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In small target detection under strong sea clutter or impact signal detection under machinery fault diagnosis, a weak sinusoidal
signal with random amplitude is often contaminated by heavier chaotic noise, and the target information is difficult to detect.
Traditional solutions, such as neural networks or stochastic resonance, can not effectively extract heteroscedasticity of data, which
leads to weak signals not being detected. To overcome these limitations and improve the detection efficiency, an empirical
likelihood ratio statistical method for detecting weak sinusoidal signals with random amplitude under strong chaotic interference
is proposed. First, based on the reconstruction in the phase space of the 1-D observed time series signal with embedding dimension
and time delay, the presented method obtains a multivariate special temporal series as an input. Subsequently, the chaotic single
index (CSI) statistical model is established for single-step prediction, and it can be estimated by the nonparametric locally linear
algorithm for minimizing the mean squares error. Finally, the empirical likelihood ratio statistical method is applied to detect weak
sinusoidal signals with random amplitude. Simulated data and real data experiment results show that the proposed CSI model can
better capture the weak target signal and detect effectively weak target signal under the chaotic interference.

1. Introduction

Weak signal detection or anomaly detection are essential and
critical tasks in machine monitoring, sea cluster target detec-
tion, and fault diagnosis for many modern intelligent systems
[1–3]. The emergence of weak target signals during operation
or monitoring indicates a fault or dangerous situation [4–6]
and leads to enormous economic loss and safety issues. There-
fore, effective and highly accurate weak signal detection tech-
niques can be studied and developed. Based on the traditional
method, the weak signal under chaotic background is gener-
ally not easy to detect. A weak target signal is relatively low
compared to noise. It not only says that the amplitude of the
detected signal is small but also mainly refers to the targeted
signal that is submerged by strong noise and has a low signal-
to-noise ratio (SNR). Current methods for detecting weak
signal research fields are statistical method [7, 8], Duffing
oscillator method [9–11], stochastic resonance method
[12–14], Elman neural network [15], deep learning models

[16], or broad learning [17, 18], etc. Su et al. [7] presented
statistical detection and extraction models with phase thresh-
old autoregressive (PTAR) model and double layer threshold
autoregressive model in chaotic noise, based on the PTAR,
pulse linear form, Markov chain Monte Carlo, and profile
least squares algorithm. Zhihong and Shaopu [9] proposed
a weak signal detection method based on the Van Der
Pol–Duffing oscillator and a weak signal is detected through
the transition from the chaotic to the periodic state. Silva et al.
[12] applied stochastic resonance for a weak periodic signal in
the chaotic systems. Su et al. [15] established Elman deep
learning adaptive detectionmodel for weak pulse signal detec-
tion and used a hypothesis test to detect weak pulse signals
from the prediction error. However, despite several enhance-
ments and renewals in the domain of intelligent signal pro-
cessing, such approaches involve certain limitations and
deficiencies, especially for weak signal detection submerged
in the chaotic interference.
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A sinusoidal signal is a common signal in the fields of
chaotic secure communication, rotating machinery fault
diagnosis, and oscillating circuits, and is often interfered
with by the Gaussian white noise and chaotic noise. Effective
detection of weak sinusoidal signals submerged by chaotic
background noise is the basis for reducing the cost of testing
equipment and developing high-precision testing instru-
ments. It has important theoretical and practical significance.
The detection of weak sinusoidal signals under chaotic noise
has become a hot topic in the academic circles. Su et al. [19]
proposed a local linear Periodic–Kalman filtering hybrid
algorithm to detect weak signals. Maoiléidigh and Hudspeth
[20] described the detection of sinusoidal signals by noisy
supercritical and subcritical Hopf oscillators; Luo et al. [21]
proposed a nonautonomous chaotic oscillator for estimating
the amplitude of weak eigenvalue signals at different fre-
quencies. These methods have achieved certain effects, but
the chaotic noise background cannot be completely removed,
it is susceptible to the white noise interference, and the
adaptability is not strong. Sharifi-Tehrani et al. [22–24] use
the properties of eigen-space and eigen-spectrum of symmet-
ric and Toeplitz covariance matrix, to address the problem of
detecting/estimating very low-SNR sinusoidal signals. Su
et al. [25] aimed at the problem of insufficient detecting
capacity for weak harmonic signals under chaotic interfer-
ence, an empirical likelihood ratio method for detecting weak
harmonic signals is proposed, but this paper introduced a
chaotic linear model, which is inadequate for fitting and
detecting weak signals under the chaotic background because
of the nonlinearity and complexity of the 1-D received data.

This study is inspired by the locally linear nonparametric
techniques and the empirical likelihood ratio statistical
model in heteroscedasticity and sequence correlation tests,
among other fields. To improve the ability of the sinusoidal
signals detection with random amplitude in the background
of strong chaotic noise, this study proposes an empirical
likelihood ratio statistical method for detecting weak sinusoi-
dal signals with random amplitude under strong chaotic
background. The proposed method can obtain reasonable
parameter estimation through a locally linear fitting for mul-
tidimensional spatio–temporal reconstructing data and
reduce the detection error required for weak target signals.

