
Research Article
Rapid and Accurate Identification of Grass Seedlings in
Agricultural Fields Based on Optimized YOLOX Model

Jie Kang ,1 Yi Gu ,2 Zhi Yuan Wang ,3 and Xing Yu Lu 1

1College of Mechanical & Electrical Engineering, Sanjiang University, Nanjing, China
2School of Mechanical Engineering, Jiangnan University, Wuxi, China
3College of Engineering, Nanjing Agricultural University, Nanjing, China

Correspondence should be addressed to Jie Kang; kang_jie@sju.edu.cn

Received 11 February 2023; Revised 12 October 2023; Accepted 16 October 2023; Published 6 November 2023

Academic Editor: Sana Ullah Jan

Copyright© 2023 Jie Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traditional agricultural cultivation is labor-intensive and vulnerable to natural climate conditions, such as heavy rainfall and
drought. Concerns over food safety have also brought attention to the growth of weeds and the misuse of agricultural chemicals,
which can have a serious negative impact on crop growth and safety. We investigated the feasibility of the YoloX model in the field
of agricultural weed identification to address the problem of weed handling in growing crops. In order to overcome the effects of
climate and environment, we chose a purchased weed model for our study. We used a binocular vision camera for image
acquisition and created a database containing 6,000 samples and enhanced the original database of 1,000 samples with data. In
order to address the complex background of the weed images, the changing lighting environment of the binocular camera-acquired
images, and the noise interference, we performed histogram equalization, image denoising, and background processing on the
dataset. These processing measures aim to improve the overall learning efficiency of the model in order to improve the accuracy of
deep learning on weeds. Target detection platforms based on the TensorFlow and PyTorch frameworks were established, respec-
tively, and the mainstream target detection models Faster R-CNN and YoloX series target detection models were trained with the
same dataset for comparative analysis using the longitudinal comparison method. The results show that the training under the
PyTorch framework yields better models than the training under the TensorFlow framework. YoloX-x has higher recognition
accuracy, faster recognition speed, and more stable compared to the Faster R-CNN model, with an average recognition rate of
97.07% and an average recognition time of 0.062 s. Moreover, the optimization of YoloX by incorporating an attention-focusing
mechanism resulted in an improved accuracy rate with a decrease in recognition time, with an average recognition rate of 97.70%
and an average recognition time of 0.029 s.

1. Introduction

In the 21st century, with the rapid development of science
and technology, human beings have entered the 5G era, and
various intelligent devices have emerged one after another,
making our life more convenient. Traditional agricultural
cultivation is greatly affected by weed growth, which affects
the growth and yield of crops. The widespread use of agricul-
tural chemicals has had a great negative impact on the natural
environment and human health and has also caused quality
and food safety problems. It takes a lot of human andmaterial
resources to solve such problems and is greatly affected by the
natural climate, such as heavy rainfall, drought, etc. [1]. The

problem of food quality and food safety has been caused by
the negative impact of product quality and food safety. There-
fore, in the field of agriculture, the use of precision control
variables and standardized intelligent agricultural operations
not only to achieve the use of herbicides to accurately spray
weeds to complete the task of weed control but also for the
growth characteristics of different crops to accurately control
the amount of watering and fertilization, so as to reduce the
use of agricultural chemicals, environmental problems and
food safety problems, and the cost of agricultural operations.
It has become a popular research topic [2].

Subeesh A pointed out [3] that traditional weed manage-
ment is not very efficient and has a negative impact on the
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integration of smart agricultural machinery. Therefore, adopt-
ing automatic weed detection has a positive role in solving
weed problems and increasing crop yield. Consequently, a
computer vision-based intelligent targeted spraying system
was adopted to study weed recognition in bell pepper fields
based on deep learning using RGB images. By comparing the
feasibility of Alexnet, GoogLeNet, Inception V3, and Xception
networks and continuously adjusting parameters for optimal
performance, it was ultimately found that Inception V3 dem-
onstrated superior performance in 30 sets of datasets and 16
subdatasets, with accuracy rates of 97.7%, 98.5%, and a recall
rate of 97.8%. Xiaojun et al. [4] proposed a detection method
that identifies crops and defines all other green plants as weeds.
In comparison to YOLOv3, CenterNet, and Faster R-CNN for
vegetable weed detection, Faster R-CNN had a significantly lon-
ger computation time than YOLOv3 and CenterNet. YOLOv3
and CenterNet had similar computation times, with YOLOv3
achieving an accuracy of 97.1% and a recall rate of 97.0%.
Among these three models, YOLOv3 and CenterNet exhib-
ited high accuracy and computational efficiency [4].

