
Research Article
Based on Sliding Mode and Adaptive Linear Active Disturbance
Rejection Control for a Magnetic Levitation System

Ziwei Wu ,1,2 Kuangang Fan ,1,2,3 Xuetao Zhang,2,4 and Weichao Li1,2

1School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Hongqi Street No. 86,
Ganzhou 34100, China
2Magnetic Suspension Technology Key Laboratory of Jiangxi Province, Jiangxi University of Science and Technology,
Hongqi Street No. 86, Ganzhou 34100, China
3Ganjiang Innovation Academy, Chinese Academy of Sciences, Academy of Sciences Street No. 1, Ganzhou 34100, China
4School of Mechanical and Engineering, Jiangxi University of Science and Technology, Hongqi Street No. 86, Ganzhou 34100, China

Correspondence should be addressed to Kuangang Fan; kuangangfriend@163.com

Received 25 May 2023; Revised 10 August 2023; Accepted 20 September 2023; Published 31 October 2023

Academic Editor: Lihang Feng

Copyright © 2023 Ziwei Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The magnetic levitation system has evident advantages in reducing energy consumption, but its nonlinear characteristics increase
the difficulty of control. This study proposes a control method that combines the improved particle swarm optimisation algorithm
with sliding mode control and adaptive linear active disturbance rejection control (IPSO–SMC–ALADRC) to address the problems
of weak anti-interference ability and stability in the application of traditional control methods in single-point magnetic levitation
ball systems. First, a mathematical model of a single-point magnetic levitation ball is established. Second, the proportional and
differential coefficients of LADRC are adjusted using adaptive laws, and the adaptive LADRC is combined with SMC to achieve
stable control of the magnetic levitation ball. Moreover, an improved particle swarm optimisation algorithm is proposed to address
the considerable number of adjustable parameters in the controller. The convergence and stability of the control algorithm were
demonstrated using the Lyapunov equation. Finally, PID and LADRC are introduced for simulation and experimental comparison
to verify the effectiveness of this control method. Results indicate that IPSO–SMC–ALADRC has excellent stability and anti-
interference performance. This study addresses the problem of weak stability and anti-interference performance in the application
of traditional control methods in the maglev system and further promotes the application of active disturbance rejection control in
the magnetic levitation system.

1. Introduction

Magnetic levitation, as a new technology, has several advan-
tages, such as friction-free, low power consumption, safety,
and reliability [1, 2]. This technology has been widely used in
a variety of industries, such as aerospace and transportation.
However, realising effective suspension control of magnetic
levitation is a major problem that must be addressed in engi-
neering applications [3, 4]. On the one hand, themaglev system
increases the difficulty of suspension control due to its instabil-
ity, uncertainty, and high nonlinear characteristics. On the
other hand, the magnetic levitation system is easily affected
by external disturbances and changes in its own parameters.
Consequently, how to realise its stable suspension control

[5–7] has been a popular research topic amongst researchers.
Ouyang et al. [8] proposed an adaptive linear active distur-
bance rejection method for magnetic levitation ball control
based on the error elimination criteria, and it has achieved
good dynamic performance but no experimental verification.
Yu and Mu [9] introduced pure linear active disturbance
rejection control (LADRC) to manage the magnetic suspen-
sion. This control method has excellent anti-disturbance per-
formance. However, the parameter self-tuning of LADRC is
not realised. Su et al. [10] proposed to apply ADRC to the
control of single-point magnetic levitation balls. This control
method has excellent stability, but it has not been verified
through experiments. Su et al. [4] proposed a time-varying
ADRC method to control a magnetic levitation ball. This
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control method has strong robustness, but it cannot achieve
adaptive adjustment of parameters. Wei et al. [11] proposed
an LADRC method based on the cuckoo algorithm to control
the magnetic levitation ball. This method achieved excellent
control accuracy, but no dynamic load test was carried out.
Qinghua et al. [12] proposed an adaptive radial basis function
control method. This control method does not idealise the
controlled object and has excellent stability. However, the
experimental verification does not introduce other control
methods. Yang et al. [13] proposed an adaptive sliding
mode control (SMC) with radial basis function neural net-
work compensation and applied it to a magnetic levitation
ball. Under this control mode, the magnetic levitation ball has
almost no overshoot and exhibits good tracking performance,
but it has not been verified through experiments. Ma et al.
[14] proposed an RBF-PID control algorithm. The RBF-PID
algorithm can not only make the magnetic levitation ball
stable but also exhibit excellent applicability. However, the
algorithm disregards the uncertainty of the model regarding
the magnetic levitation ball. Yang et al. [15] proposed an adap-
tive SMC based on an RBF neural network (RBFNN) to solve
the tracking control problem of magnetic levitation systems.
The results show that the proposed controller exhibits fast
convergence and robustness. However, selecting parameters
during the controller design process is difficult. Zhang et al.
[16] designed a particle swarm optimisation PSO–SMC–fuzzy
PID control algorithm to minimise the chattering phenome-
non in a magnetic levitation ball system. This approach not
only minimises the chattering phenomenon in the magnetic
levitation ball but also proves that the algorithm has strong
robustness. However, the control performance of the magnetic
levitation ball system declined. Wang et al. [17] proposed a
maglev ball suspension control algorithm based on the combi-
nation of MPC+EIDSMO to minimise the control perfor-
mance of a maglev ball due to external random uncertainties.
The algorithm greatly improves the tracking performance of
the magnetic levitation ball system, but its design is highly
complex. Shen et al. [18] proposed a fuzzy neural network to
compensate for the PID control algorithm, which not only
made the control accuracy of the suspension ball less than
approximately 0.4mm but also made the system have a good
adjustment time. Nonetheless, no corresponding experimental
verification has been conducted. Wei et al. [19] proposed an
improved AdaGrad optimal control algorithm, which makes
the magnetic levitation ball system have good dynamic perfor-
mance and robustness to a certain extent, but its delay time is
relatively long. Sun et al. [20] proposed a supervisory control
method based on RBFNN to achieve effective control ofmaglev
vehicles. This method achieves excellent control performance
in minimising random interference forces, flexible trajectories,
and time delays in maglev vehicle systems. However, this
method ignores the effect of different parameters on the con-
troller design and stability. Sun et al. [21] proposed an adaptive
SMC based on the minimum parameters of the RBF neural
network. This control method has strong robustness but lacks
experimental comparison. Sun et al. [22] proposed an adaptive
neural network with robust position control, which can realise
the high-precision control of amagnetic levitation orbit, but the

