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Network technology plays an increasingly important role in all aspects of social life. The Internet has brought a new round of
industrial revolution and industrial upgrading. The arrival of the “Internet” era is accompanied by a large-scale increase in
network applications and the number of netizens. At the same time, the number and severity of cyberattacks continue to
increase. Therefore, intrusion detection systems (IDSs) have become an important part of the current network security
infrastructure in various industries. Anomaly detection of network traffic data is an effective method for network protection. In
order to better realize the detection of network traffic anomalies, several algorithms have been successfully applied. Most of
them come from artificial intelligence (AI), but there is a general problem of excessive model execution processing time and
low detection rates. And through a lot of research, it is found that most models do not pay enough attention to the data
processing in the early stage. Therefore, in this paper, we optimize the data normalization process through a series of
experiments and combine the PCA feature selection method to propose an optimized MaxAbs-DT classifier model. To train
and measure the performance of the model, we used the NSL-KDD dataset, which is the benchmark dataset for most network
anomaly detection models. The experimental results show that MaxAbs-DT outperforms other existing models and validates
the effectiveness of the method. In addition, its execution time is greatly reduced compared to many models.

1. Introduction

At the beginning of the development of the Internet and
industrial networks, network security issues have attracted
much attention. Although network administrators have
deployed various security mechanisms over time, such as
packet encryption technology and firewalls, most networks
are still not immune to attacks because security breaches
are proliferating [1]. Among the many defense methods,
intrusion detection systems (IDSs) are one of the best solu-
tions for protecting systems from malicious attacks [2].
Commonly used methods are based on anomaly detection
and misuse detection [3]. Misuse detection performs com-
parison and detection based on predefined abnormal fea-
tures, which is equivalent to a blacklist mechanism.
Anomaly detection mainly detects abnormality based on
normal behavior, which is equivalent to a whitelist mecha-
nism, and everything outside the whitelist is abnormal.
Now, intrusion detection plays a vital and increasingly
important role in network defense, most notably to allow
network security administrators to warn of intrusions,

attacks, and malicious behaviors such as malware. Having
an IDS system is a mandatory line of defense to protect crit-
ical internal networks from these ever-increasing malicious
intrusion activities. Therefore, in order to propose better
intrusion detection systems, the research in the field of
intrusion detection has been vigorously developed in recent
years. The network traffic detection part, which aims to
maintain network security through the analysis of network
traffic data, is the most important part of IDSs. In order to
implement IDS, class methods are required. It is the process
of classifying objects with knowledge extracted from a set of
data during the learning step.

In the early days, based on the principle of network com-
munication, we focused on some specific characteristics of
network traffic data for abnormal detection and classifica-
tion, and a relatively complete intrusion detection system
appeared. Subsequently, network traffic data anomaly detec-
tion methods that combine network information such as
network status, transmission packets, frequency of occur-
rence of specific data emerge in an endless stream, and var-
ious anomaly detection technologies based on supervised,
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unsupervised, and clustering methods have also been suc-
cessfully used in network traffic. Data anomaly detection.
However, with the rapid development of network technol-
ogy, most of the classical methods are no longer suitable
for today’s network traffic data with more complex struc-
tures and can no longer meet the huge demand for abnormal
detection of network traffic data. At present, most of the
research work aims to improve the accuracy and reduce
the consumption of time resources. Because machine learn-
ing and deep learning can well meet the accuracy require-
ments, and the development of computer hardware has
also greatly reduced the model calculation time, in recent
years, most relevant scholars have focused on exploring net-
work traffic data anomalies based on machine learning or
deep learning. It is well known that data preprocessing and
feature selection are an important step in the training of
intelligent classifiers, but many research works have not
done enough in-depth research here.

Since the NSL-KDD dataset [4] we used is labeled, we
employ a supervised classification approach throughout the
work. Each piece of data in this dataset contains 41 attri-
butes, some of which are more informative and more impor-
tant for classification prediction, while some unimportant
features interfere with the detection process. Feature selec-
tion is a primitive preprocessing stage in which irrelevant
features are ignored. To accomplish this task, we use the
dimensionality reduction method by PCA (principal compo-
nent analysis) to select suitable features.