In the study of companion weeds in cornfields, Wang
et al. [5] proposed a fine-grained weed recognition method
using Bilinear CNN. Comparing nine general image classifi-
cation models such as AlexNet and VGG-16, it was found
that using VGGNet-19 and ResNet-50 as backbone networks
to extract weed features and applying transfer learning to
train the model on the dataset resulted in higher recognition
rates and speeds. The final results indicated that network
models incorporating high-order information had a higher
accuracy of 98.5% compared to single models, and the use of
Bilinear CNN and lightweight feature extraction networks
effectively improved model recognition speed [5]. To address
weed problems during the growth of cotton seedlings in
Xinjiang, Yan et al. [6] used Xinjiang cotton and weeds as
experimental subjects. They established a Faster R-CNN rec-
ognition model based on VGG16 training and analyzed the
reasons for the low weed recognition rate. The conclusion
was that the overlapping and varying density of weeds and
cotton growth positions in cotton fields led to a low recogni-
tion rate. Through comparative analysis, VGG16 was deter-
mined to be the best feature extraction network, resulting in
a model with high recognition accuracy and robustness, with
an average recognition rate of 91.49% and an average recog-
nition time of 0.262 s [6]. In the study of weed leaf age
recognition in farmland by Quan et al. [7], they proposed
the use of Mask R-CNN to obtain plant leaf age. By compar-
ing different weather conditions (sunny, cloudy, and after

rain) and shooting angles (30° and 45°) for slant and top
views, the results showed that using the NMS algorithm and
ResNet-101 in the Mask R-CNN model, under cloudy condi-
tions and at a 30° viewing angle, achieved the highest recog-
nition rate of 91.50% with an average processing time of
0.5683 s [7].

YOLOX and Faster R-CNN are both outstanding algo-
rithms in the field of object detection, each with its own
characteristics and advantages. By comparing their perfor-
mances, we can better understand their differences, provid-
ing references and foundations for choosing the most
suitable algorithm. The YOLOX algorithm is known for its
high real-time performance, accuracy, lightweight nature,
excellent scalability, and wide applicability. It has become
one of the highly regarded algorithms in the object detection
domain. On the other hand, the Faster R-CNN algorithm is a
deep learning-based object detection framework that employs
a two-stage detection method. It generates candidate boxes
using the region proposal network (RPN) and performs
detection using a classification network. Its performance on
multiple datasets is excellent, making it one of the standard
algorithms in the field of object detection.

As computer vision and deep learning technologies con-
tinue to evolve, attention mechanisms have gained widespread
attention as a core component of object detection algorithms.
Late, attention mechanisms have also been extensively studied
and applied in the field of image processing. Therefore, apply-
ing attention mechanisms to the YOLOX algorithm can play a
crucial role in further enhancing algorithm performance and
application effectiveness.

(1) Themain objective of this project is to conduct research
on image recognition and processing for a mobile par-
allel multifunctional agricultural robot. The project
focuses on rice field environments and involves iden-
tifying two categories of objects: the first category con-
sists of weeds such as seedlings (YM), rotala indica
(JJC), fernwort (JC), fat hen (HC), purslane (MCX),
and flixweed (BNH). Seedlings and weed species are
illustrated in Table 1; the second category encompasses
crops, with young seedlings being the primary focus.
The project involves tasks such as image capture,
image processing, and utilizing neural networks to
achieve the recognition of weeds and crops in the
images. Themain contents of the project are as follows:
image collection using a stereo camera to create a
dataset and image annotation using labeling.

TABLE 1: Illustration of seedling and weed varieties.

YM JC HC MCX JJC BNH
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(2) Due to challenges in sample data collection and sig-
nificant environmental constraints, offline data aug-
mentation will be performed on the collected dataset.
This augmentation includes noise reduction, image
transformations, contrast and brightness adjustments,
etc. Subsequently, image preprocessing will be con-
ducted,mainly focusing on noise elimination, highlight-
ing details, and background processing.

(3) Establishing Faster R-CNN and YOLOX object detec-
tion platforms based on TensorFlow and PyTorch
neural network frameworks. The preprocessed weed
dataset will be used for learning and training. The
Faster R-CNN and YOLOX object detection platforms
will be trained, and a comparison will be made between
their recognition accuracy and detection times. This
step aims to identify themost suitable object detection
model based on the project’s dataset.

(4) Establishing an optimized YOLOX object detection
platform with the inclusion of the CBAM mixed
attention mechanism based on the PyTorch neural
network framework. This optimized platform will be
compared against the object detection model derived
from step (3), analyzing the advancements brought
by the enhanced YOLOX model.

2. Related Work

2.1. Image Acquisition. Image acquisition camera is the core
part of the image source. The important thing for image
acquisition is the clarity of the acquisition of detailed fea-
tures, so the choice of 1.3 million pixels, the choice of USB
communication, convenient and rapid, easy to communi-
cate, the final use of Huibo VisionJet technology company’s
binocular camera HBV-1714-2 S2.0, 1.3 million pixels, man-
ual zoom.

