover, we have devel-
oped a user-friendly web model framework that does not
require a programing background for operation. This frame-
work allows medical professionals and individuals without
programing expertise to easily classify diseases using normal
medical images.

9. Conclusion

This study delved into the realm of medical image classifica-
tion, exploring advanced approaches such as LSTM and
CNN architectures while benchmarking against the MedM-
NIST datasets. After conducting numerous experiments, we
thoroughly analyzed the performance of various model con-
figurations by customizing and randomizing hyperpara-
meters. The results yielded promising outcomes, with our
custom MedvCNN and MedvLSTM models outperforming
the existing state-of-the art methods on the benchmark data-
set by a significant margin. This achievement demonstrates
the potential of our novel approaches to revolutionize

medical image classification, offering improved accuracy
and efficiency. However, it is essential to emphasize that
model selection and evaluation remain critical aspects of
any model development process. In our research, we
employed two comprehensive model evaluation processes,
ensuring that the chosen models performed exceptionally
well, as anticipated. Moving forward, the success of our cus-
tom models and evaluation methods paves the way for fur-
ther advancements in medical image classification. As we
continue our research, we will explore more extensive data-
sets and real-world medical scenarios to validate the robust-
ness and generalizability of our approaches. Ultimately, our
work aims to contribute to 20 dedicated CNN–LSTM archi-
tecture for medical image classification the ongoing progress
in medical image analysis, facilitating better diagnostic and
decision-making processes in the healthcare domain. We are
excited about our future plans, which include developing a
neural architecture search (NAS) for medical image classifi-
cation. NAS is a cutting-edge technique that automates the
process of finding optimal neural network architectures. By
applying NAS to our medical image classification problem,
we aim to discover novel and highly efficient models tailored
specifically to handle the complexities of medical data. With
the integration of NAS into our research, we expect to further
improve the performance of our models and potentially
uncover new insights that can aid in the early detection
and accurate diagnosis of various medical conditions.
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