The major innovative contributions of our investigation
can be summarized as follows:

(1) A novel chaotic single index (CSI) statistical model
with phase space reconstructing is established and its
parameters are estimated by a locally linear nonpara-
metric algorithm. This study represents the first
effort to develop a chaotic single index architecture
for weak signal detection, with the most optimal
improvements to handle multidimensional recon-
structing data. Compared with the BP neural net-
works, the model for detecting weak signals under
chaotic noise inherits the excellent properties of low-
computing load and high-prediction accuracy and
avoids the curse of dimensionality.

(2) The empirical likelihood ratio function is further
constructed for detecting hypothesis problems. We
creatively turn the heteroscedasticity test of a single
index model into weak signal detection under chaotic
interference. Additionally, the Lagrange multiplier
technique is applied to solve the empirical likelihood
ratio function and its parameter optimization is real-
ized by using the sequential quadratic programing
(SQP) algorithm.

(3) The proposed scheme can detect weak sinusoidal
signals submerged in chaotic noise under different
conditions and scenarios. An R statistic is investi-
gated for the system parameters and is compared
with chi-square values to discriminate the existence
of a weak sinusoidal signal of random amplitude.

The rest of the article is arranged as follows: Section 2
introduces the problem analysis of sine signal detection.
Section 3 establishes the proposed CSI model and describes
the contour empirical likelihood ratio detection of weak
sinusoidal signals. Section 4 completes the numerical simu-
lation and analysis. Finally, Section 5 gives the conclusion.

2. Problem Analysis for Sinusoidal
Signal Detection

Because chaotic background noise is a strong interference for
the sinusoidal signal with random amplitude, if the observa-
tion 1-D signal is directly applied to judge the existence of
the detected weak signal, its complexity and chaotic nonlin-
earity are difficult to be described or fit and the existence of a
weak sinusoidal signal with random amplitude is hard to be
captured. Therefore, the detection scheme in this study is
proposed by using the single index model with phase space
reconstruction.

From a statistical perspective, the detection of a weak
target signal in the strong background of chaotic interference
can be described as the following binary hypothesis testing
problem:

H0 : y tð Þ ¼ w tð Þ þ n tð Þ
H1 : y tð Þ ¼ w tð Þ þ s tð Þ þ n tð Þ; ð1Þ

where y(t) represents the original received 1-D data signal,
w(t) represents the strong chaotic interference background,
s(t) represents the useful target signal and is independent of
the chaotic interference, and n(t) represents the Gaussian
white noise with a mean of zero. From this general descrip-
tion of the null hypothesis and the alternative hypothesis, we
can understand that the alternative hypothesis implies the
existence of useful information. As shown in Figure 1, in
order to better explain the weak sinusoidal signal with ran-
dom amplitude under strong chaotic noise, lorenz is used to
generate w(t), s(t), n(t), and y(t), where w(t) generates 4,000
points of data for using lorenz without noise; s(t) is the data
of 4,000 points generated by Equation (17); n(t) is the white
noise data of 4,000 points with a mean value of 0 and a
variance of 0.05; y(t) is the sum of w(t), s(t), and n(t).
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Because the strong chaotic interference masks the weak
useful information, the above can not be directly applied for
the existence detecting. Therefore, the strong chaotic inter-
ference should be fitted statistically and suppressed. So the
observation signal can be modeled with a single index statis-
tical model, and the target signal can be obtained by subtrac-
tion. Therefore, the above hypothesis test problem can be
changed into the following form:

H−

0 : y tð Þ − w tð Þ ¼ n tð Þ
H−

1 : y tð Þ − w tð Þ ¼ s tð Þ þ n tð Þ; ð2Þ

when H−

0 is true, the variance VarðyðtÞ−wðtÞÞ (i.e., σ2) is a
constant. When H−

1 is true, σ2 is a time-varying function, so
the weak random amplitude sinusoidal signal detection
under a strong chaotic noise can be transformed into the
following statistical hypothesis testing questions:

H1
0 : σ

2 ¼ σ20
H1

1 : σ
2 ≠ σ20;

ð3Þ

where σ20 is a constant, which is the variance of white noise
n(t). If the null hypothesis is true, the random amplitude
sinusoidal signal in the received 1-D data do not exist; if
the alternative hypothesis is true, the random amplitude
weak sinusoidal signal in the strong chaotic 1-D data exists.

3. Methods

Equation (2) indicates that the strong chaotic interference
should be fitted and removed first, subsequently, the prior

knowledge about the chaotic complexity and nonlinearity of
the background can be applied to reconstruct a size-fixed
tuple in the phase space of the 1-D observed data and the
CSI scheme is established to fit the strong chaotic interfer-
ence. Then the empirical likelihood ratio is used to detect the
weak sinusoidal signal of CSI fitting results.

In this section, the specific flowchart is shown in Figure 2,
in which “signal prediction” means that the input data con-
taining chaotic noise, white noise, and weak sinusoidal signal
are reconstructed in phase space, and then the reconstructed
sequence is built into a chaotic single exponential model for
one-step prediction, and is estimated by a nonparametric
local linear algorithm that minimizes the mean square error
(MSE). The “signal detection” part shows that the estimation
equation obtained by CSI model is used to test the target
signal by empirical likelihood ratio statistics.

3.1. Proposed CSI Model.We creatively utilize CSI regression to
construct a novel hybrid model with the empirical likelihood
ratio technique and local linear expansion for weak signal detec-
tion under chaotic interference, namely, CSI. In order to make it
fully suitable for processing 1-D time series signal data, phase
space reconstruction is applied to the architecture.