2.2. Dataset Creation. The dataset includes three major parts:
training set, validation set, and test set, and the establishment
of the dataset is one of the most core parts in the establish-
ment of deep learning models. In order to make the deep
learning model achieve more accurate recognition effect, it
needs to provide rich dataset for sample training [8]. Based
on the main direction of this research is weed recognition,
and the research time of the project is winter, it is extremely
difficult to obtain natural weeds, so we use the simulation
plant model of online purchase weeds, including seedlings,
ashwagandha, sowing artemisia, fern, horsetail, knapweed,
with corrugated cardboard, simulate the real weed growth
environment, in order to reduce the similarity of the image,
use the random method of weed location’s, number, and
species randomly placed. The original size of the image
was 720 × 960, and the collected samples were cropped
and transformed to the final sample size of 800 mm × 400
mm, as shown in Figure 1, and a total of 1,000 samples were
collected to make the dataset.

2.3. Data Enhancement. In order to increase the training
samples of the images, improve the feature information of

the dataset, and increase the image features for the subse-
quent deep learning, this project adopts data enhancement
techniques, according to the actual situation encountered
during sample acquisition, such as shooting angle, light
intensity, distance between the camera and the target object,
etc., by adding noise processing to the images, mainly adding
Gaussian noise and pretzel noise [9]. The image is trans-
formed, including horizontal, vertical, and equal scale flip;
the brightness and contrast map of the image are adjusted.
After image data enhancement, the original 1,000 datasets
can be expanded to 6,000.

2.4. Image Preprocessing. To improve the accuracy and reduce
the learning time during deep learning, three methods are
cited for preprocessing. First, image denoising is performed
to eliminate Gaussian noise as well as pretzel noise in the
image by median filtering [10]. Second, the image contrast
is improved by histogram equalization to highlight more fea-
ture information of the target object. Finally, because of the
complex background in the image, only weed and crop fea-
tures are retained in the image as much as possible by pre-
serving the green color gamut in HSV space and black
masking the rest of the color gamut. Finally, by utilizing
the “shutil”module in Python, a dataset partitioning program
was developed. Through a random combination approach,
the dataset was divided into training, validation, and testing
sets with a ratio of 7 : 2 : 1.

2.5. Convolutional Neural Network. Convolutional neural
network is a neural network structure containing convolu-
tional layer, pooling layer, and fully connected layer, which
plays a crucial role in the field of computer vision [11]. Weed
images have rich feature information, such as shape features,
texture features, color features, and location space features
[12], through the learning and training process of the con-
volutional neural network, the network is able to identify and
classify different weed images, so as to achieve good classifi-
cation performance. Among them, the convolutional layer
uses a filter to perform convolutional operations on the image,
which can extract high-level feature information from the
image; the pooling layer downsamples the convolutional fea-
tures to reduce the size and complexity of the data and increase
the robustness of the features; and the fully-connected layer
maps the pooled features to the final classification results. In
convolutional neural network, each convolutional layer, pool-
ing layer, and fully connected layer consists of multiple neu-
rons, and during the learning process, the network updates the
network parameters by back propagation algorithm to get
more accurate classification results [13]. The code of this

FIGURE 1: Sample images.
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project is developed under Win10 system environment, GPU
is MX150, CPU is intel i5 8th Gen, Pycharm integrated devel-
opment environment, utilizing OpenCV, a computer vision
library based on Python language.

2.5.1. Introduction of Faster R-CNN Algorithm. Region-based
convolutional neural networks (R-CNNs) are among the
pioneers that apply deep learning to object detection, and
their family has been continuously refined to include Fast
R-CNN, Faster R-CNN, and Mask R-CNN [14]. This project
focuses on Faster R-CNN for object detection. R-CNN serves
as the foundation for many object detection algorithms, and
its model is shown in Figure 2. R-CNN selects multiple pro-
posed regions, resulting in several forward computations of
the convolutional neural network, which makes the model
computationally expensive and slow.

Faster R-CNN is optimized based on R-CNN and Fast R-
CNN. As shown in Figure 3, the model uses the entire image
for convolution. Faster R-CNN is based on two main com-
ponents: the RPN and the classifier. RPN generates candidate
regions for the target objects, while the classifier classifies and
locates these regions [15].

RPN calculates feature maps for the entire image through
convolutional neural network convolution and generates
candidate regions using sliding windows. For each candidate
region, RPN calculates its degree of matching with the real
region and returns the most matched candidate as input for
the next step. RPN can quickly generate a large number of
candidate regions using convolutional neural networks and
adapt to different sizes and aspect ratios of target objects
using sliding windows. The classifier is designed based on
R-CNN. It takes the candidate regions generated by RPN as
input and performs convolutional calculations for each region
to obtain feature vectors. Then, the classifier classifies these
feature vectors to determine whether each region contains a
target object and locates it. The classifier adopts a multilayer
convolutional neural network structure that can perform fine
classification and localization for each candidate region, effec-
tively reducing model computation and time [16].

Faster R-CNN achieves efficient and accurate object
detection by introducing RPN and optimizing the design of
R-CNN. Its emergence provides strong support for the devel-
opment of deep learning in the field of object detection. It is
therefore presented and used as a YoloX comparison model.