This paper proposes a network intrusion detection
(NIDS) method using decision tree classifier. In this study,
we developed MaxAbs-DT, a computational predictor for
predicting abnormal network traffic using machine learning.
In this predictor, we choose the optimal data preprocessing
method as well as the PCA feature selection method, tune
the decision tree, and finally train the DT-based prediction
model. Our main goal is to maximize detection rates and
reduce false alarms while considering processing time, a very
important factor in real-time applications. The rest of the
paper is organized as follows: Section 2 presents related
research work on different types of NIDs. Section 3 describes
the datasets used in experiments, the feature processing
method, and the proposed method. Section 4 summarizes
the obtained results and comparisons. Section 5 gives con-
clusion and outlook that are drawn.

2. Related Works

In order to determine whether the traffic samples belong to
the intrusion behavior, the researchers explored different
binary classification algorithms to obtain better detection
results.

The paper [5] introduced a number of methods for net-
work anomaly detection using decision trees (DT), support
vector machines (SVM), and Naive Bayesian networks
(NB). Kevric et al. [6] pointed out that combining two tree
algorithm models can achieve better performance than sep-
arate tree classification models, the best combination they
reported was random tree and NB tree, the model was tested
on the KDD dataset, and an accuracy of 89.24% was

obtained. In the field of machine learning classifier research,
feature selection is a key component that selects important
features from a dataset. Alazzam et al. [7] proposed a feature
selection method based on a wrapper method using a
pigeon-inspired optimizer that selects informative attributes
from a feature set. This method was tested on UNSW-NB15,
KDDCUP 99, and NLS-KDD, respectively, and good exper-
imental results were successfully obtained. Support vector
machines have been widely used to detect intrusions in net-
works, Bachar et al. [8] stated that using support vector
machines to detect network anomalies, the model was tested
on the UNSW-NB15 dataset, which achieved an accuracy
rate of 94%, and compared it with some machine learning
classifiers such as MLP, REPTree, and RF.

Some IDS classifiers utilize ANN as a pattern recognition
technique. ANNs are implemented using feedforward prop-
agation, and during the learning step, their parameters are
optimized so that the output matches the corresponding
input model. The authors [9] proposed an artificial neural
network (ANN) model, proposed a hybrid model that
improves detection performance by combining different
state-of-the-art algorithms, and achieved 81.2% accuracy
for the NSL-KDD dataset. Gautam and Om [10] proposed
two neural network classification models for host ID
(HIDS), namely, generalized regression neural network
(GRNN) and multilayer perceptron (MLP), and obtained
relatively good results. Autoencoder (AE) methods com-
monly used for feature extraction are now widely used in
the first stage of mixture models, existing as preprocessing
work for downstream classifiers. It generates an efficient
compressed representation of the original input by removing
noisy features ([11, 12]. Al-Qatf et al. [13] successfully com-
bined upstream AE and downstream SVM, and the model
obtained 84.96% binary classification accuracy when tested
on KDD dataset. Niyaz et al. [14] proposed a sparse autoen-
coder method for feature learning combined with a neural
network classifier, which finally achieved 88.39% accuracy
on KDD dataset.

3. Materials and Methods

In this section, we first describe the NSL-KDD dataset used
to train the model and then introduce the classic decision
tree classifier. Then, we introduce other variants of decision
tree. In this paper, we only carry out the experimental pro-
cess of binary classification and introduce several classical
classifier performance indicators in the binary classification
model.

3.1. Datasets. The NSL-KDD dataset [15, 16] generated in
2009 is widely used in intrusion detection experiments. It
is an enhanced form of the KDD Cup 1999 dataset. The
dataset covers the KDDTrain+ dataset as the training set
and KDDTest+ dataset as the testing set, which has different
normal records and four different types of attack records, as
shown in Table 1.

In addition, in order to make intrusion detection more
realistic, the test data set includes many attack categories
that do not appear in the training set. In the several data sets
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used, in addition to the 22 attack types in the training set,
there are 17 different attack types in the test set.

The NSL-KDD dataset contains 41 features, including 3
nonnumeric features and 38 numeric features (i.e., proto-
col_type, service, and flag), as shown in Table 2. It has a clas-
sification label, which is divided into two categories
(abnormal and normal) for binary classification. For multi-
class classification experiments, labels can be divided into
five categories (i.e., normal, denial of service (DoS), user-
to-root (U2R), remote-to-local (R2L), and probe), but in this
paper, we only do binary classification experiments.