theoretical analysis is not extensive. Lv and Long [23] proposed
a nonlinear adaptive control algorithm to address the influence
of external parameter changes in a maglev ball system. This
algorithm requires no linearisation because the stable suspen-
sion control of a maglev ball can be realised. However, the
influence of higher-order terms in the maglev ball system is
ignored. Gao et al. [24] proposed a deep learning control algo-
rithm that does not require complex parameter tuning of tra-
ditional PID controllers; hence, it has a better control effect
than PID controllers. In different cases, the adaptability of
this method and its application in a maglev train must be
further studied. In literature [25], a projection recursion
method based on adaptive backstepping control was proposed
to adjust the position of the maglev ball in real-time by using a
neural network. The proposed method exhibits precise and
rapid tracking of the desired position of the maglev ball. How-
ever, the convergence rate of the maglev system will signifi-
cantly decrease when the control signal (i.e., the suspended air
gap value signal) greatly changes. In literature [26], a neural
controller was developed and applied to regulate nonlinear and
unstable maglev systems. Research shows that neural networks
can be used as robust controllers for nonlinear and unstable
systems and exhibit better performance than classical control-
lers. However, these networks require significant computa-
tional effort and analysis of complex time series. Li et al. [27]
proposed a backstepping control method based on LESO to
improve the control performance of the magnetic levitation
system. This method efficiently addressed the challenge of
achieving stable suspension of the magnetic levitation ball
under uncertain conditions and realised high-precision track-
ing according to the actual suspension height. However, the
algorithm is mainly reflected in the simulation of software and
has not been integrated with an experimental platform. Liu
and Zuo [28] proposed a fuzzy PID control algorithm indepen-
dent of the precise mathematical model of the system to
address the nonlinearity, hysteresis, and instability of the mag-
netic levitation system that the traditional control algorithm
could not solve. The algorithm can realise the stable suspension
of the magnetic levitation ball and has the advantages of high
control precision and strong adaptive ability. However, the
fuzzy rules required by this algorithm are highly complex
and require extensive expertise experience. Gong and Li [29]
adopted the strong learning method optimised by PSO to opti-
mise and adjust the system parameters and address the issue of
the poor dynamic performance that arises from traditional
control ofmagnetic levitation systems. Although this algorithm
has the advantage of strong robustness, it cannot effectively
restrain the jitter problem caused by a maglev ball system.
Literature [30] proposed a neural network controller for the
trajectory tracking of a magnetic levitation system. This
approach uses neural networks to approximate unknown
parameters in the magnetic levitation system. Although the
stability of the system is ensured, approximations for other
parameters, such as nonmodeled dynamics and eddy currents,
are neglected. Zhou et al. [31] applied active disturbance rejec-
tion control to the triaxial inertial stabilised platform of aerial
remote sensing and achieved good control accuracy. However,
their experimental and simulation projects did not achieve
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one-to-one corresponding. Humaidi et al. [32] combined the
PSO algorithm with active disturbance rejection control to
regulate the magnetic levitation ball system, resulting in
improved dynamic performance of the controller. However,
the aforementioned article did not address the problem that
the PSO algorithm is susceptible to converging into local opti-
mal solutions. Humaidi and Badr [33] proposed linear active
disturbance rejection control and nonlinear active disturbance
rejection control to regulate the position of a single-link flexible
joint robot. This control mode has good anti-interference per-
formance, but it has not applied the control mode to the actual
robot system. Humaidi et al. [34] combined the PSO algorithm
with the nonlinear active disturbance rejection control mode,
which has excellent control accuracy, but it cannot achieve self-
tuning of parameters.

In this study, we use the adaptive law for the proportional
and differential term coefficients of linear active disturbance
rejection control to realise the adaptive adjustment of param-
eters. Moreover, we combine adaptive linear active distur-
bance rejection control (ALADRC) with SMC to realise the
stable control of the magnetic levitation ball system. We also
introduce an IPSO algorithm to address the problem of an
excessive number of adjustable parameters in the controller.
This control method solves the problems of weak stability
and anti-interference performance in the application of tra-
ditional control methods in magnetic levitation systems and
further promotes the application of active disturbance rejec-
tion control in magnetic levitation systems. The remaining
parts of this article are as follows: Section 2 specifies the
nonlinear mathematical model of magnetic levitation balls.
Section 3 introduces the designed IPSO-SMC-ALADRC
control method, and provides theoretical derivation and
analysis of the algorithm used. Section 4 conducted simula-
tion and data analysis on the control mode. The control
method was experimentally validated on the experimental
platform in Section 5. Section 6 elaborates on the conclusions
and directions for future work.

2. Single-Point Magnetic Levitation Ball Model

2.1. System Introduction. The single-point maglev system
consists of a laser sensor, a steel ball, a power amplifier,
and a control terminal. The operating principle of the equip-
ment is as follows: first, the sensor senses the distance of the
steel ball, converts the distance information into a voltage
signal, and the voltage signal is inputted into the control
terminal. The suitable control voltage is calculated by utilis-
ing the algorithm, and the control signal is converted into a
more accurate current signal using the power amplifier.
Finally, the current flows through the electromagnetic coil
to generate an electromagnetic force, thereby achieving a
balanced suspension. The direction of motion of the mag-
netic levitation ball is perpendicular to the ground. The sche-
matic of the magnetic levitation ball system is shown in
Figure 1.

2.2. Model of Magnetic Levitation Ball System. Before build-
ing the mathematical model of the maglev ball, the following
assumptions need to be made:

(1) Assume that there is no reluctance in the core.
(2) Assume that there is no magnetic leakage.
(3) Assume that the flux is uniformly distributed.