Selective search

Convolutional 
neural network

Boundary
 prediction

Category
prediction

FIGURE 2: Structure of R-CNN model.
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FIGURE 3: Structure of Faster R-CNN model.
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2.5.2. Introduction to the YoloX Algorithm. YoloX is the latest
algorithm of the Yolo series (You Only Look Once) proposed
by Kuang at the end of 2021, with YoloX-s, YoloX-l, YoloX-
m, YoloX-x, etc. YoloX is based on YoloV3 and Darknet 53
and continues to use the Focus backbone in YoloV5 and
the mosaic data enhancement in YoloV4. The network struc-
ture of YoloV5 and the mosaic data enhancement of YoloV4,
the innovative proposal of using multiround classification
regression layer and anchor-free anchorless mechanism,
reducing the complexity of the detection head and the num-
ber of predictions per sample [17]. Compared with the pre-
vious Yolo series, Yolo used to implement classification and
regression in a 1× 1 convolutional kernel, but in YoloX, it is
implemented separately first, and then integrated in the final
prediction stage. The use of SimOTA advanced label assign-
ment makes the computation faster and reduces additional
hyperparameters [18].

2.5.3. CBAM Hybrid Attention Mechanism. The convolu-
tional block attention module (CBAM) hybrid attention
mechanism is a deep learning model structure used for com-
puter vision tasks. As shown in Figure 4, it consists of two
attention modules: the channel attention module and the
spatial attention module. The channel attention module is
employed to weight the feature maps of each channel,
enhancing the importance of useful information while reduc-
ing the weight of irrelevant information. The spatial atten-
tion module, on the other hand, focuses on weighting each
spatial position of the feature map, giving higher importance
to relevant spatial positions and diminishing the importance
of irrelevant ones. These two attention modules can be com-
bined to form the CBAM hybrid attention mechanism, fur-
ther improving model performance and enhancing weed

species recognition. We will now elaborate on these two
types of attention mechanisms.

The channel attention mechanism directs the model’s
focus onto specific channels within the feature map, thereby
compressing spatial information. The specific steps involve:
applying both max-pooling (MaxPool) and average-pooling
(AvgPool) to the input feature map, resulting in two
1× 1×C vectors (C being the number of channels). Subse-
quently, these vectors are fed into fully connected layers
(shared multilayer perceptrons, MLP) with shared parame-
ters to produce feature outputs. The output features are then
element-wise summed, activated through a sigmoid function,
and multiplied element-wise with the original input feature
map, yielding the channel-attentive weighted feature map
needed for the spatial attention module. The process is
illustrated in Figure 5, and the formula is represented by
Equation (1), whereW denotes the weights of the sharedMLP.

Mc Fð Þ ¼ sigmoid MLP AvgPool Fð Þð þMLP MaxPool Fð Þð Þð
¼ sigmoid W1 W0 Fcavg∼

� �� �þW1 W0 Fcmaxð Þð Þ� �
:

ð1Þ

The spatial attention mechanism directs the model’s
focus onto the spatial plane of the feature map, identifying
the spatial regions within the recognition plane that require
attention, thereby reducing the channel dimensionality. The
steps involve performing global average pooling and global
max pooling separately across all channels at each pixel posi-
tion of the input feature map, resulting in twoH×Wmatrices.
Following this, a convolution operation with a 7× 7 kernel is

Input feature Refined feature
Spatial attention

Channel attention

FIGURE 4: Structure of CBAM attention mechanism.
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FIGURE 5: Structure of channel attention mechanism flowchart.
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performed to increase receptive field size, followed by a sig-
moid activation function. Finally, the spatial attention weights
aremultiplied element-wise with the channel-attentive weighted
feature map, resulting in the spatial-attentive weighted feature
map. The process is shown in Figure 6, and the computational
formula is Equation (2). First, the input feature matrix F’ is
subjected to average pooling and maximum pooling operations
to obtain the corresponding feature matrices F’avg and F’max.
Then, these two feature matrices are convolved with a 7× 7
convolution kernel f7× 7. Finally, the convolution results are
processed by a sigmoid function to obtain the final output
matrix Ms.

Ms F’ð Þ ¼ sigmoid f7×7 AvgPool F’ð Þ; MaxPool F’ð Þ½ �ð Þð Þ
¼ sigmoid f7×7 Fsavg∼; Fsmax∼

� �� �� �
:

ð2Þ

In summary, the spatial and channel attention mechan-
isms focus on the spatial positions and channel relationships
of the input feature map, respectively. In this study, we intro-
duce these mechanisms into the YOLOX object detection
architecture to enhance the model’s recognition performance.

2.5.4. YOLOX Object Detection Architecture with Attention
Mechanism Module. Based on the aforementioned research
analysis, we conclude that the CBAM hybrid attention mech-
anism significantly aids in feature extraction for the YOLOX
recognition model. In this section, we will detail how the
CBAM module is utilized to provide weed-specific feature
extraction capabilities and how it is integrated into the
YOLOX detection architecture. This integration aims to
achieve a comparative analysis of recognition rates between
the improved YOLOX algorithm with CBAM and the original
YOLOX algorithm on the same dataset.

