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Image processing and feature information extraction based on the visual perception of the weld pool are considered essential
components of intelligent welding quality monitoring of hull structure gas metal arc welding (GMAW). The unstable
characteristics, such as large spatter, much smoke, and strong arc light during hull structure GMAW, lead to the blurring of image
acquisition and the difficulty of contour extraction of the weld pool. The present study is aimed at addressing the practical issues
from two perspectives, i.e., a spectrum-visual-sensing acquisition system and an image-processing and feature extraction algorithm.
First of all, by analyzing the light energy distribution law and acquiring the optical parameters relevant to the cut-off composite
dimming and near-infrared narrowband filtering, spectral sensing is employed in establishing models of arc light radiation to
detect the strength of continuously distinctive spectral lines. Besides, an appropriate high-speed charge-coupled device (CCD)
camera is selected to build a visual acquisition system, which can reduce the external interference of the arc light on the image
acquisition of the weld pool. Afterwards, the implementation of an image-processing fusion model based on the spatial
information fuzzy C-means (FCM) clustering analysis and Sobel edge detection operator accompanies the investigation of the
geometric aspects of the weld pool image. In terms of clear segmentation of the interest region, the edge detection and accurate
extraction of the target contour are successfully obtained. In the subsequent section, the Hough transform analysis is adopted to
establish the geometric feature extraction model of the weld pool, with corner detection, conversion, and camera calibration as the
core technology. Additionally, the left and right views of the image contour are calibrated to achieve the lossless conversion of
corner pixels and physical coordinates. Finally, three other distinct image-processing methods are designed to compare the
segmentation effect of the edge contour with the fusion model, and then, the extraction accuracy of the geometric features of the
weld pool is verified. The interference of the arc light and smoke has been demonstrated to be substantially diminished, which is
attributable to the visual-sensing system during image acquisition of the weld pool. The results of edge fusion of the weld pool
image show that based on the GMAW using the FCM-Sobel fusion method, a superior extraction accuracy of geometric features
characterized by smoothness, continuousness, no breakpoints, and less noise has fulfilled the engineering requirements.

1. Introduction

Welding man hours contribute to approximately 30%–40%
of the overall hull structure man hours, while welding cost
accounts for roughly 30%–50% of the entire hull structure

cost [1]. Apparently, the superior welding technology is cru-
cial to the shipbuilding process. At present, manual and
semiautomatic welding processes are still the mainstream
in the shipbuilding and repair industry of China. Welding
quality is inconsistent and primarily focuses on the welder’s
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level of previous experience working on on-site structures.
Some welding environments are relatively harsh, leading to
increased labour intensity of welders, which leads to
decreased production efficiency and lack of market compet-
itiveness of the products [2], making it imperative to pro-
mote a highly flexible automatic welding production
system and advanced intelligent welding robot technology
[3]. With the development of large-scale and complex hull
structures, the relatively hazardous hull repair structures
and other harsh welding environments should be taken into
account. If only constant automatic welding specification
process parameters are utilized, it will be difficult to ensure
the stable welding quality in the on-site structure due to ran-
dom factors, such as workpiece size, assembly clearance, and
operating proficiency. Henceforth, welding process monitor-
ing is considered the most important technical means of
ensuring shipbuilding quality.

Research into the acquisition of process-sensing infor-
mation is an essential aspect of intelligent monitoring of
welding on the hull structure. Identifying the penetration
state and welding formation quality is the objective of weld-
ing process information sensing. However, welding is a com-
plicated operation that can easily create powerful arc light,
smoke, high heat, and other forms of severe interference,
which can make it challenging to reliably gather data of
the welding process. Consequently, it has always been one
of the bottlenecks in the research of welding dynamic pro-
cess quality monitoring. Due to recent advancements in
the machine vision technology, visual sensing has been uti-
lized to simulate the visual behaviour of welders, yielding
both intuitive and incredibly rich data. Owing to the advan-
tages it provides in the real-time monitoring of the weld pool
and viewing the position of the welding wire, the acquisition
and processing technology of welding visual image informa-
tion has become one of the fundamental methods for
accomplishing welding quality monitoring. This has inspired
many researchers to study the acquisition of welding visual
image information, such as the acquisition of the carbon
dioxide (CO2) short-circuit transfer weld pool image [4, 5],
acquisition of the process information for neodymium-
doped yttrium aluminium garnet (Nd:YAG) solid-state laser
deep-penetration welding of stainless steel materials [6],
monitoring of weld pool instability and forming defects that
are prone to occur during aluminium alloy tungsten inert
gas welding (TIG) [7], and collection of dynamic position
information of the weld pool for the GMAW process [8].
A dynamic change monitoring system for the metal active
gas (MAG) arc weld pool is constructed using dual cameras
during the GMAW weld with a single groove with gap fluc-
tuations [9]. It is apparent that there have been some
advancements in the field of machine vision-based weld pool
detection applications over the past few years but that China
has been moving painfully slow in developing an image-
processing knowledge model for this type of detection to
be employed on ship structures, notably in the area of
GMAW welding pool image data for the hull.