3.2. Evaluation Metrics. Before introducing the evaluation
indicators, we first introduce several concepts: TP, FP, TN,
and FN. TP represents the actual positive example, and the
prediction is positive example; FP represents that the actual
is a negative example, and the prediction is a positive exam-
ple; TN represents the actual negative example, the predic-
tion is the negative example, FN represents the actual
positive example, and the prediction is the negative example.
After understanding these concepts, we will then introduce
the concepts of ACC, recall, precision, F1-score, MCC,
kappa, and AUC. Their definitions are given below:

Accuracy (ACC): this is the ratio of the number of cor-
rectly detected intrusions to the total number of traffic
records:

ACC = TP + TN
TP + TN + FN + FP

: ð1Þ

Recall: it refers to the ratio of the number of intrusion
records correctly detected as an intrusion to the overall
anomaly:

Recall =
TP

TP + FN
: ð2Þ

Precision: this is the ratio of true anomaly records to
total traffic records identified as intrusions

Precision =
TP

TP + FP
: ð3Þ

F1-score: it refers to the harmonic average of accuracy
and true positive rate and is a relatively comprehensive eval-
uation mark

F1 − Score =
2 ∗ recall ∗ precision
recall + precision

: ð4Þ

Matthews correlation coefficient (MCC): it will return a
value between -1 and+1. Its meaning is to describe the cor-

relation coefficient between the actual classification and the
prediction classification, and the value range is -1 to 1. A
value of 1 indicates the perfect prediction of the tested
object, and a value of 0 indicates that the prediction result
is not as good as the random prediction result; -1 means that
the prediction classification is completely inconsistent with

Table 1: Breakdown of traffic records in the NSL-KDD.

Dataset Total Normal Abnormal

KDDTrain+ 125973 67343 58630

KDDTest+ 22544 9711 12833

Table 2: Features of NSL-KDD dataset.

No. Feature Type

1 duration Numeric

2 protocol_type Nonnumeric

3 service Nonnumeric

4 flag Nonnumeric

5 src_bytes Numeric

6 dst_bytes Numeric

7 land Numeric

8 wrong_fragment Numeric

9 urgent Numeric

10 hot Numeric

11 num_failed_logins Numeric

12 logged_in Numeric

13 num_compromised Numeric

14 root_shell Numeric

15 su_attempted Numeric

16 num_root Numeric

17 num_file_creations Numeric

18 num_shells Numeric

19 num_access_files Numeric

20 num_outbound_cmds Numeric

21 is_host_login Numeric

22 is_guest_login Numeric

23 count Numeric

24 srv_count Numeric

25 serror_rate Numeric

26 srv_error_rate Numeric

27 rerror_rate Numeric

28 srv_rerror_rate Numeric

29 same_srv_rate Numeric

30 diff_srv_rate Numeric

31 srv_diff_host_rate Numeric

32 dst_host_count Numeric

33 dst_host_srv_count Numeric

34 dst_host_same_srv_rate Numeric

35 dst_host diff_srv_rate Numeric

36 dst_host_same_src_port_rate Numeric

37 dst_host_srv_diff_host_rate Numeric

38 dst_host_serror_rate Numeric

39 dst_host_srv_serror_rate Numeric

40 dst_host_rerror_rate Numeric

41 dst_host_srv_rerror_rate Numeric
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the actual classification

MCC =
TP ∗ TN − FN ∗ FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ ∗ TP + FPð Þ ∗ TN + FPð Þ ∗ TN + FNð Þp
:

ð5Þ

Kappa: kappa coefficient is an index for consistency test,
which can be used to measure the effect of classification. For
classification problems, the so-called consistency is whether
the predicted results of the model are consistent with the
actual classification results. The calculation of kappa coeffi-
cient is based on the confusion matrix, and the value is
between -1 and 1, usually greater than 0, where PO is the
overall accuracy and Pe is the accidental consistency error

kappa =
PO − Pe

1 − Pe
: ð6Þ

Area under the curve (AUC): ROC (receiver operating
characteristic) is a curve connected by the points of FPR
and TPR. The horizontal axis is fpr, which means the pro-
portion of negative samples is wrongly classified as positive
samples in all positive samples, and the vertical axis is
TPR, that is, Sn mentioned above, which means the propor-
tion of positive samples is correctly classified in all positive
samples. The often mentioned AUC value is the area under
the ROC curve. In other words, AUC is the area formed by
the ROC “curve” and the straight line x = 0 and y = 1.
AUC is mainly used to measure the performance or general-
ization ability of algorithms in binary classification prob-
lems. As a numerical value, we can intuitively evaluate the
quality of the classifier. The larger the value, the better

FPR =
FP

FP + TN
,

TPR =
TP

TP + FN
:

ð7Þ

TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) are the number of true positive, true
negative, false positive, and false negative samples, respec-
tively. TP means true positive, that is, the number of positive
cases predicted; TN indicates true positive, that is, the num-
ber of positive cases predicted as negative cases; FP indicates
false positive, that is, the number of negative cases predicted
to be positive; and FN means false negative, that is, the num-
ber of positive cases predicted as negative cases.