3.1.1. Reconstructing a Phase Space Multidimensional Input
Signal. For the observed 1-D data fyðtÞ; t¼ 1; 2;⋯;Γg,
where Γ is the sample size, a phase vector in the recon-
structed phase space can be interpreted as follows:

Y tð Þ ¼ y tð Þ; y t − τð Þ;⋯; y t − m − 1ð Þτð Þð Þ; ð4Þ
where t¼ n1; n1 þ 1;⋯;Γ; n1 ¼ 1þðm− 1Þτ. Reconstruct
the original input one-dimension intoM-dimension. Takens’
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FIGURE 1: All lorenz signal graphs: (a) w(t) of 4,000 points; (b) s(t) of 4,000 points; (c) n(t) with a mean of 0 and a variance of 0.05 at 4,000
points; (d) y(t) of 4,000 points.
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theorem indicates that for each vector in the reconstructed
phase space trajectory, there is a smooth map f :RmÀ!R,
such that: yðtþ 1Þ¼ f ðYðtÞÞ, where t¼ n1; n1 þ 1;⋯;
Γ − 1. For convenience, t is recoded to t¼ 1; 2⋯; n. If the f
can be found or the approximate mapping bf of f is found, the
next data point y(t+ 1) can be predicted. In this study, the
delay time τ is computed by the mutual information function
method, and the embedded dimension is obtained by the
Cao’s [26] method.

3.1.2. Chaotic Single Index Statistical Model (CSI Model).
After reconstructing the phase space, the semiparametric
CSI model for multidimensional input data is established
to approximate the mapping f as follows:

y t þ 1ð Þ ≈ f Y tð Þð Þ; ð5Þ

f Y tð Þð Þ ¼ g βTY tð Þð Þ þ ε tð Þ; ð6Þ

where gð⋅Þ is an unknown catenation function and β is a
vector of unknown m-dimensional parameters, εðtÞ∼Nð0;
σ21Þ is the model error with independent and identical distri-
bution and has zero mathematical expectations. Profile least
squares estimation is conducted with local linearity tech-
nique to estimate the smooth unknown function gð⋅Þ in the
mapping Equation (6) and then proceed to the next step, for
point βTYðtÞ in some little neighboring domain of u, which
is an interest grid point, we use an element-wise locally linear
function:

g βTY tð Þð Þ ¼ g uð Þ þ g0 uð Þ βTY tð Þ − uð Þ
¼ a0 þ a1 βTY tð Þ − uð Þ: ð7Þ

Approaching gð⋅Þ, where a0 ¼ gðuÞ; a1 ¼g0ðuÞ. So we
have:

g βTY tð Þð Þ ¼ a0 þ a1 βTY tð Þ − uð Þ: ð8Þ

Let Kð⋅Þ be a Gaussian smooth kernel function and adjust
the weight of each neighbor by changing the window
width h¼ hn>0. Khð⋅Þ¼Kð⋅=hÞ=h. Minimize the objective

function for any fixed point β:

L a0; a1ð Þ ¼ ∑
n

t¼1
y t þ 1ð Þ − a0 − a1 βTY tð Þ − uð Þ½ �2f

⋅ Kh βTY tð Þ − uð Þg:
ð9Þ

We can obtain the optimal minimum estimation of pointba0;  ba1. Therefore, a locally linear element-wise estimate of
gð⋅Þ is bgðu; βÞ¼ba0;g0ðu; βÞ¼ba1. The estimated amount is
lower than the convergence speed of bg. If bg0 and bg use the
same bandwidth, and it will cause the convergence rate of β’s
estimator bβ to be lower than

ffiffiffi
n

p
, thus it affects the progres-

sive normality of bβ . Consequently, another bandwidth is
used for bg0. It can be introduced by the weighted least
squares theory (weighted LS) as follows:

ba0 ¼ ∑
n

t¼1
wt u; βð Þy t þ 1ð Þ; ð10Þ

ba1 ¼ ∑
n

t¼1
w u; βð Þy t þ 1ð Þ; ð11Þ

with

wt u; βð Þ ¼ Kh βTY tð Þ − uð Þ ⋅ Sn;2 − βTY tð Þ − uð ÞSn;1
Â Ã

n Sn;0Sn;2 − S2n;1
À Á ;

ð12Þ

w u; βð Þ ¼ Kh1 βTY tð Þ − uð Þ ⋅ βTY tð Þ − uð ÞSn;0 − Sn;1
Â Ã

n Sn;0Sn;2 − S2n;1
À Á ;

ð13Þ

Sn;l ¼
1
n
∑
n

t¼1
βTY tð Þ − uð ÞlKh βTY tð Þ − uð Þ;  l ¼ 0; 1; 2:

ð14Þ

Substituting the estimated values of a0 and a1 into
Equation (9) and finding the minimum value of the objective
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FIGURE 2: The overall architecture of the weak sinusoidal target detection in the chaotic interference.
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function, the weighted least squares theory can be derived as
follows:

β ¼ XTWXð Þ−1XTWy; ð15Þ

where X¼ba1YðtÞ;W is the diagonal matrix produced by
KhðβTYðtÞ− uÞ; y¼ yðtþ 1Þ−ba0 þba1u. Equations (10),
(11), and (15) are repeated in this way until the three param-
eters a0; a1, and β are stable and convergent, and ultimately
the optimal solution of a0; a1, and β. Substituting bao;ba1, andbβT into Equation (8) yields a one-step predicted value
gðβTYðtÞÞ, which is then substituted into Equation (6) to
obtain a CSI model. Furthermore, this yields prediction
errors for the sake of weak signal detection processing as
follows:

e t þ 1ð Þ ¼ y t þ 1ð Þ − g βTY tð Þð Þ: ð16Þ

Then, the prediction error contains only a weak sinusoi-
dal signal and white noise theoretically, and since the vari-
ance of the random amplitude sinusoidal signal is time-
varying and the white noise variance is fixed. Therefore,
the approach based on the profile empirical likelihood ratio
for the CSI model can be certainly applied to test whether the
prediction residual has heteroscedasticity, thereby detecting
a random amplitude sinusoidal signal in strong chaotic
noise.

3.2. Profile Empirical Likelihood Ratio Detection for Weak
Sinusoidal Signal. Equation (3) indicates that the testing of
the random amplitude sinusoidal signal in the chaotic inter-
ference is equivalent to testing the heteroscedasticity of the
prediction residual. The profile empirical likelihood ratio
approach is effective for testing heteroscedasticity, thus an
empirical likelihood ratio method is investigated. In this sec-
tion: (1) a sinusoidal signal detection model with random
amplitude under chaotic noise, namely, the CSI scheme, is
proposed; (2) a method of detecting random amplitude sinu-
soidal signals based on profile empirical likelihood ratio is
developed; (3) a flowchart framework and the pseudocode
for detecting sinusoidal signal with random amplitude
underthe chaotic interference are designed.

This paper comprehensively studies the detection of
weak sinusoidal signals with random amplitude in chaotic
noise. The infra sound signal of debris flow is a signal with a
typical sinusoidal waveform and amplitude of vibration as a
function of energy. Suppose this signal can be expressed as
follows:

s tð Þ ¼ d ⋅ V ⋅ sin 2πf0tð Þ; ð17Þ

whereV obeys the standard normal distribution, d controls the
amplitude of the sinusoidal signal, f0 is the frequency of the
sinusoidal signal, and t represents time. sðtÞ is an independent
random variable subject to a normal distribution, satisfying:
EðsðtÞÞ¼ 0;VarðsðtÞÞ¼ ðd ⋅ sinð2πf0tÞÞ2¼_mðt; dÞ. The sinu-
soidal signal detection model with random amplitude can be

further transformed into the following statistical hypothesis test
problem:

H2
0 : Var ε tð Þð Þ ¼ σ20 vs: H2

1 : Var ε tð Þð Þ ¼m t; dð Þ þ σ20:

ð18Þ

If mðt; dÞ¼ 0, the sinusoidal signal of random amplitude
does not have heteroscedasticity, there is no weak sinusoidal
signal of random amplitude. If mðt; dÞ≠0, the sinusoidal
signal of random amplitude necessarily has heteroscedasti-
city, because mðt; dÞ is a function of changing with time t,
there is a weak sinusoidal signal of random amplitude.
Therefore, the profile empirical likelihood ratio method can
be used to check whether the variance of sinusoidal signals of
random amplitude is always equal to zero.

3.2.1. Proposed Empirical Likelihood Ratio Detection Method.
First, we apply the empirical likelihood ratio [27–29] to
develop a novel detection approach with the CSI model for
weak signal detection under chaotic noise. The CSI model
established in the previous section:

y t þ 1ð Þ ¼ g βTY tð Þð Þ þ ε tð Þ: ð19Þ

Only the chaotic noise interference is fitted and εðtÞ
mainly contains s(t) and n(t). The presence or absence of a
sinusoidal signal that determines a random amplitude
depends on whether it is mðt; dÞ¼ 0. In the specific form
of mðt; dÞ proposed in this paper, there is a specific d∗ ¼ 0
so that mðt; d∗Þ¼ 0 is true for all t. Therefore, testing the
absence or presence of a weak sinusoidal signal with a ran-
dom amplitude is equivalent to testing the hypothesis test
problem below:

H3
0 : d ¼ d∗ vs: H3

1 : d ≠ d∗: ð20Þ

To construct the empirical likelihood ratio, the estima-
tion is first obtained as follows:

ε tð Þ ¼ y t þ 1ð Þ − g βTY tð Þð Þ: ð21Þ

From EðεðtÞÞ¼ 0, the following estimation Equation (22)
is obtained:

L1t ¼ ṁT ; 1ð ÞT y t þ 1ð Þ − g βTY tð Þð Þð Þ2 − σ2½ �
L2t ¼ D y t þ 1ð Þ − g βTY tð Þð Þ½ �

(
: ð22Þ

Let the variance of εðtÞ be an estimate of σ2; ṁ denote the
dth derivative of mðt; dÞ with respect to the null hypothesis,
D denote the derivative of gðβTYðtÞÞwith respect to βT ; Lt ¼
ðLT 1t ; LT 2tÞT is a ðmþ qþ 1Þ× 1-dimensional vector, and q
denotes the dimension of mðt; dÞ. Because under the null
hypothesis, ṁT is a zero vector, so:
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E L1tð Þ ¼ E
1
n
∑
n

t¼1
ṁT ; 1ð ÞT y t þ 1ð Þ − g βTY tð Þð Þð Þ2 − σ2½ �

� �
¼ 0

E L2tð Þ ¼ E
1
n
∑
n

t¼1
y t þ 1ð Þ − g βTY tð Þð Þ½ �

� �
¼ 0:

ð23Þ

Therefore EðLtÞ¼ 0.
Under the alternative hypothesis, ṁT is not a zero vector, so:

E L1tð Þ ¼ E
1
n
∑
n

t¼1
ṁT ; 1ð ÞT y t þ 1ð Þ − g βTY tð Þð Þð Þ2 − σ2½ �

� �
≠ 0:

ð24Þ

Thus EðLtÞ≠0. Therefore, testing whether d is equal to d∗
is equivalent to testing whether EðLtÞ is equal to 0, so that the
empirical likelihood can be introduced.