According to Figure 1, the nonlinear mathematical
model of the magnetic levitation ball system can be expressed
as follows:

m
d2x tð Þ
dt2

¼ F x; ið Þ þmg;

F x; ið Þ ¼ K
i
x

� �
2
¼ μ0N2S

4
i
x

� �
2

mgþ F i0; x0ð Þ ¼ 0

U tð Þ ¼ Ri tð Þ þ L1
di tð Þ
dt

8>>>>>>>>><
>>>>>>>>>:

; ð1Þ

where F i;ð xÞ is the magnet suction, and F i0;ð x0Þ is the mag-
net suction generated by the steel ball at the equilibrium
point. According to Equation (1), the suction force of magnet
F i;ð xÞ on the steel ball is increased using Taylor’s formula at
the equilibrium point i0;ð x0Þ:

F x; ið Þ ¼ F x0; i0ð Þ þ ki i − i0ð Þ þ kx x − x0ð Þ þ oR xð Þ;
ð2Þ

where ki is the stiffness coefficient for the current, and kx is
the stiffness coefficient for the suspension height. Therefore,
the partial derivative of the electromagnetic suction at the
equilibrium can be obtained as follows:

ki ¼ ∂F
∂i  j x0;i0ð Þ ¼

2Ki0
x20

¼ μ0N2Si0
2x02

; ð3Þ

kx ¼ ∂F
∂x  j x0;i0ð Þ ¼ −

2Ki0
x30

¼ −
μ0N2Si02

2x03
; ð4Þ

where oR xð Þ is the higher-order term of the electromagnetic
force. Given that the magnet suction is equal to the gravity of
the steel ball at the equilibrium point, we have the following
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FIGURE 1: Schematic diagram of magnetic levitation system.
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expression:

F i0; x0ð Þ þmg¼ 0: ð5Þ

After ignoring the higher-order term, system Equation
(1) can be rewritten as follows:

m
d2x
dt2

¼ ki i − i0ð Þ þ kx x − x0ð Þ: ð6Þ

Substituting Equations (3) and (4) into Equation (6)
yields:

m
d2x tð Þ
dt2

¼ μ0N2i0S
2x20

i −
μ0N2i20S
2x30

x: ð7Þ

Applying the Laplace transform to both sides of Equation
(7) yields:

s2X sð Þ ¼ 1
m
μ0N2i0S
2x20

I sð Þ − 1
m
μ0N2i20S
2x30

X sð Þ: ð8Þ

The following expression is obtained because of the pres-
ence of a power amplifier in the single-point maglev ball
system:

G1 sð Þ ¼ U sð Þ
I sð Þ ¼ Ka: ð9Þ

Substituting Equation (9) into Equation (8), we have the
following:

s2X sð Þ ¼ 1
m
μ0N2i0S
2x20Ka

U sð Þ − 1
m
μ0N2i20S
2x30

X sð Þ: ð10Þ

According to Equation (10), the transfer function of the
single-point maglev ball system can be expressed as follows:

G sð Þ ¼
1
m

μ0N2i0S
2x20Ka

s2 þ 1
m

μ0N2i30S
2X3

0

: ð11Þ

Let x¼ x1, ẋ1 ¼ x2, y¼ x1, The expression for the model
of a magnetic levitation ball is as follows:

ẋ1 ¼ x2

ẋ2 ¼ d tð Þ þ b0u

y ¼ x1

8><
>: ; ð12Þ

where x1 is the levitation height of the magnetic levitation
ball, x2 is the movement speed of the magnetic levitation ball,
and d tð Þ is the total disturbance to the system.

Remark 1. Currently, two methods are used to establish mag-
netic levitation ball models. The first one is to obtain a linear
mathematical mapping model of the magnetic levitation ball
through nonlinear coordinate transformation. The other one
is to ignore the higher-order term of the electromagnetic
force at the equilibrium point of the magnetic levitation
ball to obtain its mathematical model. The advantage of
establishing a mathematical model through coordinate trans-
formation is that the simulation results are more similar to
the actual results. The disadvantage is that the control
method used has more adjustable parameters, and the work-
load of parameter adjustment is greater. The advantage of
ignoring higher-order modelling methods is that establishing
mathematical models is more convenient, and more effective
control methods can be used to regulate magnetic levitation
balls. The disadvantage is that some errors may occur during
simulation and practical applications. This study adopts a
modelling method that ignores higher-order terms.

The parameter values and physical meanings of the
actual model of the magnetic levitation ball system are shown
in Table 1.

3. Controller Design

In this work, SMC is combined with adaptive linear active
disturbance rejection control to improve the stability of the
controller. An adaptive law with two parameters is designed

TABLE 1: Parameters of the magnetic levitation ball system.

Variable and descriptions Values

The mass of steel ball m kgð Þ 0:094
Coil turns N 2;450
Current in the coil at balance i0 Að Þ 0:5752
The suspension gap when the steel ball is balanced x0 mð Þ 0:01
Magnetic pole area S m2ð Þ π × 10−4

Permeability of vacuum μ0 H=mð Þ 4π × 10−7

Static inductance L1 Hmð Þ 135
Steel ball radius r mð Þ 0:0125
Coil resistance R Ωð Þ 13:6
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based on the principle of error elimination for the propor-
tional coefficient kp and differential coefficient kd of PD
module in LADRC. Furthermore, debugging by means of
the approximation method is impossible because of the
excessive number of adjustable parameters in the controller.
Accordingly, the IPSO algorithm is introduced to confirm
the parameters in the controller. The specific control struc-
ture is shown in Figure 2.

3.1. Sliding Mode Control Design. SMC can improve the
robustness of the controller and the control precision of
LADRC. The sliding surface can be designed as follows:

s¼ w1e1 þ ė1; ð13Þ

where w1 is the scalar design parameter, e1 ¼ z1 − yr is the
error between the input and the output signals of the linearly
extended state observer, and yr is the input signal of the
system.