3.3. Experimental Method

3.3.1. Crossvalidation. In this study, tenfold crossvalidation
was selected to measure the performance of the model. The
process of this verification method is described as follows:
first, the entire data set will be randomly divided into ten
copies, and the contents will not be repeated. Then, a single
subset is randomly selected and retained as validation data
to test the model, while the remaining 9 are used as training
data to train the prediction model. This process goes
through 10 times; that is, every piece of data will be used

as a test data. Finally, the 10 results are averaged to obtain
the final prediction results. Crossvalidation is often used in
machine learning model evaluation, and it is rarely used in
the field of deep learning. Because it is expensive to train
and verify many times in the process of deep learning, it
can be used when the amount of data is small.

3.3.2. Independent Testing. Compared with crossvalidation,
independent testing is time-consuming and logically simple.
First, the algorithm is trained on the training set. Secondly,
the parameters of the model are adjusted by observing the
performance of the model according to the evaluation indi-
cators each time. At the same time, independent testing is
also a method to test the effect of the model. Generally, inde-
pendent test sets are used to verify the effect of the model in
the end of experiments. The specific way is to use indepen-
dent test sets as common data to compare with other
methods. The above two experimental methods have been
applied in this study. Generally, crossvalidation and inde-
pendent testing experiments at the same time will make
the experimental results more convincing.

3.4. The Proposed Predictive Framework. The prediction pro-
cess can be concluded as two stages: (1) model training and
(2) prediction. In the training phase, training samples are
encoded and integrated by the feature representation algo-
rithm. Then, the features are optimized to obtain the best
feature subset and then fed into the decision tree algorithm
to train the prediction model MaxAbs-DT. In the prediction
stage, given the uncharacteristic traffic samples, we follow a
similar process to encode the samples and use a trained
model to predict whether the query sequence is an abnormal
sample. The decision tree model gives a score for each traffic
sample to measure the probability of its normal traffic. If the
score is higher than 0.5, it is considered as a normal sample,
otherwise, no.

3.5. Classification Algorithm. The decision tree [17] is con-
verted into an if-then rule: a rule is constructed from each
path from the root node of the decision tree to the leaf node;
the characteristics of the internal nodes on the path corre-
spond to the conditions of the rule, and the class label of
the leaf node corresponds to the conclusion of the rule. It
is also the final result of the decision.

The basic principle of the construction of the decision
tree is the following strategy. A recursive process from root
to leaf is looking for a “partition” attribute at each interme-
diate node.

(1) Start: build the root node, all training data are placed
at the root node, select an optimal feature, divide the
training data set into subsets according to this fea-
ture, and enter the child nodes

(2) All subsets are recursively divided according to the
attributes of internal nodes

(3) If these subsets have been basically correctly classi-
fied, then construct leaf nodes and assign these sub-
sets to the corresponding leaf nodes
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(4) Each subset is assigned to leaf nodes; that is, it has a
clear class, thus generating a decision tree

The depth of the tree structure is a very important
parameter. Generally speaking, the deeper the tree structure,
the better the fitting effect on the data, but it may also lead to
overfitting. In this study, we implemented the DT algorithm
(version 2.7.15) using the DT library in Python. In this
study, we finally set the depth of the tree to 15 through a
series of experiments, which can better capture the informa-
tion of the data. The classification algorithm optimization
results can be seen in “Classifier Optimization.”

3.6. One-Hot Feature Representation. In many experimental
studies, using one hot coding, the value of discrete features
of data can be extended to European space, and a value of
discrete features will correspond to a point in European
space. In this way, if the discrete features are encoded by
one-hot, the distance calculation between features will be
more reasonable and easier to understand. The one hot fea-
ture extraction method [18] is often used in the field of
sequence recognition and NLP and other related fields. In
most cases, it can obtain excellent experimental results.

As mentioned above, the NSL-KDD dataset has 38
numeric and 3 nonnumeric features. Like many models,
the proposed decision tree model only deals with numerical
data input. Therefore, we need to convert all nondigital fea-
tures into digital representation. Features (protocol_type,
service, flag) are nondigital features that needs to be con-
verted to digital form in NSL-KDD dataset. In the training
set, features, protocol_type, service, and flag, have 3, 70,
and 11 categories, respectively. In the test set, features, pro-
tocol_type, service, and flag, have 3, 64, and 11 categories,
respectively. For the consistency of data, we uniformly set
protocol_type, service, and flag as 3, 70, and 11 categories,
respectively, and then perform the one-hot encoding
process.