To achieve this, we introduce a class label vector into the
input layer of both the CBAM channel attention module and
the spatial attention module. This enables the selective appli-
cation of attention mechanisms based on the class label vec-
tor. For instance, the attention mechanism is applied when
the corresponding class of the feature map is related to weed
seedlings, while it is suppressed for nonweed seedling classes.
This approach is implemented within the Forward propaga-
tion function of the CBAM module. The Forward function
defines how inputs for both healthy and unhealthy tomato
conditions flow through the CBAM module, involving a
series of calculations and operations to yield the output
with weighted features.

To enhance the accuracy of weed category detection, we
leverage the CBAM module to boost the model’s ability to
extract features related to weed categories. We then incorpo-
rate the CBAM module into the YOLOX architecture after
the CspLayer within its CSP module. In this study, the
YOLOX structure with the embedded CBAM module
remains unchanged. The improved YOLOX network struc-
ture, with the CBAM module added, is depicted in Figure 7.
It allows for easy adjustment of parameters for both the
channel attention submodule and the spatial attention sub-
module within the code.

3. Methods

The evaluation metrics for target detection mainly include
precision, recall, average precision, all-category average pre-
cision, F1 score, and logarithmic average miss rate [19]. By
testing the Faster R-CNN target detection model and YoloX-x’s
target detection model under TensorFlow and PyTorch net-
work framework, AP, mean average precision (mAP), time,
F1 score, and related test data are derived to further analyze
the models. Subsequently, the YoloX target detection model
optimized by adding CBAM hybrid attention mechanism
based on PyTorch neural network framework was established
and tested, resulting in AP, mAP, time, F1 scores, and related
test data for comparison and analysis with the unoptimized
model4.

4. Experiment

4.1. Testing the Faster R-CNN Model. The Faster R-CNN
object detection algorithm was trained and tested using
both the TensorFlow and PyTorch frameworks. In the initial
training round, weights pretrained on the voc07+ 12 dataset
from the Pascal competition were utilized. The training
parameters for this round are presented in Table 2, while
the Faster R-CNN model’s specific parameters are outlined
in Table 3. Training was conducted for 100 epochs using the
TensorFlow framework, resulting in 100 sets of weight files.
The model was further fine-tuned with the weights from the
100th training epoch, achieving a loss function value of
0.621. Similarly, in the PyTorch framework, training was
carried out for 100 epochs, yielding 100 sets of weight files,
and the final fine-tuning was performed using the weights
from the 100th epoch, resulting in a loss function value of
0.700. Following the completion of training, the model was
subjected to prediction testing, which encompassed both
image and video testing.

The trained Faster R-CNN model underwent image test-
ing, where a single input image was passed through the

Avg
pooling

Max
pooling

FIGURE 6: Structure of spatial attention mechanism flowchart.
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Faster R-CNN model for object detection. Bounding boxes
were drawn around detected objects using different colors,
and the names of the detected objects were annotated on
each bounding box. The final output consists of the image
with the annotated bounding boxes and a text (txt) file

containing the coordinates of the detected objects. Please
refer to Figures 8–10 for visual representations. For video
testing, the dataset was compiled into a single video to simu-
late real-world detection scenarios. This video was input to
the YOLOX model for object detection, with a set frames per
second (FPS) of 25.0. The ultimate output is a video contain-
ing bounding boxes around detected objects. The visual
representation of the results can be observed in Figure 10.

4.2. Testing YOLOX Model and Optimized YOLOX Model.
In this section, we primarily test the YOLOX algorithm in
different sizes, namely YOLOX-s, YOLOX-l, YOLOX-m,
and YOLOX-x, using both the TensorFlow and PyTorch
frameworks. During the training phase, the parameters are
set according to Table 4, while the YOLOX model’s specific

Inputs (640,640,3)

Focus (320,320,12)

Conv2D_BN-SiLU (320,320,64)

Conv2D_BN-SiLU (160,160,128)

Csp Layer (160,160,128)

Conv2D_BN-SiLU (80,80,256)

CspLayer (80,80,256)

Csp Layer (40,40,512)

Conv2D_BN-SiLU (40,40,512)

Conv 2D_BN -SiLU (20,20,1024)

Csp Layer (20,20,1024)

SPPBottleneck (20,20,1024)

Conv2D_BN -SiLU (pooling)

0 5 9 13

Conv2D_BN -SiLU (stacking)

Concat+CSPLayer

UpSampling2D

Conv2D

Concat+CSPlayer

Upsampling2D

Conv2D

Downsample

Concat+CSPLayer

YOLOHead

YOLOHead

YOLOHead

Inputs (640,640,3) Conv2D_BN-SiLU

Conv2D_BN-SiLU
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Cls ObjReg

Conv2D_BN-SiLU

Conv2D_BN-SiLU

Downsample

Concat+CSPlayer

CBAM

CBAM

CBAM

CSPDarknet SPPBottleneck

Feature fusion

YOLOHead

Resblock body

Resblock body

Resblock body

Resblock body

FIGURE 7: Improved YOLOX detection architecture.

TABLE 2: Training parameter settings.