ṡ ¼ w1ė1 þ ë1 ¼ w1ė1 þ z̈1 − ÿr: ð14Þ

As z1 is the evaluation value of the suspension height x1
of the steel ball, z2 is the evaluation value of the movement
speed x2 of the steel ball, z3 is the evaluation value of the total
disturbance d tð Þ of the system, and ẍ1 ¼ ẋ2 ¼ d tð Þþ b0u,
Equation (14) can be expressed as follows:

ṡ ¼ w1ė1 þ ë1 ¼ w1ė1 þ z3 þ b0u − ÿ r: ð15Þ

SMC control law ys can be expressed as follows based on
the characteristics of SMC:

ys ¼ yseq þ yssw; ð16Þ

where yseq is the equivalent part, and yssw is the switching
part, and its expression is expressed as follows:

yseq ¼ ÿr − w1ė1 − z3 ð17Þ

yssw ¼ −w2s; ð18Þ

where w2 is the scalar design parameter. The SMC control
law can be expressed as follows:

ys ¼ ÿ r − w1ė1 − z3 − w2s: ð19Þ

3.2. Design of LADRC. The mathematical expression of the
control voltage is as follows:

u¼ kp ys − z1ð Þ þ kd ẏr − z2ð Þ þ ÿ r −
z3
b0

; ð20Þ

where kp and kp represent the proportional and differential
coefficients, respectively; b0 is the tunable gain; u is the con-
trol input; ys is the output signal of SMC and the input signal
of the LADRC controller; z1; z2 and z3 represent LESO’s
evaluation status of the controlled object, and they evaluate
the ball’s suspension height x1, the ball’s moving speed x2
and the total disturbance, respectively, which can designed as
follows:

PlantAdaptive-
PD

LESO

SMC

×

b0

ysyr y

–

–
–

–

z3

u
1/b0

e1

z2

fd

z1

y· r

e2

[αT 1]

–

FIGURE 2: Control structure block diagram of SMC–ALADRC.
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ż1 ¼ z2 þ β1 y − z1ð Þ
ż2 ¼ z3 þ β2 y − z1ð Þ þ b0u

ż3 ¼ β y − z1ð Þ

8><
>: ; ð21Þ

where β¼ β1; β2; β3½ �T is the gain vector of LESO, and y is
the output of the system, which is the actual suspension
height.

Remark 2. LESO is the most important part of a LADRC
controller. It mainly regards the total disturbance received
by the system as a new state variable and the input and
output of the controlled object as the input of the linear
extended state observer, through which the state variable of
the control system is evaluated.

LESO’s characteristic equation can be expressed as fol-
lows:

D sð Þ ¼ s3 þ β1s2 þ β2sþ β3 ¼ sþ ωoð Þ3; ð22Þ

where β¼ 3ωo 3ω2
o ω3

o½ �, and ωo is the observation
bandwidth.

The initial control voltage u0 output by the PD module
can be expressed as follows:

u0 ¼ kp ys − z1ð Þ þ kd ẏr − z2ð Þ þ ÿ r: ð23Þ

3.3. Design of LADRC Adaptive Law. The expression of the kp
and kd parameter adaptive law proposed in literature [35] is
as follows:

ḃkp ¼ δkp ys − z1ð ÞϑÂ Ã
=ekp ð24Þ

ḃkd ¼ δkd ẏr − z2ð Þζ½ �=ekd; ð25Þ

where ϑ and ζ are adjustable parameters. δ is the error filter,
and it can be expressed as follows:

δ¼ αT 1½ �e2: ð26Þ

The error e2 ¼ y− yr is determined according to the
input and output signals of the system. where is the appro-
priate coefficient α¼ t1. When δÀ! 0, it satisfies e2 À! 0.

Take the derivative of δ to obtain:

δ̇¼ ẋ2 − ÿ r þ 0 αT
Â Ã

e2 ¼−aδþ kp ys − z1ð Þ þ kd ẏr − z2ð Þ
ð27Þ

Remark 3. To eliminate the singularity in the adaptive law of
Equations (24) and (25), the problem that k̃p and k̃d are
equal to zero. The integral form of ḃkp and ḃkd can be written
as an adaptive law, expressed as follows:

bkp ¼
Z

t

0
δkp ys − z1ð ÞϑÂ Ã

=ekpdτ þ kp0; ð28Þ

bkd ¼
Z

t

0
δkd yr − z2ð Þζ½ �=ekddτ þ kd0; ð29Þ

where bkp and bkd are the estimated values of proportional
term coefficient kp and differential term coefficient kd in
LADRC. We choose the appropriate parameters (kp0 and
kd0) to ensure that k̃p ¼ kp −bkp and k̃d ¼ kd −bkd are not
equal to zero.

3.4. Improved Particle Swarm Optimisation. The controller
cannot be debugged through experience due to the presence
of a considerable number of adjustable parameters. There-
fore, we introduce an improved particle swarm intelligence
algorithm to optimise the controller parameters: b0;ωo; kp0;
kd0; α; ζ; ϑ; kp, and kd .

Remark 4. Choosing an appropriate compensation gain b0 is
crucial in improving the dynamic performance of the system.
In this study, an IPSO algorithm was used to confirm the
parameter value.

Constraint factors were used to improve the convergence
speed based on the particle swarm algorithm. A simulated
annealing operation was introduced, and the temperature
was set based on the initial state of the population. Mean-
while, the Metropolis criterion and temperature guidance were
used to guide the population to accept differential solutions
with a certain probability. Accordingly, the local convergence
problems were addressed, and the parameter optimisation
accuracy was improved. The particle velocity and position
update rules in the PSO algorithm that introduces constraint
factors are as follows:

Vij kþ 1ð Þ ¼ ρVij kð Þ þ c1r1 Pbestij − Xij kð ÞÀ Áþ c2r2 gbestij − Xij kð Þ
� �

Xij kþ 1ð Þ ¼ Xij kð Þ þ Vij kþ 1ð Þ

8<
: ð30Þ

xij kð Þ and vij kð Þ represent the jth dimensional position
component and velocity component of the ith particle at

time k, respectively; c1 and c2 are the cognitive and popula-
tion factors, respectively; r1 and r2 are the random factors
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between [0,1]; The best position component in the jth
dimension that the ith particle and all particles currently pass
through, respectively; ρ is the constraint factor, and its spe-
cific form is as follows:

ρ¼ 2

2 − φ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2

− 4φ
p��� ���

φ¼ c1 þ c2

8><
>: : ð31Þ

We choose ITAE as the fitness function:

JITAE ¼
Z 1

0
t e tð Þj jdt: ð32Þ

The process of IPSO optimisation algorithm tuning the
SMC–ALADRC controller parameters is shown in Figure 3,
and the main steps are as follows:

Step 1: Initialise the speed and position of each particle.
Calculate the fitness of each particle according to
the fitness function Equation (32) and determine
the optimal particle position of the initial
population.