3.7. Feature Scaling. After successfully converting these fea-
tures into digital form, the next appropriate thing is feature
scaling. Feature scaling ensures that the dataset is in a nor-
malized form. The values of some features (such as “src_
bytes” and “dst_bytes”) in NSL-KDD dataset are unevenly
distributed; so, it is necessary for us to use feature scaling
technology. In this way, we can ensure that our classifier will
not produce biased results. There are several feature scaling
methods as follows:

Z-score normalization: The Z-score method is standard-
ized based on the average value (mean) and standard devia-
tion of the original data. The average data after processing is
0, and the square difference is 1, which meets the standard
normal distribution. The main purpose is to unify different
dimensions of data into the same order of magnitude and
measure the calculated Z-score value uniformly to ensure
comparability between data. The formula is as follows

xnormalization =
x − μ

O
: ð8Þ

Among them, x represents the original data, μ repre-
sents the mean value of the original data, O represents the
standard deviation of the original data, and xnormalization rep-
resents the data after the normalization process.

min-max standardization: min-max standardization
refers to the linear transformation of the original data, and
the value is mapped between [0, 1]

xnormalization =
X − Xmin

Xmax − Xmin
: ð9Þ

MaxAbs normalization: it is usually used for sparse
matrices. Using this method for standardization, the data
can fall into the specified range of [-1, 1], and the original
structure of the data will not be damaged. The formula is
as follows

xnormalization =
X

Xmaxj j : ð10Þ

Robust scaler normalization: for data with outliers, if the
Z-score method is used for standardization, the characteris-
tics of outliers are often lost after standardization; so, the
standardized data is not ideal. In this case, the robust scaler
method can be considered. Robust scaler has a standardized
processing method for outliers, which has stronger parame-
ter control for data centralization and data scaling robust-
ness

xnormalization =
X − Xmedian

IQR
: ð11Þ

Xmedian is the median of the sample, and IQR is the inter-
quartile distance of it.

3.8. Feature Selection. PCA (principal component analysis) is
a commonly used data analysis method. PCA transforms the
original data into a set of linearly independent representa-
tions of each dimension through linear transformation,
which can be used to extract the main feature components
of the data, and is often used for dimensionality reduction
of high-dimensional data.

4. Results and Discussion

4.1. Classifier Optimization. To achieve the best perfor-
mance, we conducted the following experiments to optimize
the DT classifier. We performed parameter optimization on
the depth of the decision tree in order to find the optimal
max-depth value. Figure 1 shows the classifier evaluation
index curves under different decision tree depths. Next, we
need to determine which depth of the decision tree model
is best for our dataset. Therefore, we compared the perfor-
mance of the three cores. We can observe in Figure 1 that
when the max depth of the tree goes from 15 onwards, all
performance indicators basically do not change, and all the
curves are in a parallel state. Consequently, the DT with
max depth 15 was used to train this model in our predictor.
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In order to obtain the optimal feature subset, we conduct
the following experiments to optimize the features. We per-
form parameter optimization on DT classifier using the PCA
feature selection method to find the best number of features
to keep. Figure 2 shows the classifier evaluation index curves
under different numbers of retained features. We can
observe in Figure 2 that when the number of features is at

the position of 10, all the performance indicators basically
reach the highest level. Consequently, the number of features
to retain is set to 10 by the PCA method in our predictor.

4.2. Scale and Transform. There are generally four methods
for data normalization. In order to get the optimal normali-
zation method, we carried out the following experiments to
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Figure 1: Evaluation indicator curves of different max depths in DT.
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Figure 2: Evaluation indicator curves of different pca_components_nums in PCA.
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determine. We use 4 data normalization methods, namely, Z
-score, min-max, MaxAbs, and robust scaler on the test
dataset to compare the metrics of the models to determine
the best data normalization method. Figure 3 shows the clas-
sifier evaluation index curves under different normalization
methods. We observed in Figure 3 that when the normaliza-
tion method is MaxAbs, all performance indicators basically
reached the highest value, specifically ACC, F1, and recall
obtained the highest value and obtained the second highest
value on Prec. The results are listed in Table 3. As can be
seen, amongst the four individual normalization methods,
the method called MaxAbs performs the best than the other
three. This indicates that the MaxAbs method is more useful
for NSL-KDD abnormal prediction.