Parameter name Set value

input_shape 416× 416
Backbone Resnet50
Anchors_size 64, 256, 512
Freeze_Epoch 50
Freeze_batch_size 2
UnFreeze_Epoch 100
Unfreeze_batch_size 1
num_workers 1

TABLE 3: Faster R-CNN model parameter settings.

Parameter name Set value

Trunk extraction network backbone resnet50
Confidence 0.5
Nonextreme suppression value nms_iou 0.8
A priori box anchors_size 128, 256, 512

FIGURE 8: Test sample image.
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parameters are outlined in Table 5. In the initial training
round, weights pretrained on the COCO dataset provided
by the Microsoft team were utilized. Training was conducted
for 100 epochs, resulting in 100 sets of weight files. The final

fine-tuning was performed using the weights from the 100th
epoch. Following the completion of training, the models
underwent prediction testing, which encompassed both image
and video testing.

JJC 0.67

JJC 0.79

JJC 0.77

BNH 0.82

BNH 0.81

YM 0. 97 YM 0.98

JJC 0.60

FIGURE 9: Predicted results.

MCX 0.54

MCX 0.79

MCX 0.51
JJC 0.63

JJC 0.53

MCX 0.70

YM 0.85
YM 0.85

FIGURE 10: Video testing results.
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The trained YOLOX model and the YOLOX model opti-
mized with the CBAM mechanism underwent image testing.
For each input single image, the YOLOX model was utilized
for object detection. Bounding boxes were drawn around
detected objects using various colors, and the names of the
detected objects were annotated on each bounding box.
Please refer to Figures 11–13 for visual representations. To
simulate real-world detection scenarios, the dataset was com-
piled into a single video and input to the YOLOX model for
object detection. The video’s FPS were set to 25.0. The final
output is a video containing bounding boxes around detected
objects. The visual representation of the results can be
observed in Figure 13.

5. Experimental Data Analysis

5.1. Analysis of AP Metrics. Due to the specific requirements
of the project where recognition speed is important, we pri-
marily focus on accuracy and F1 score as the main evaluation
metrics. In the PyTorch framework, we conducted object
detection on different types of weeds or crops using four
versions of Faster R-CNN and YOLOX. The results are
depicted in Figures 14 and 15. Despite all algorithms achieving

an average detection time of under 500ms, causing minimal
impact on system performance, it is evident from the graphs
that the YOLOX-X model exhibits the best performance
in both frameworks. Consequently, we choose to perform a
comparative analysis between the YOLOX-X algorithm
and Faster R-CNN. In the PyTorch framework, significant
improvements in AP values are observed for Faster R-CNN,
YOLOX, and the optimized YOLOX-X algorithm. Upon
comparing the data from Figures 15 and 16, it is observed
that the AP values for seedlings in Faster R-CNN and YOLOX
algorithms are nearly identical, differing by only 0.23%. The
AP value for the improved YOLOX-X reaches 100%. For the
recognition of “Portulaca” and “Amaranthus blitum,” the AP
values obtained from YOLOX-X training are higher by 1.7%
and 2.06%, respectively, compared to Faster R-CNN training.
The recognition rate of “Portulaca”with the improvedYOLOX-X
reaches 100%. In the case of “Polygonumorientale” and “Stellaria
media,” Faster R-CNN training yields higher AP values by 1.24%
and 0.42%, respectively, than YOLOX-X training, and the
improved YOLOX-X outperforms Faster R-CNN with a 1.31%
higherAP value for “Polygonumorientale” and a 4.21% lowerAP
value for “Stellaria media.”

5.2. Analysis of mAP and Recognition Time. Under both the
TensorFlow and PyTorch frameworks, the model YOLOX-X
achieves the highest mAP values for all categories: 93.57%
and 97.07%, respectively. Regarding recognition time, YOLOX-s
demonstrates the fastest recognition time at 0.038 and 0.027 s,
respectively.

In the TensorFlow framework, when comparing the data
from Figure 15, it is apparent that YOLOX-s boasts the fast-
est recognition time of 0.038 s, but its mAP is only 84.81%.
Accuracy is a crucial metric for assessing the performance of
machine learning models. In practical projects, even with fast
recognition times, lack of improved accuracy would limit
substantial progress. Comparing the mAP and recognition
time between Faster R-CNN and YOLOX-x, the mAP value
of YOLOX-x is only 0.86% higher than that of Faster R-CNN.
In terms of recognition time, YOLOX-x is 0.566 s faster than
Faster R-CNN, representing an 8.45-fold improvement.

In the PyTorch framework, the training times for all
models remain under 0.1 s. YOLOX-s exhibits the fastest
recognition time at 0.027 s, accompanied by an mAP of
96.13%. Comparing the mAP and recognition time between
Faster R-CNN and YOLOX-x, YOLOX-x’s mAP value is
0.43% higher than that of Faster R-CNN. Regarding recog-
nition time, YOLOX-x is 0.007 s faster than Faster R-CNN,
as depicted in Figure 16. Consequently, in the PyTorch frame-
work, the mAP and recognition time differences between
YOLOX-s, YOLOX-x, and Faster R-CNN are minimal, war-
ranting further analysis based on F1 score.