Let fptgnt¼1 be the probability of fLtgnt¼1, satisfying: pt ≥
0;∑n

t¼1pt ¼ 1. Under the null hypothesis, the empirical like-
lihood ratio function is as follows [27, 28]:

L pt ; d; σ2; βð Þ
¼ sup

d;σ2;β
∏n

t¼1npt ∑
n

t¼1
ptLt ¼ 0;  

����� pt ≥ 0;∑n
t¼1pt ¼ 1

� �
:

ð25Þ

The empirical likelihood ratio function can be solved by
using the Lagrangian multiplier method, the following
Lagrangian function is obtained:

G¼ ∑
n

t¼1
log nptð Þ − nλ∑

n

t¼1
ptLt − ϕ ∑

n

t¼1
pt − 1

� �
; ð26Þ

where λ2R;ϕ2R are Lagrange operators, and then the min-
imum value of Lagrangian function G is solved to obtain the
optimal solution of pt as follows:

bpt ¼ 1
n

1

1þ xTLt
; ð27Þ

where x is the solution for the following system of
Equation (28).

1
n
∑
n

t¼1

Lt
1þ xTLt

¼ 0: ð28Þ

To solve x, you need to define the objective function: f ðxÞ
¼ 1

n∑
n
t¼1

Lt
1þxTLt

. x can be solved by the sequential quadratic
programing algorithm [30]. The basic idea is to construct a
quadratic programing subproblem at the iteration point.
And then solving the subproblem and determining a new
iteration point are followed. Finally, we repeat the above
process until the constraint is satisfied.

Substituting Equation (27) into Equation (25) yields an
empirical likelihood ratio statistic:

R ¼ − 2logL pt ; d; σ2; βð Þ
¼ − 2log ∏

n

t¼1
n ⋅

1

n ⋅ 1þ xTLtð Þ
� �

¼2∑
n

t¼1
log 1þ xTLtð Þ

: ð29Þ

Assumption 1. Kernel function KðμÞ is a continuous
bounded symmetric probability density function and satisfies
the first order Lipschitz condition on R. Function GðμÞ has a
continuous bounded second derivative on U.

Assumption 2. Eðεt jY ¼ yÞ¼ 0;VarðεtÞ¼ σ2<1; Eðε4t Þ≤
C<1; Eðε4t jY ¼ yÞ<1, where C is a constant.

Assumption 3. For a sufficiently large sample size n, the
presence of G0>0 makes:

β∗ ¼ 1
n
∑
n

t¼1
g0 YT tð Þβð Þ

���� ���� ≥ G0>0: ð30Þ

Assumption 4. Explanatory variable Y(t) in the CSI model is
uniformly bounded.

Theorem 1. Assume the assumptions conditions 1–4 and the
null hypothesis in Equation (20) holds, if nÀ!1, then

R¼ −2logL pt ; d; σ2; βð ÞLÀ!L χ2 mþ qþ 1ð Þ; ð31Þ

where χ2ðmþ qþ 1Þ is a chi-squared distribution with mþ
qþ 1 degrees of freedom. Therefore, based on the above theo-
rem results, if the value of statistic R is greater than χ21−αðmþ
qþ 1Þ, there exists a weak sinusoidal signal with random
amplitude in the chaotic noise background. Otherwise, the
weak sinusoidal signal does not exist.

The proof of the Theorem 1 is detailed in the appendix.

3.2.2. Proposed Algorithm and Pseudocodes for Sinusoidal
Signal Detection. The algorithm architecture of detecting
weak sinusoidal signals with random amplitude in the cha-
otic noise based on the profile empirical likelihood ratio
method is shown in Figure 3.

In addition, the respective algorithm is shown in
Algorithm 1.

4. Numerical Simulation and Analysis

The performance and capability of the CSI model are com-
prehensively deep validated and verified by the prediction
accuracy for detecting weak sinusoidal signals and carried
out three different simulation experiments in this section.
The chaotic experimental data is generated by the Lorenz
system [11] as the chaotic interference. The MSE, the
mean absolute error (MAE), and the root-mean-squares
error (RMSE) [12–14] are used to evaluate the performances
of the proposed algorithm. y(t) is an observational value, byðtÞ
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denotes the predicted value of the proposed model. The per-
formance evaluation formula of the three indicators is as
follows:

MSE¼ 1
n
∑
n

t¼1
y tð Þ − by tð Þð Þ2; ð32Þ

MAE¼ 1
n
∑
n

t¼1
y tð Þ − by tð Þj j; ð33Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

t¼1
y tð Þ − by tð Þð Þ2

r
: ð34Þ
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FIGURE 3: Empirical likelihood ratio detection for weak sinusoidal signal.