Step 2: Execute the IPSO algorithm to update the speed
and position of each particle using Equations
(30) and (31). Calculate the fitness of each parti-
cle and update the individual optimal position
and the population optimal position according
to the fitness. If the IPSO algorithm converges,
then proceed to the next step; otherwise, repeat
Step 2.

Step 3: Introduce the simulated annealing algorithm and
set its initial position as the optimal position of
the current PSO population. Moreover, ran-
domly select a new position within the algorithm
domain and guide the population to accept the
different solutions with a certain probability
through the Metropolis criterion and tempera-
ture guidance.

Step 4: If the fitness of the final position of the simulated
annealing algorithm is less than that of the cur-
rent population’s most favourable position of the
IPSO algorithm, then it will be taken as the new
population’s optimal position of the IPSO algo-
rithm. The annealing temperature will be
updated. The update formula is: Te kð þ 1Þ¼
Te kð Þ∗lamda;

The following figure compares the fitness function con-
vergence curve of the IPSO algorithm with that of the tradi-
tional PSO algorithm.

Figure 4(a) shows that traditional PSO algorithms require
approximately 40 iterations to converge. Figure 4(b) demon-
strates that the improved particle swarm algorithm can con-
verge after approximately 20 iterations. The improved particle
swarm algorithm has a low fitness value. This finding

indicates that the IPSO has faster convergence speed and
search accuracy.

3.5. Theoretical Verification
Assumption 1. The signals of the system converge, and the
errors of the system are all equal to zero.

In the following, we will use Lyapunov to prove the con-
vergence and stability of adaptive laws. The Lyapunov func-
tion is designed as follows:

V ¼ 1
2
s2 þ 1

2
δ2 þ 1

2
ekpϑekp þ 1

2
ekdζekd: ð33Þ

It is known that V is positively definite. Take the deriva-
tive of the above formula:

V̇ ¼ sṡ þ δδ̇ þ ekpϑėkp þ ekdζėkd: ð34Þ

Substituting Equations (22) and (27) into Equation (34)
yields:

Start

The IPSO algorithm is 
initialised

The particles are 
successively substituted 
into the SMC–ALADRC

controller

Run the control system 
and calculate the fitness 

value of each particle

Whether the 
expected 

conditions are 
met?

End

Update particle position 
and velocity according to 
the guidance of simulated 
annealing algorithm and 

compressibility factor

No

Yes

FIGURE 3: Optimization flow chart by improved particle swarm
optimisation algorithm.
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V̇ ¼ s w1ė1 þ ë1ð Þ þ δ −aδþ kp ys − z1ð Þ þ kd ẏr − z2ð ÞÂ Ãþ ekpϑ−1ėkp þ ekdζ−1ėkd

¼ s w1ė1 þ z̈1 − ÿ rð Þ − aδ2 þ δkp ys − z1ð Þ þ δkd ẏr − z2ð Þ þ ekpϑ−1ėkp þ ekdζ−1ėkd

¼ s w1ė1 þ z3 þ ys − ÿ rð Þ − aδ2 þ δkp ys − z1ð Þ
þ δkd ẏr − z2ð Þ þ ekpϑ−1ėkp þ ekdζ−1ėkd:

ð35Þ

Substituting Equation (23) into the above formula yields:

V̇ ¼ s w1ė1 þ z3 þ ÿd − w1ė1 − z3 − w2s − ÿ rð Þ þ δ −aδþ kp ys − z1ð Þ þ kd ẏr − z2ð ÞÂ Ãþ ekpϑ−1ėkp þ ekdζ−1ėkd

¼ s w1ė1 þ z̈1 − ÿ rð Þ − aδ2 þ δkp ys − z1ð Þ þ δkd ẏr − z2ð Þ þ ekpϑ−1ėkp þ ekdζ−1ėkd

¼ s w1ė1 þ z3 þ ys − ÿrð Þ − aδ2 þ δkp ys − z1ð Þ þ δkd ẏr − z2ð Þ þ ekpϑ−1ėkp þ ekdζ−1ėkd:

ð36Þ

Equations (24) and (25) are substituted into the above
formula to obtain the following:

V̇ ≤ −w2s2 − aδ2 þ δkp ys − z1ð Þ þ δkd ẏr − z2ð Þ − ekpϑ−1 δkp ys − z1ð ÞϑÂ Ã
=ekp − ekdζ−1 δkd ẏr − z2ð Þζ½ �=ekd

≤ − w2s2 − aδ2 þ δkp ys − z1ð Þ þ δkd ẏr − z2ð Þ
−δkp ys − z1ð Þ − δkd ẏr − z2ð Þ:

ð37Þ

Simplifying the above formula yields:

V̇ ≤ −w2s2 − aδ2; ð38Þ

where w2 and a are the positive parameters. The above for-
mula can be written as follows:
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FIGURE 4: The convergence curve of Sparrow search algorithm fitness function: (a) convergence curve before algorithm improvement;
(b) convergence curve after algorithm improvement.
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V̇ ≤ 0: ð39Þ

It can be seen that V̇ is negative definite, and because
there is V À!1 when sk kÀ!1 and δk kÀ!1 exist,
according to Lyapunov’s theorem, it can be concluded that
the system is asymptotically stable over a large range at the
coordinate origin.

From Equation (39), it can be concluded that the Lyapu-
nov equation is bounded. According to Barbarat theorem, we
can obtain:

lim
tÀ!∞

s tð Þ ¼ 0; lim
tÀ!∞

δ tð Þ ¼ 0: ð40Þ

By Lyapunov theory k̃p and k̃d are bounded, the error
between the input signal and the input signal it is also
bounded and approaches zero, and all signal of system are
bounded.