Figures 17–19 indicate that in the TensorFlow frame-
work, both the Faster R-CNN and YOLOX-X algorithms
exhibit excellent recognition performance for seedlings.
They achieve high AP and F1 scores, demonstrating their
accuracy in seedling recognition. Both the Faster R-CNN
and YOLOX-X models perform well in recognizing most
plants, with each model potentially having a slight advantage

TABLE 4: YoloX training parameter settings.

Parameter name Set value

input_shape 416× 416
mosaic False
Cosine_scheduler False
Freeze_Epoch 50
Freeze_batch_size 2
UnFreeze_Epoch 100
Unfreeze_batch_size 1
num_workers 1

TABLE 5: YoloX model parameter settings.

Parameter name Set value

Input image size 416× 416
Confidence score 0.5
Nonmaximum suppression value 0.8
Maximum predicted boxes 100

FIGURE 11: Test sample image.
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in specific plant recognition. However, considering mAP and
time comprehensively, YOLOX-X is superior.

In object detection, higher values for both recall and
precision are ideal. However, these values are often nega-
tively correlated in practice. The F1 score is a metric com-
monly used in statistics to measure the accuracy of binary
classification algorithms. In object detection, it balances pre-
cision and recall, providing a good evaluation of algorithm
performance.

From the figures, it can be observed that both YOLOX-X
and Faster R-CNN have their strengths in the TensorFlow
framework. However, in the PyTorch framework, all algo-
rithms exhibit significantly improved F1 scores, indicating
greater stability. Analyzing the AP values and F1 scores of
YOLOX-X and Faster R-CNN, as shown in Figures 20 and
21, it is evident that the F1 score is positively correlated with
the AP value; as the AP value increases, the F1 value also
increases. Nevertheless, looking at the F1 score trendlines,

JJC 0.99

JJC 0.94

JJC 0.99

BNH 0.82

BNH 1.00

YM 1.00 YM 1.00

JJC 0.97

FIGURE 12: Predicted results.

YM 1.00 YM 1.00

JC 0.99

JC 0.94

JC 0.98
JC 0.97

JC 0.94

JC 0. 87

FIGURE 13: Video testing results.
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Faster R-CNN’s F1 score has more variation, while YOLOX-
X’s F1 score shows smoother changes, indicating better sta-
bility in YOLOX-x’s object detection algorithm.

Figures 20 and 21 illustrate that the improved YOLOX
algorithm demonstrates significant improvements in both
recognition time and accuracy. In the PyTorch framework,
the improved YOLOX algorithm performs optimally.

5.3. Analysis of F1 Score. In object detection, higher values of
both recall and precision are desired, but in practice, these
values often exhibit a negative correlation. The F1 score is a
metric used in statistics to measure the accuracy of binary

classification models [20]. In object detection, it strikes a
balance between precision and recall, providing a compre-
hensive evaluation of a model’s performance. Figures 20 and
21 illustrate the radar charts of F1 scores for Faster R-CNN
and YOLOX series in both the TensorFlow and PyTorch
frameworks.

In Figure 20, we can observe that in the TensorFlow
framework, YOLOX-X exhibits the most balanced F1 score
within the YOLOX series. This indicates that the YOLOX-X
model possesses good stability. Compared to YOLOX-X,
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FIGURE 14: Radar chart of AP values for Faster R-CNN and YOLOX-x in the PyTorch framework.
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FIGURE 15: Radar chart of AP values for improved YOLOX-x in the PyTorch framework.
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both YOLOX-X and Faster R-CNN have their respective
strengths. As shown in Figure 21, under the PyTorch frame-
work, all models show a significant improvement in F1 values,
suggesting increased stability across the models. When com-
paring the AP values and F1 scores of YOLOX-X and Faster
R-CNN in Figures 20 and 21, a positive correlation between
F1 score and AP value is evident. Figures 22–25 indicate
higher AP values correspond to higher F1 scores. However,
examining the F1 score trend lines for YOLOX-X and Faster
R-CNN, we notice that Faster R-CNN’s F1 score fluctuates
more significantly, while YOLOX-X’s F1 score changes more
gradually. This observation indicates that YOLOX-X’s object
detection model offers better stability.

5.4. Summary and Analysis. The main tasks in this section
involve testing object detection algorithms and conducting
data analysis using a cross-comparison approach. The Faster
R-CNN and YOLOX object detection algorithms are separately

tested under the TensorFlow and PyTorch frameworks.
Evaluation metrics such as AP values, mAP values, time,
and F1 scores are obtained. Additionally, the YOLOX
algorithm with the inclusion of the CBAM mixed attention
mechanism is tested, and similar evaluation metrics are
derived. In terms of data analysis, a horizontal analysis
approach is initially used to comprehensively compare
Faster R-CNN and YOLOX-X, revealing varying evaluation
metrics when faced with different recognition targets.
Subsequently, a vertical analysis approach is employed to
compare the YOLOX algorithm with the optimized YOLOX
algorithm, analyzing the advancements brought by the
Improved YOLOX algorithm.