Input: Observation 1-D data yðtÞ with the chaotic interference, the parameter delay time τ and the embedding dimension m,
constant ζ.

Output: optimal values of the parameters x; β; a0; a1, and the values of the statistic R.

Set the β0
1 for j to number of epochs do

2 Calculate a0; a1 with Equations (10) and (11)

3 Calculate with Equation (15).

4 Repeat steps 2 and 3 until the estimated values of a0; a1 and β stable.

5 end

6 Set λ0; ε etc.
7 for f ðxkþ1Þ− f ðxkÞ>ε do

8 Simplifying the original problem at the point xk as a quadratic programming problem.

9 Set Sk ¼ S∗; S∗ be the optimal solution of the quadratic programming problem.

10 Obtain point xkþ1 with Equation (28).

11 Set x∗ ¼ xkþ1; f ∗ ¼ f ðxkþ1Þ.
12 end
13 Set R with Equation (31)

14 if (R >χ21−αðmþ qþ 1Þ)
15 the random amplitude sinusoidal signal does exist.

16 else
17 the random amplitude sinusoidal signal does not exist.

18 end

ALGORITHM 1: Empirical likelihood ratio detection for weak sinusoidal signal.
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Lorenz system is used to simulate the chaotic interfer-
ence. Its iterative equation is as follows:

bη ¼ σ y − ηð Þby ¼ −ηz þ rη − ybz ¼ ηy − bz

8><>: ; ð35Þ

where η; y; z is the time function and parameter σ¼
10 ; b¼ 8=3; r ¼ 28 . Assuming the initial condition
η¼ 1; y¼ 1; z¼ 1, the sampling time second t¼ 0:01,
10,000 data points are simulated, and the first component
η is used as the chaotic 1-D time series data, and 4,000
consecutive points are set as the sample data. The dimension
m= 6 and the delay time τ¼ 7 are calculated by the complex
auto-correlation method and Cao’s method.

4.1. Experiment 1: Effective Evaluation of the CSI Model. A
weak random amplitude sinusoidal target signal with d= 0.7
for controlling the amplitude and f0 = 0.1 for the sinusoidal
signal. To evaluate and verify the effectiveness of the CSI
model proposed in this study, the prediction results of
CSI model, linear model, and ARIMA are compared. The
linear model consists of the input layer of the reconstructed
sequence with input phase space, the hidden layer with
hidden node of 16 and the output layer of one-step
prediction, and an activation function is added between the
hidden layer and the output layer. A linear regressionmodel is
established to fit the chaotic noise and detect the weak signal
under chaotic interference [21]. The ARIMA model only
models the input one-dimensional sequence and obtains the
prediction results.

The comparison results are shown in Figures 4 and 5.
Figure 4(a) shows the prediction curve of the original obser-
vation value under the CSI model and the prediction error of
detecting a weak sinusoidal signal under chaotic noise. For
better visualization, Figure 4(b) only shows the prediction
effect of the last 1,000 points, which clearly indicates that the
prediction performance is extremely high. As can be seen
from Figure 4 the green one-step forward prediction curve
fits the red actual curve with very high accuracy, and the
mean square error MSE is 0.551. Figures 4(c) and 4(d)
show scatter plots of the prediction errors of observation
data using chaotic single exponential fitting model. As can
be seen from Figure 4, the prediction errors of each point are
concentrated near the zero point, which shows that the pre-
diction error of CSI model is very small and the prediction
accuracy is very good.

Figure 5(a) shows the prediction curves of 4,000 observed
values under the linear model and ARIMA model. The
ARIMA model has a poor fitting effect on the actual curve,
with a MSE of 0.715, while the linear model has a relatively
good fitting effect on the actual curve, with a mean square
error of 0.631. Figure 5(b) describes the comparison results
of three different methods (CSI model, linear model, and
ARIMA model). The closer to a straight line, the better the
fitting effect. It can be seen that CSI model is the best, fol-
lowed by linear model, and finally ARIMA model. In addi-
tion, Figure 5(d) shows that the prediction results of linear
model and ARIMA model still contain some information,
including the information in the original sequence.

The detailed results of the comparison model are sum-
marized in Table 1, which shows the accuracy results of the
three evaluation indexes under CSI model, linear model, and
ARIMA model.
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FIGURE 4: Prediction results of chaotic single index (CSI) model: (a) 4,000 points prediction curve; (b) the last 1,000 points prediction curve;
(c) 4,000 points error box diagram; (d) the last 1,000 points error curve scattered plot.
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It can be seen from Table 1 that, compared with the
linear model and ARIMA model, the CSI model proposed
in this study has a smaller MSE, MAE, and RMSE of the CSI
model than the linear model and ARIMA model, indicating
that the CSI model is more effective in predicting the sub-
merged chaotic noise signal. Table 1 illustrates the advan-
tages of the proposed CSI model from the prediction results.
The proposed CSI model with profile empirical likelihood
ratio exhibits more outstanding predictability and capability
than the simple linear model and ARIMA model for weak
signal detection, which adopts the nonparametric locally lin-
ear Taylor’s expression and SQP algorithm.