4.3. Comparison with Different Classification Algorithms. To
measure the effectiveness of our proposed work, we com-
pared its performance with several well-known classifiers,
such as the extra trees classifier [19], random forest (rf)
[20], SVM with RBF core (rbfsvm) [21], SVM with linear
core (svm) [22], K-nearest Neighbor (knn) [23], gradient
boosting classifier (gbc) [24] and AdaBoost classifier (ada)
[25]. For a fair comparison, we trained classifiers on the
same train dataset KDDTrain+ with our feature set and then
fine-tuned the classifiers one by one to achieve the optimal
performance. The classifiers are also evaluated by tenfold
crossvalidation, and the evaluation results on the same test
dataset KDDTest+ are presented in Table 4. We can see that
DT achieved the highest value in three indicators, namely,
ACC reached 81.86%, F1 reached 81.68%, and recall reached
71.04% outperforming other classifiers in three of the four
metrics. Specifically, the performance of DT classifier on
ACC, F1, and recall was higher than the second-place classi-
fier ET by 2.67%, 3.46%, and 5.39%, respectively. The results
presented in Figure 4 show that compared with the other
seven classifiers in this study, the DT classifier has better dis-
criminative ability to distinguish abnormal traffic from nor-
mal traffic.

As shown in Figure 5, in terms of the consumption time
of the classification model, which is an important consider-
ation in the actual industrial application, our proposed work
takes the least time compared to other classifiers and has
high practical significance. The specific values are shown in
Table 5.

4.4. Comparison with Existing Classifiers. To better demon-
strate the performance of our proposed MaxAbs-DT model,
we compared its performance with seven existing intrusion
detection techniques. As shown in Table 6, we compared
the performance with other techniques mentioned in Taval-
laee et al. [16] and Yin et al. [26]. The results prove that the
MaxAbs-DT classifier is superior in detecting network
anomalies. From Table 6, the MaxAbs-DT model improves

Performance of different normalization method

0.65

Zscore Minmax

Normalization-method

Maxabs Robust
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Figure 3: Evaluation indicator curves of different normalization
methods in DT.

Table 3: Performance of different normalization methods.

Classifier Accuracy Prec. F1 Recall

Z-score 0.7999 0.9344 0.7988 0.6975

min-max 0.8182 0.9332 0.8211 0.733

MaxAbs 0.8364 0.9452 0.8404 0.7565

Robust 0.7807 0.9682 0.7675 0.6357

Table 4: Performance of different classifiers.

Classifier Accuracy Prec. F1 Recall

et 0.7919 0.9675 0.7822 0.6565

rf 0.7616 0.9681 0.7416 0.601

rbfsvm 0.7847 0.9233 0.7819 0.6781

knn 0.772 0.9231 0.7656 0.654

dt 0.8364 0.9452 0.8404 0.7565

gbc 0.7796 0.9684 0.766 0.6335

ada 0.7819 0.9225 0.7786 0.6735

svm 0.7569 0.9178 0.7466 0.6292

0.60
ef rf rbfsvm knn

Classifier

dt gbc ada svm
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Figure 4: Evaluation indicator curves of different classifiers on
KDDTest+.
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the detection accuracy of the RNN model by 0.44% on the
KDDTest+ datasets.

The results clearly demonstrate that the detection perfor-
mances of the proposed model are more effective. Although
the processing time of decision tree classifier is short, the
overall classification accuracy is not significantly increased.
On the contrary, deep learning may take a long time, but it
may have a better ability to capture other potential features
of data. For this, it is worth further exploring in the future
research work. For scenarios where the response time is
required to be as short as possible, the classifier proposed
in this paper may be more useful.

5. Conclusions

This work proposed the application of an improved decision
tree classifier to detect network intrusions. The proposed
work showed good performance and achieved nice results.
To validate the performance of our model, we train and val-
idate the model using the NSL-KDD dataset, which is cur-
rently widely used as a benchmark dataset for intrusion
detection by most researchers. After the experiment, the
MaxAbs-DT model obtained a higher accuracy, recall, and
F-score and less execution time than other models, and it
also outperforms other existing models on the accuracy met-
ric in literature. However, there are many deep learning
technologies that may have potential optimization capabili-
ties for this research. In the future, we plan to integrate some
optimal feature selection methods with novel deep learning
models, such as graph convolutional neural networks, to
explore better network anomaly classifier performance.

Data Availability

The datasets generated for this study can be found in https://
github.com/Kevin-chen-sheng/MaxAbs-DT.
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