4. Simulink Result

We set the parameters of PID and LADRC in the same
optimisation conditions to ensure the fairness of the simula-
tion test and conduct the simulation test with IPSO–SMC–
ALADRC. The following figure shows the convergence curve
of the fitness function of the three control modes.

Figure 5(a)–5(c) demonstrate that the fitness value of
PID eventually converges to 3:389× 10−2, LADRC converges
to 1:112× 10−2, and IPSO–SMC–ALADRC converges to
4:188× 10−3. The fitness value of SMC–ALADRC decreases
by 87.64% and 62.34% compared with those of PID and
LADRC, respectively. Therefore, after IPSO, SMC–ALADRC
has better dynamic performance than PID and LADRC.

The following simulation tests are primarily conducted
to verify the anti-disturbance performance of the three con-
trol modes. We use three error indicators to test the anti-
disturbance ability of the three control methods. The three
error indicators are IAE, ITAE, and ITSE. The expressions of
the three indicators are as follows:

IAE¼
Z

t

0
ey
�� ��dτ ¼ Z

t

0
yr − youtj jdτ; ð41Þ

ITAE¼
Z

t

0
t ey
�� ��dτ ¼ Z

t

0
t yr − youtj jdτ; ð42Þ

ITSE¼
Z

t

0
t ey
�� ��dτ ¼ Z

t

0
t yr − youtð Þ2dτ; ð43Þ

where yr is the set suspension height, and yout is the actual
suspension height.

The following tests were conducted by introducing PID,
LADRC, and IPSO–SMC–ALADRC:

(1) Step signal testing.
(2) Anti-interference test.
(3) Error testing.

The specific parameters of the three controllers in the
simulation are shown in Table 2.

4.1. Step Response. The effectiveness of the three control meth-
ods is verified by comparison. From Figure 6(a), it can be seen
that although PID control has the advantages of simple opera-
tion and fast response, its overshoot is quite large, and the time to
reach a stable suspension position is very long (up to 1.860 s).
The regulation time of LADRC to achieve a stable suspension is
shorter than that of PID, and its regulation time reaches 0.604 s.
However, the overshoot is considerably large. Meanwhile, only
IPSO–SMC–ALADRC can meet the shortcomings of both
approaches. The shortest regulation time also has the smallest
overshoot, and its regulation time is 0.323 s. The adjustment time
of IPSO–SMC–ALADRC has decreased by 82.63% and 46.52%
comparedwith those of PID and LADRC.At the overshoot level,
the overshoot of PID is 10.52%, LADRC is 35.62%, and
IPSO–SMC–ALADRC is 3.42%. Figure 6(b) demonstrates
that the control voltage adjustment times of PID, LADRC, and
IPSO–SMC–ALADRC are 1.495, 0.434, and 0.298 s, respectively.
The adjustment time required for IPSO–SMC–ALADRC to
reach a stable state of control voltage has decreased by 86.67%
and 31.34% compared with those of PID and LADRC,
respectively.

The error indicators of IAE, ITAE, and ITSE of
IPSO–SMC–ALADRC have decreased by 93.41%, 87.64%,
and 75.46% compared with that of PID, respectively. The
error indicators of IAE, ITAE, and ITSE of IPSO–SMC–
ALADRC have decreased by 84.93%, 62.34%, and 23.34%
compared with that of LADRC, respectively. Based on the
simulation results and data level, IPSO–SMC–ALADRC has
better dynamic performance. The specific error values are
shown in Table 3.

4.2. Analysis of Anti-Interference Performance. We used dif-
ferent levels of interference to interfere with the control sys-
tem and demonstrate the anti-interference performance of
the three control methods. The following figure shows the
error trend of the three control methods under different
intensities of interference.

Figure 7(a)–7(c) shows the changes in the three error
criteria of the three control modes when the interference
load increases. The errors of IPSO–SMC–ALADRC are far
less than those of the other two control modes, and those of
PID and LADRC significantly increase when the disturbance
increases. Only the error of IPSO–SMC–ALADRC is in a
relatively stable state, indicating that it has better anti-
interference performance. The interference applied to the
system in this study is pulse signal interference, whose ampli-
tude is determined by the required interference force, and the
interference duration is limited to 0.01 s.

We choose the three control modes of the fd ¼ 5N and
fd ¼ 10N interference loads for comparison to more intui-
tively reflect the disturbance resistance of the three control
modes. The specific effect is shown in Figure 8.

When the interference is 5N, the distances of PID,
LADRC, and IPSO–SMC–ALADRC deviating from the
equilibrium position are 0.984, 1.021, and 0.144mm, respec-
tively, as shown in Figure 8(a). When the interference is 5N,
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IPSO–SMC–ALADRC reduces the distance from the equilib-
rium position by 85.37% and 84.13% compared with those of
PID and LADRC, respectively. Figure 8(b) shows that the con-
trol voltage fluctuations of PID, LADRC, and IPSO–SMC–
ALADRC were 0.176, 0.301, and 0.092 V, respectively, after
adding 5N interference. The control voltage fluctuations
of IPSO–SMC–ALADRC after interference decreased by
47.73% and 69.44% compared with those of PID and
LADRC, respectively. When the interference is 10N, the

distances of PID, LADRC, and IPSO–SMC–ALADRC deviating
from the equilibrium position are 1.477, 2.311, and 0.201mm,
respectively, as shown in Figure 8(c). IPSO–SMC–ALADRC
reduces the distance from the equilibrium position by 86.39%
and 91.30% compared with PID and LADRC, respectively.
Figure 8(d) shows that the control voltage fluctuations of PID,
LADRC, and IPSO–SMC–ALADRC were 0.234, 0.672, and
0.156V after adding 10N interference, respectively. The fluctu-
ation amplitude of IPSO–SMC–ALADRC’s control voltage after
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FIGURE 5: Fitness function convergence curve: (a) convergence curve of PID fitness function; (b) convergence curve of LADRC fitness
function; (c) convergence curve of IPSO–SMC–ALADRC fitness function.
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interference decreased by 33.33% and 76.79% compared with
those of PID and LADRC, respectively. The simulation results
and data levels can prove that IPSO–SMC–ALADRC has excel-
lent anti-interference performance, and the greater the interfer-
ence intensity, the more evident the superiority of IPSO–
SMC–ALADRC’s anti-interference ability.