4.2. Experiment 2: Compared with the Stochastic Resonance
Method. To evaluate the feasibility and effectiveness of the
empirical likelihood ratio approach, the proposed method in
this study for detecting weak sinusoidal signals with random
amplitude is compared with the stochastic resonance method
[14]. The amplitude of the weak sinusoidal signal is 0.6, and
the frequency of the sinusoidal signal is 0.1.

When the background interference is only Gaussian
white noise, the presented method is compared with the
stochastic resonance method. The results are shown in
Figures 6(a) and 6(b). In Figure 6(a), the R statistic is greater
than the chi-square value of 15.507, so the weak target signal
can be detected with our proposed profile empirical likeli-
hood ratio CSI model. It can be easily seen from Figure 6(b)
that the target signal of frequency f0 = 0.1 is detected. When
Gaussian white noise is used as background noise, both the
proposed method and the stochastic resonance method can
detect the existence of a weak target signal.

To further demonstrate the superiority of our investigated
scheme, the proposed empirical likelihood ratio detection
method is compared with the stochastic resonance method
when the mixed noise with chaotic noise and Gaussian white
noise is used as background noise. Our proposed approach is
implemented by profile least squares and locally linear tech-
niques with R codes. The result of detecting weak harmonic
signal is shown in Figure 6(c), R statistic is greater than the
chi-square value of 15.507, so the presence of a weak target
signal can be detected. The spectrum of the observed signal
after stochastic resonance processing is shown in Figure 6(d),
but the presence of a weak target signal cannot be detected.
When the background noise is the mixed noise of chaotic
noise and Gaussian white noise, the proposed method can
detect the existence of the target signal, but the stochastic
resonance method cannot. The comparison is clear to attain
satisfactory results for detecting tasks of hybrid interference. It

TABLE 1: Comparison of different prediction models.

MODEL MSE MAE RMSE

CSI model 0.551 0.567 0.740
Linear model 0.631 0.617 0.794
ARIMA model 0.715 0.67 0.846

Bold values signify the result advantage of our model.
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indicates that the capability of the proposed CSI model to
detect the existence of weak sinusoidal signals under chaotic
interference is superior to that of stochastic resonance
detection.

4.3. Experiment 3: Compared with Neural Network and
Breusch–Pagan Test Methods. To further validate the stabil-
ity and robustness of the presented model, we build the
chaotic observational signals with different values of useful
target signals and add white noise and chaotic interference to
the target signal in the source field. To highlight the excep-
tional assessment under the target signal environment, the
d values with the range of 0.1–1 are set according to different
real situations and conditions. The frequency of the weak
sinusoidal signal is f0 = 0.1. To verify the effect of the empir-
ical likelihood ratio method for detecting weak sinusoidal
signals, the back propagation (BP) neural network method
and the Breusch–Pagan test method were compared. In this
paper, the structure of BP neural network consists of an
input layer, two hidden layers and an output layer. The
number of neurons in the hidden layer is 2 and 3, respec-
tively. In addition, the Breusch–Pagan model is used here,
which captures the variance of the error term by introducing
an additional variable. Specifically, it regresses the square of
the residual and the independent variable, and then uses the
regression results for statistical test. If the regression results
show that the coefficient corresponding to this extra variable

is significantly different from zero, then heteroscedasticity
can be considered.

The weak sinusoidal signal of different amplitudes was
tested 500 times, and the correct rate (correct rate= correct
number/total number× 100%) was used as the evaluation
indicator. The detection result of different methods is shown
in Figure 7 for detecting weak harmonic signals with different
amplitudes. It can be seen from Figure 7 that the empirical
likelihood ratio detection method has a detection accuracy of
90% when there is no weak random amplitude sinusoidal
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signal, which is greater than the BP neural network detection
accuracy rate and less than the Breusch–Pagan test accuracy
rate. When there is a weak random amplitude sinusoidal
signal, the empirical likelihood ratio detection method has
the best detection accuracy compared with other methods.
It can be seen from Figure 7 that the empirical likelihood ratio
detection method has a detection accuracy of 90% when there
is no weak random amplitude sinusoidal signal, which is
greater than the BP neural network detection accuracy rate
and less than the Breusch–Pagan test accuracy rate. However,
the detection results of the three methods are similar at 0 and
0.1. In summary, the proposed scheme for detecting weak
signals with a CSI statistical model and empirical likelihood
ratio testing method exhibits significant model expression
capability than BP neural networks or the Breusch–Pagan
model, which applies the local linearity and SQP algorithm.

4.4. Experiment 4: Detection of Weak Sinusoidal Signals
under the Sunspot Interference. To further validate the prac-
ticability of the proposed scheme in this article, sunspot time
series are utilized as chaotic interference. Sunspot datasets
can be obtained from the website (http://www.sidc.be/silso/
datafiles), and the 13-month smoothed monthly total sun-
spot number from January 1773 to December 2020 is
selected as the chaotic background. Because the sunspot
data are relatively large, we normalize the data to keep the
original chaotic characteristics unchanged, the results are
shown in Figure 8.