GMAW, one of the most prominent welding methods in
use presently, usually uses CO2 as the shielding gas for weld-
ing [10]. This method has the advantages of high production

efficiency, good welding quality, low cost, and strong practi-
cability, which jointly make it widely used in industrial
departments. However, owing to the unique influence of
the CO2 gas’s thermophysical properties, it is extremely pos-
sible to create numerous spatters, smoke, arc intensity, and
other undesirable features during the welding process, pos-
ing significant challenges to the visual information gathering
of the weld pool. The shape, characteristics, and dynamic
changes of the weld pool are important factors to determine
the welding forming quality. Some papers define different
image-processing techniques for weld pools, such as the
research work by Xiao and Bing [11] that proposed the clas-
sic processes like Sobel, Canny, and the threshold segmenta-
tion for the CO2 weld image processing. Xu et al. [12]
investigated the robot GMAW process and integrated multi-
ple classical image-processing algorithms to extract weld
visual image edges through restoration, filtering, edge detec-
tion, edge scanning, and curve fitting. Zhao et al. [13] pro-
posed an edge extraction algorithm for the weld pool based
on a supervised descent method to obtain high-quality weld-
ing during laser welding. Despite recent developments in
image processing, it is still difficult to generalize filters or
algorithms in classic image processing. Especially for the
problems of complexity, ambiguity, and image edge uncer-
tainty that defy standard mathematical descriptions in the
actual welding processing, there is no universal optimization
algorithm.

The fuzzy theory has witnessed tremendous develop-
ment in recent years, and it is currently extensively
employed in a variety of contexts, including pattern recogni-
tion, welder image processing, and uncertainty analysis. This
technology has achieved good application results in the
automatic compilation of the assembly process of ship seg-
mented modules [14]. Chen et al. [15] introduced the fuzzy
concept into edge detection to solve the problem of defect
edge detection in gray welding X-ray images. Following an
analysis of the statistical properties of the gradient values
of the gray image, the problem of defect edge detection in
welding X-ray gray images is characterized by a membership
function. This method serves as the groundwork for identi-
fying the defect’s nature and category. Besides, despite recent
developments in identifying and categorizing weld defects,
no consideration is given to the cost issue and time con-
sumption. Another application technology is the improve-
ment of the fuzzy edge detection algorithm (Pal algorithm
for short). Sun [16] proposed an improved fast fuzzy edge
detection algorithm in view of the shortcomings of the Pal
algorithm, which has a fast image edge extraction speed
and good performance, but the edge continuity is relatively
poor. Zhang [17, 18] used the wavelet, morphology, and
fuzzy algorithm fusion to suppress various kinds of noise
interference in MAG/TIG arc-welding visual images and
then extracted the edge information of the weld pool.
Although these methods have advantages in time-
consuming algorithms, the contour extraction still has some
discontinuous edges for the weld pool images with complex,
nonlinear, and fuzzy welding processes. There is an excellent
segmentation result with the X-ray imaging technology, but
it is expensive and requires some time to process once the
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welding has been completed. The visual weld pool image fea-
tures necessary for dynamic welding processes are often
imprecise because of the prevalence of spatter, smoke, and
arc intensity during the welding of hull structures, which,
in turn, impede the accuracy of the information and dimin-
ish the efficiency of welding quality monitoring. Recent
research on the GMAW welding process has already pro-
posed the application of these newest machine-learning
techniques, like support vector machines (SVM) [19], con-
volutional neural network (CNN) [20], deep-learning tech-
niques [21], and fuzzy-clustering analysis [16]. However, as
shown in [21], there are still few investigations based on
the research developed in the field and the potential of these
techniques.