Table 4 illustrates that the error indicators of IAE, ITAE,
and ITSE of IPSO–SMC–ALADRC decreased by 94.55%,
93.83%, and 79.49% compared with those of PID when the

interference load is 5N, respectively. The error indicators of
IAE, ITAE, and ITSE of IPSO–SMC–ALADRC have decreased
by 90.89%, 84.01%, and 16.38% comparedwith that of LADRC,
respectively.When the disturbance load is 10N, the IAE, ITAE,
and ITSE error indicators of IPSO–SMC–ALADRC are
decreased by 94.84%, 95.57%, and 84.28% compared with those
of PID, respectively. The IAE, ITAE, and ITSE error indicators
of IPSO–SMC–ALADRC are reduced by 92.04%, 89.36%, and
23.24% compared with those of LADRC, respectively,

TABLE 2: Controller parameters in simulation analysis.

Controller Parameter Value Parameter Value

PID
kp 1;245:6532

ki 256:3254
kd 8;569:2224

LADRC
b0 6:1245

ωo 465:2365
ωc 46:2652

IPSO–SMC–ALADRC

b0 1:2659 kd0 0:0536
ωo 1;501:2356 kp 4:2656
kp0 1;256:2564 kd 2:3654
α 0:0256 ϑ 41:6522
ζ 31:5157
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FIGURE 6: Step response: (a) suspension height; (b) control voltage.

TABLE 3: Error index of step response.

Reference signal Controller IAE ITAE ITSE

Step
PID 4:586× 10−2 3:389× 10−2 3:120× 10−3

LADRC 2:005× 10−2 1:112× 10−2 9:989× 10−4

IPSO–SMC–ALADRC 3:021× 10−3 4:188× 10−3 7:658× 10−4
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indicating that IPSO–SMC–ALADRC has better dynamic per-
formance and robustness.

5. Experimental Verification

The hardware part of the experiment platform is composed
of the STM32F10 embedded system, A/D module, steel ball,
computer control terminal, laser sensor, drive module, and

electromagnet. In terms of software, vofa is used for wave-
form display, and Keil uvision5 is utilised for programming.
The experimental equipment samples at a frequency of
1,000Hz. The specific experimental equipment is shown in
Figure 9.

HG-C1100 is the laser displacement sensor used in this
experimental platform. This type of sensor can measure the
distance of objects without contact and exhibits the
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characteristics of high accuracy, large range, and strong anti-
interference ability. The working principle of the experimen-
tal platform is as follows: The A/D module is used to convert
the position signal of the steel ball into the initial control
voltage. The control voltage is imported into the computer
control terminal through the embedded system. The control
variable is calculated by the control algorithm in the com-
puter control terminal. Moreover, the control variable is
transformed from the form of voltage to the driving current

through the drive module, and the driving current is inputted
to the electromagnet. The steel ball overcomes its own grav-
ity through the electromagnetic suction generated by the
electromagnetic field, thereby achieving suspension.

Here, we selected step signal yr ¼ 10mm as the input
signal for experimental verification of three control meth-
ods. At the sixth second, a 4 g magnet was added below the
steel ball as a load interference to conduct interference
testing.
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The controller parameters verified by experiments are
not completely consistent with those analysed by simulation
due to the simplification of the controlled object model in
simulation analysis. Accordingly, the actual system control
parameters must be adjusted and optimised based on the
simulation parameters. The experimental parameters of
each controller are shown in Table 5.

5.1. PID Control Effect. Figure 10(a) shows that PID can
achieve the suspension of steel balls. However, the error
between its actual suspension height and the set suspension
height fluctuates within Æ0.640mm, and severe shaking
occurs during the actual control process. Figure 10(b)
demonstrates that the error between the actual control volt-
age of the PID and the expected control voltage fluctuates

TABLE 4: Error index of step response with interference.

Reference signal Controller IAE ITAE ITSE

Step+ interference (5N)
PID 6:788× 10−2 7:326× 10−2 4:427× 10−3

LADRC 4:065× 10−2 2:833× 10−2 1:086× 10−3

IPSO–SMC–ALADRC 3:702× 10−3 4:521× 10−3 9:081× 10−4

Step+ interference (10N)
PID 8:784× 10−2 1:403× 10−1 6:295× 10−3

LADRC 5:693× 10−2 5:839× 10−2 1:289× 10−3

IPSO–SMC–ALADRC 4:531× 10−3 6:210× 10−3 9:895× 10−4

Electromagnet

Steel ball

Computer
control terminal

Laser sensor

STM32F10
embedded

system

A/D module

Driver module

FIGURE 9: Single-point magnetic levitation ball platform.

TABLE 5: Controller parameters in experimental verification.

Controller Parameter Value Parameter Value

PID
kp 1;245:6532

ki 256:3254
kd 12;000

LADRC
b0 4

ωo 465:2365
ωc 46:2652

IPSO–SMC–ALADRC

b0 4 kd0 0:0536
ωo 1;800 kp 4:2656
kp0 1;256:2564 kd 2:3654
α 0:0256 ϑ 41:6522
ζ 31:5157
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within the range ofÆ0.631Vwithout interference. Figure 10(c)
shows that after the 4 g load interference was added at the
sixth second, the steel ball fell out of control and could not
recover to the equilibrium level. Figure 10(d) demonstrates
that the actual control voltage of the PID loses control and
cannot recover to the expected control voltage after adding
interference.

5.2. LADRC Control Effect. Figure 11(a) shows that magnetic
levitation can achieve levitation under the control of LADRC.
Nevertheless, the error between the actual levitation height
and the set levitation height fluctuates within the range of
Æ0.632mm, resulting in significant shaking during the
actual control process. Figure 11(b) shows that the error
between the actual control voltage and the expected voltage
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FIGURE 10: PID experimental effect: (a) suspension height without interference; (b) control voltage without interference; (c) suspension height
after adding interference; (d) control voltage after adding interference.
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of LADRC fluctuates within the range of Æ0.432V without
adding interference. Figure 11(c) depicts that under the
control of LADRC, the steel ball was subjected to load
interference at the sixth second, without any loss of control
and falling. However, the actual suspension height had a
significant error from the set suspension height, reaching
1.475mm. Figure 11(d) shows that the fluctuation amplitude

of the LADRC control voltage is 1.741V after adding
interference.