To study the detection performance of the proposed CSI
model in the sunspot noise, the correct rate is used as the
evaluation criterion. The result of different models for
detecting weak harmonic signals under different amplitudes
is shown in Figure 9. By comparing Figures 7 and 9, we can
see that the CSI detection model based on the empirical

likelihood ratio technique has approximately the same effect
as the simulated chaotic background with tiny decreasing,
and the detection accuracy is about 90% when d is in (0.8, 1),
which is greater than the BP neural network method and the
Breusch–Pagan test model. Under almost all parameters with
different amplitude sinusoidal signals, the empirical likeli-
hood ratio detection method has the best detection accuracy
compared with the other methods. However, the detection
precision results of the three methods are similar between 0.1
and 0.2. In summary, the proposed CSI model for detecting
weak sinusoidal signals with a CSI statistical model and
empirical likelihood ratio testing method exhibits significant
nonlinear fitting capability compared with the BP neural
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FIGURE 8: Sunspots: (a) original data and (b) normalized data.
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network and the Breusch–Pagan test model, and the chaotic
noise causes some slight differences in distribution for the
training and testing process in target tasks, but the proposed
method still achieves effective detection, which is a useful
method for weak sinusoidal signal detection in the chaotic
background.

5. Conclusion

Weak sinusoidal signals are widely used in bearing and gear
fault diagnosis, sea clutter monitoring and many other fields.
Therefore, an effective weak signal detection approach must
be developed to guarantee the stability and reliability of cha-
otic systems. Considering this problem, we put forward a
novel statistical detection scheme combining the CSI model
and empirical likelihood ratio testing, and the weak sinusoi-
dal signal with random amplitude under chaotic background
can be detected accurately. This method is simply effective
and easy to implement for overcoming the curse of high
dimensionality. Based on the characteristics of chaotic back-
ground noise, the source data can be reconstructed into
multidimensional space, and a hybrid statistical detection
model is built creatively by fuzing the CSI model and empir-
ical likelihood ratio technique. The proposed model effec-
tively fits the chaotic background noise and makes the weak
sinusoidal signal of random amplitude stand out. According
to the heteroscedasticity of such sinusoidal signals, the
method based on the empirical likelihood ratio can effec-
tively detect weak signals that are submerged under the back-
ground of strong chaos. The empirical likelihood ratio
detection approach overcomes the shortcomings of some
traditional methods that need to know the overall distribu-
tion of the sample and the determination of the estimated
variance. The effectiveness and accuracy of the presented
model in weak sinusoidal signal detection are essentially
and comprehensively investigated by using multiple experi-
mental simulations and scenarios contaminated by the cha-
otic interference. It can be seen from the simulation’s different
and deep results that the empirical likelihood ratio method is
effective and better than the Breusch–Pagan test and neural
network detection for weak sinusoidal signals with random
amplitude from chaotic noise. As the amplitude becomes
larger, the detection accuracy rate also increases. When the
amplitude is greater than 0.6, the detection accuracy rate is as
high as 96.0%. Due to the high stability and accuracy, the
investigated method exhibits outstanding and robust perfor-
mance, then it can be extended to the fields of chaotic secure
communication, sea clutter processing, biomedical weak sig-
nal testing, and rotating machinery fault diagnosis.

In the future, we will continue to explore the influence of
the prediction error of the CSI model on the subsequent con-
struction of the detectionmodel to achieve a lower SNR thresh-
old. We will continue to explore the application of the CSI
model in signal detection under the sea clutter backgrounds.

Appendix

Theorem A.1. Assume the assumptions conditions 1–4 and
the null hypothesis in Equation (20) holds, if nÀ!1, then

R¼ −2logL pt ; d; σ2; βð ÞLÀ!L χ2 mþ qþ 1ð Þ: ðA:1Þ

Proof. It can be known from Equation (28):
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Considering the last item in the above formula
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Then know

x ¼ ∑
n

t¼1
LtLTt

� �
−1

∑
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Lt

� �
þ op n−1=2

À Á
: ðA:4Þ

Theorem proving is similar to literature [23] and can
prove:

xk k ¼ Op n1=2
À Á

: ðA:5Þ

Then

max 1þ xTLtð Þ ¼ Op n−1=2
À Á

op n1=2
À Á¼ op 1ð Þ: ðA:6Þ

Taylor expansion of R can be known

R ¼ − 2logL pt ; d; σ2; βð Þ
¼ − 2log ∏

n

t¼1
n ⋅

1

n ⋅ 1þ xTLtð Þ
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¼ 2∑
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log 1þ xTLtð Þ;

ðA:7Þ
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R ¼ 2∑
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t¼1
log 1þ xTLtð Þ
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among them

rtk k ≤ ∑
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xTLtj j3 ¼ op 1ð Þ: ðA:9Þ

As demonstrated earlier, there is
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That is

∑
n

t¼1
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xTLtð Þ2 þ op 1ð Þ; ðA:11Þ

and so

R¼ ∑
n

t¼1
xTLt þ op 1ð Þ: ðA:12Þ

Moreover, the previous one has been proven as follows:
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Substitute it, there is
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Lemma A.1. Under the null hypothesis and assumptions 1–4,

1ffiffiffi
n

p ∑
n

t¼1
LtLÀ!L N 0;Ωð Þ: ðA:15Þ

Lemma A.2. Under the null hypothesis and assumptions 1–4,

1
n
∑
n

t¼1
LtLTt LÀ!

L
Ω: ðA:16Þ

Finally, according to chi-squared distribution conception
with the squared sum of independently identically standard

normal distribution, we have

R¼ −2logL pt ; d; σ2; βð ÞLÀ!L χ2mþqþ1ð Þ: ðA:17Þ

Therefore, the proof is completed.
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