Based on the previous analysis, the purpose of this paper
is to explore the use of passive visual image sensing of weld
pools for the control of welding operations, specifically
regarding the GMAW welding process. The research work
focuses on the combination of the FCM-clustering analysis
algorithm and the application of the actual welding process.
This paper applies the FCM-clustering analysis algorithm
with spatial neighborhood information to the processing of
GMAW visual weld pool images to overcome the shortcom-
ings of previous approaches to this problem and proceeds to
implement a method for the weld pool image contour
extraction based on the spatial information fusion Sobel
operator. In order to eliminate the problem of relying on
threshold selection, being vulnerable to the image arc light
and noise when traditional differential operators are used
for image segmentation, the theoretical knowledge of the
algorithm is hereby modeled through machine learning, so
as to improve the processing accuracy of visual-sensing
images and then extract the necessary feature parameters
of the weld pool morphology. It forges a foundation for fur-
ther analyzing the dynamic behaviour of the weld pool in the
process of hull GMAW welding.

2. System Design of Image Acquisition for Ship
GMAW Weld Pool

The achievement of the dynamic information collection and
analysis of the welding process quality monitoring is the
most crucial stage toward the actualization of ship-welding
intelligent technology. To fulfil the aim of the real-time
online closed-loop management of welding quality, this arti-
cle intends to correlate, quantify, and model the visual infor-
mation characteristics with the weld pool state. However,
there is still a need for appropriate equipment to aid in the
collection of visual weld pool data that can be used to char-
acterize the welding quality attributes. At present, many
researchers have studied the acquisition of dynamic infor-
mation in the welding process, including the multisource
information-monitoring system with the visual image, arc
spectrum, and weld pool oscillation as the core. Currently,
there are primarily two approaches for collecting the weld
pool image information typically utilized in the vision of
the welding dynamic process, i.e., the passive light source
vision method and the active light source vision method,
which vary depending on the light sources available in the

experimental environment [22]. The passive vision has always
been one of the research hotspots in the field of welding robot
sensing technology. For instance, Xu et al. [23] proposed an
enhanced Canny method that acquires the visual image of
the weld pool using a passive visual-tracking technique. Pas-
sive visual sensing requires no additional light sources and
provides numerous benefits and ample information. The
CCD camera captures the arc radiation in the welding process
or the image of the welding area under natural light condi-
tions, limiting the application of certain types of vulnerable
equipment, reducing costs, and improving certain work effi-
ciencies. The detecting signal, however, is susceptible to inter-
ference owing to the hostile environment of the ship-welding
work site, where there are several energy-consuming devices.
This study employs passive vision and the same image-
sensing technique in robot welding to demonstrate its efficacy
on the massive and intricate hull structure.

2.1. Intelligent Experimental System for Multisensor Quality
Monitoring. As an example of GMAW welding techniques
used on ships with CO2 gas-shielded welding, this paper
illustrates the advantages of simple equipment, mature tech-
nology, and visual information that mimics the welder’s eyes
during the dynamic welding process by using the common
GMAW welding method of ships. In order to further clarify
the weld pool’s vision and other features, a multi-
information fusion monitoring system, mainly composed
of a KUKA KR-5 six-axis welding robot body, Pulse MIG-
500RP welding machine, welding control cabinet (teaching
device), wire feeder, welding workbench (positioner-external
axis-two axes), industrial computer, optical and sound spec-
trum acquisition system, and visual sensor acquisition sys-
tem, is created and used on a dynamic GMAW welding
process for hulls. The structure block diagram of the multi-
sensor quality intelligent inspection experiment system for
the specific ship GMAW welding process is shown in
Figure 1. With the aid of a CCD camera, the computer takes
real-time visual information of the welding process during
data acquisition and welding state monitoring. The information
is then transmitted to the image acquisition card, where it is
converted into digital information and transmitted to the com-
puter. The information can be viewed on the Galaxy-Mainland
visual weld pool monitoring software that has been developed
by the company. When the welding system monitors and
acquires data under the welding state, the computer takes
real-time visual information of the welding process through a
CCD camera and transmits it to the image acquisition card.
The acquisition card converts it into digital information and
transmits it to the computer, which is then displayed on the
self-developed visual weld pool monitoring Galaxy-Mainland
software. Weld pool image information is simultaneously saved
to the computer’s local storage for offline analysis.