5.3. IPSO–SMC–ALADRC Control Effect. Figure 12(a) shows
that the magnetic levitation ball has achieved levitation con-
trol under the control of IPSO–SMC–ALADRC. The error
between the actual levitation height and the set levitation
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FIGURE 11: LADRC experimental effect: (a) suspension height without interference; (b) control voltage without interference; (c) suspension
height after adding interference; (d) control voltage after adding interference.
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height fluctuates withinÆ0.203, which is within a reasonable
range, and no significant shaking phenomenon occurred
during the actual control process. Figure 12(b) shows that
the error between the actual control voltage and the expected
voltage of IPSO–SMC–ALADRC fluctuates within the range
of Æ0.147 V without interference. Figure 12(c) depicts
that the magnetic levitation ball was subjected to a load

interference of 4 g at the sixth second, without any loss of
control and falling, under the control of IPSO–SMC–
ALADRC. Only slight fluctuations occurred, and the actual
levitation height was only 0.384mm away from the set levi-
tation height. In Figure 12(d), the control voltage fluctuation
amplitude of IPSO–SMC–ALADRC is 0.232V after adding
interference.
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FIGURE 12: IPSO–SMC–ALADRC experimental effect: (a) suspension height without interference; (b) control voltage without interference;
(c) suspension height after adding interference; (d) control voltage after adding interference.
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In summary, regardless of whether interference is added
or not, the error of IPSO–SMC–ALADRC is smaller than
that of PID and LADRC. In comparison with the non-
interference PID and LADRC, the actual suspension height
and set suspension height errors of IPSO–SMC–ALADRC
decreased by 68.28% and 67.88%, respectively. In terms of
control voltage, the actual control voltage and expected volt-
age errors of IPSO–SMC–ALADRC decreased by 76.70%
and 65.97% compared with those of PID and LADRC,
respectively. After adding interference, the magnetic levita-
tion ball lost control and fell off under PID control, unable to
recover to the set levitation height. The fluctuation displace-
ment of IPSO–SMC–ALADRC decreased by 73.97% com-
pared with that of LADRC. In terms of control voltage,
the fluctuation amplitude of IPSO–SMC–ALADRC’s control
voltage decreased by 86.67% compared with that of LADRC.
The specific experimental values are shown in Table 6.

6. Conclusions

This study focuses on the problem of theweak anti-interference
ability of traditional control methods in the application of
magnetic levitation ball systems and investigates the single-
point magnetic levitation ball system. A mathematical model
of a single-point magnetic levitation ball was established by
ignoring the high-order term of the balance point of the mag-
netic levitation ball. The PSO was used to adjust the controller
parameters in combination with sliding mode and adaptive
linear active disturbance rejection. The anti-interference and
stability of the three control methods were simulated and veri-
fied. The results showed that IPSO–SMC–ALADRC has strong
stability. IPSO–SMC–ALADRC reduces the error indicators
compared with PID and LADRC, indicating that it has better
dynamic performance.

(1) After improvement, the PSO algorithm has higher
convergence speed and search accuracy, and the
number of iterations required for convergence
decreased by 50%.

(2) When IPSO was used to determine the parameters of
the three control modes, the fitness value of
IPSO–SMC–ALADRC decreased by 87.64% and
62.34% compared with those of PID and LADRC,
respectively, reflecting that it has better dynamic
performance.

(3) Although PID and LADRC have fast response speeds
when the input signal is a step signal, they also generate
excessive overshoot loads. Only IPSO–SMC–ALADRC
addressed the contradiction between super harmonic

and response speed. The adjustment times of PSO–SMC–
ALADRC decreased by 82.63% and 46.52% compared
with those of PID and LADRC, respectively.

(4) After being disturbed, the LADRC and PID control
experienced significant fluctuations and took a signif-
icant amount of time to recover to the equilibrium
position. Only IPSO–SMC–ALADRC experienced
slight fluctuations after being disturbed and quickly
recovered to its equilibrium position. When the inter-
ference is 5N, the fluctuation distance of IPSO–SMC–
ALADRC decreased by 85.37% and 84.13% compared
with those of PID and LADRC, respectively. When
the interference was 10N, the fluctuation distance of
IPSO–SMC–ALADRC decreased by 86.39% and
91.30% compared with those of PID and LADRC,
respectively. The stronger the interference, the more
evident the anti-interference performance advantage
of IPSO–SMC–ALADRC.

(5) In the validation of the magnetic levitation ball exper-
imental platform, regardless of whether interference is
added, the error of the magnetic levitation ball under
IPSO–SMC–ALADRC control is much smaller than
that of PID and LADRC. Without adding interfer-
ence, the errors between the actual suspension height
and the ideal suspension height of IPSO–SMC–
ALADRC were reduced by 68.28% and 67.88% com-
pared with those of PID and LADRC, respectively.
After adding interference, the PID shows uncontrol-
lable detachment and cannot recover to the ideal sus-
pension height. The fluctuation displacement of
IPSO–SMC–ALADRC after interference decreased
by 73.97% compared with that of LADRC.

We will refer to literatures [36–38] in the next stage to
optimise the controller using butterfly optimisation algo-
rithm, gray wolf algorithm, and whale optimisation algo-
rithm. We will further enhance the theoretical analysis of
the article and enrich the research content.
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TABLE 6: Experimental error data for three control methods.

Controller
Error of suspension

height (mm)
Interference error of

suspension height (mm)
Error of control
voltage (V)

Interference error of
control voltage (V)

PID Æ0:640 − Æ0:631 −

LADRC Æ0:632 1:475 Æ0:432 1:741
IPSO–SMC–ALADRC Æ0:203 0:384 Æ0:147 0:232
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