The CBAM mixed attention mechanism is an adaptive
weighting algorithm for input features, helping the algorithm
better capture crucial information in images. Incorporating
the CBAM mixed attention mechanism into the YOLO-X
algorithm results in the following optimizations:
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FIGURE 18: Mixed comparison of mAP and time for improved YOLOX series and YOLOX series in TensorFlow framework.
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(1) Critical feature selection for enhanced precision: The
attention mechanism directs YOLOX’s focus toward
selecting more crucial features, enhancing algorithm
precision and robustness.

(2) Noise ignoring and redundancy reduction: The atten-
tion mechanism allows YOLOX to ignore irrelevant
background noise, filtering out redundant informa-
tion. This enables the algorithm to swiftly and accu-
rately detect target objects, enhancing efficiency and
speed.

The addition of the CBAM mixed attention mechanism
thus improving YOLOX-X in terms of accuracy, efficiency,
and effectiveness.
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FIGURE 21: Radar chart of F1 scores for Faster R-CNN and YOLOX series in the PyTorch framework.
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Faster R-CNN AP 98.86% 88.33% 83.71% 95.34% 97.00% 93.05%

YoloX-x AP 98.80% 94.98% 86.63% 94.78% 98.00% 88.23%

Faster R-CNN F1 0.95 0.71 0.75 0.94 0.95 0.88

YoloX-x F1 0.98 0.93 0.91 0.94 0.96 0.88
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FIGURE 22: Mixed comparison of F1 score and AP value for Faster
R-CNN and YOLOX-X in TensorFlow framework.

YM JJC HC MCX BNH JC

Faster R-CNN AP 99.65% 97.92% 94.23% 96.34% 96.75% 94.94%

YoloX-x AP 99.88% 96.68% 93.81% 98.04% 98.81% 95.19%

Faster R-CNN F1 0.94 0.92 0.91 0.9 0.96 0.9

YoloX-x F1 0.98 0.95 0.94 0.96 0.95 0.95

0.85
0.87

0.89

0.91

0.93

0.95

0.97

0.99

90.00%
91.00%
92.00%
93.00%
94.00%
95.00%
96.00%
97.00%
98.00%
99.00%

100.00%

FIGURE 23: Mixed comparison of F1 score and AP value for Faster
R-CNN and YOLOX-X in PyTorch framework.
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YoloX-x AP 98.80% 94.98% 86.63% 94.78% 98.00% 88.23%
Improved YoloX-x AP 99.01% 95.93% 97.63% 91.58% 97.75% 96.13%
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FIGURE 24: Mixed comparison of F1 scores and AP values for
YOLOX-X and improved YOLOX-X in the TensorFlow framework.
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FIGURE 20: Radar chart of F1 scores for Faster R-CNN and YOLOX series in the TensorFlow framework.
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6. Discussion

Through comprehensive cross-comparison and analysis of
the data, YOLOX-X has emerged as the optimal algorithm
under the PyTorch framework. Further optimization through
the integration of the CBAMmixed attention mechanism has
led to significant improvements in relevant metrics. With
the introduction of the attention mechanism, the algorithm
becomes more adept at selecting critical features while disre-
garding background noise. This enhancement in feature selec-
tion has not only heightened detection accuracy but also
improved the algorithm’s robustness. Additionally, the reduc-
tion in redundant information has resulted in shortened
training times and accelerated training speeds. In sum, the
addition of the attention mechanism has not only refined the
precision and robustness of the algorithm but also stream-
lined its training process and boosted its efficiency.

7. Conclusion

To address the challenges posed by traditional agricultural
cultivation practices and ensure food safety, a focus has been
placed on tackling weed-related issues during crop growth.
In order to assess the feasibility of the YOLOX series in
the realm of agricultural weed recognition, a self-constructed
dataset based onweed algorithmswas utilized. The performance
of various object detection algorithms, including Faster R-CNN,
YOLOX-S, YOLOX-M, YOLOX-L, and YOLOX-X, was tested
under both the TensorFlow and PyTorch frameworks. A com-
prehensive evaluation encompassing AP, mAP, recognition
time, and algorithmic F1 scores was conducted. Through these
tests, it was concluded that the YOLOX algorithm holds strong
potential forweed recognition. Specifically, YOLOX-X exhibited
higher recognition accuracy, faster processing speed, and greater
stability compared to the Faster R-CNN algorithm. YOLOX-X
achieved anmAP of 97.07%with an average recognition time of
0.062 s. By integrating the CBAM mixed attention mechanism
into the YOLO-X algorithm, the optimized YOLOX algorithm
exhibited significant improvements. It achieved an mAP of
97.70% with an average recognition time of 0.029 s. These
results underscore the remarkable feasibility and advancement
of YOLOX algorithms in the field of agricultural weed recogni-
tion. Moreover, there remains ample room for further enhance-
ments in the YOLOX algorithm. Ongoing research is needed to

achieve a better balance between detection speed and accuracy,
thereby continuing to elevate the algorithm’s performance.
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