2.2. Visual-Sensing System. The visual sensor acquisition sys-
tem is the key part of the whole system platform. It is utilized
to acquire visual information throughout the welding pro-
cess and has a direct influence on the subsequent image-
processing effect. In the experiment presented in this work,
the vision-sensing system consists of an industrial camera
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with an external trigger function, a composite dimming and
narrowband filter system, and an external trigger system.

The vision sensor and water-cooled welding gun
employed in the experiment must be established in such a
way that they can work together. They must also be guided
together with the welding robot so that their relative posi-
tions can be maintained during the welding. During the
welding process, the vision sensor is often placed within a
few inches of the weld pool, which is thereby allowed to cap-
ture images that are highly indicative of the true status of the
weld pool. Similarly, the visual sensor should follow the
principles of small size and light weight to avoid damaging
the welding robot due to excessive load bearing [24]. A pro-
fessional composite narrowband light-filtering system
should be added to filter and remove the arc light, which
mitigates the impact of the arc light on CCD image acquisi-
tion. Besides, antispatter components are added to prevent
spatter factors from damaging some critical components of
the CCD. Figure 2 is a schematic depicting the internal
workings of the visual sense system.

An image acquisition card, an industrial camera based
on a CCD chip, and a lens jointly constitute the general
components of a CO2 weld pool detection system using pas-
sive vision. The purpose of an image acquisition card is to
convert the image signal captured by the CCD camera into
a digital signal that can be displayed, stored, and transmitted
by a computer. The industrial camera used in this study is
the MER-231-41GC GigE industrial digital camera from
the Beijing Daheng Company, which is an extremely
dependable and reasonably priced industrial digital camera
product, featuring advantages that include a high resolution
and definition as well as a small size and durability. During

welding, the CCD is mounted on the welding gun at an angle
of roughly 45° to the surface of the test panel. Its represented
frame rate and exposure time are set to 14 frame/s and
40ms, respectively, and the relative position between the
CCD and the welding gun remains stable. The camera lens
is a 2/3-inch megapixel focal length 8mm manual aperture
compact industrial lens of the M0814-MP2 model. The main
performance parameters of the CCD camera and lens are
shown in Table 1.

2.3. Composite Filter System. The basic idea of the multian-
gle visual sensor imaging is to illuminate the weld pool
area in the spectral line window of the image-taking posi-
tion by using the arc and the continuous spectrum near
the weld pool [25]. An appropriate proportion of the light
intensity of each radiation source in the weld zone is
detected through the composite filtering technology, which
is achieved by directly observing the weld pool informa-
tion, such as the geometric shape and size of the weld
pool, the deviation between the weld pool center and the
weld, and the arc position. However, noises like welding
spatter and arc light may be incorporated into the image
acquired by the CCD camera and transmitted. Due to
the noises, direct extraction of the image’s geometric char-
acteristics will result in large discrepancies from the real
values. Weld pool images, which are crucial to the viability
of multisource sensing vision detection, require high-
quality CCD images obtained prior to image feature
extraction as well as a reasonable and effective preprocess-
ing process, which is attributed to the essential role of
minimizing interference caused by the arc light and
improving signal-to-noise ratios in these images [26].
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Figure 1: Schematic of GMAW experimental platform.
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It has been discovered that a broad variety of narrow-
band filters can be used at the front end of industrial CCD
cameras for the filtering and dimming purposes to overcome
this issue. The determination of the filter in the GMAW pro-
cess for low-carbon steel is a significant challenge in welding
vision sensing. In this field, Wang et al. [27] studied the
visual inspection of an argon-rich shielded weld pool using
a 1064 nm near-infrared narrowband filter. However, there
is a downside: this band is virtually the maximum wave-
length that a CCD can detect. Thus, the camera sensitivity
is limited, and the image quality degrades. Wang et al. [28]
measured the spectral characteristics of the GMAW arc in
the range of 200~1100nm. It sets the exposure time of the
CCD camera to take images in the wave band with few char-
acteristic lines of the arc light and weak continuous spec-
trum. The simulation results reveal that the imaging
ramifications of the weld pool are related to the exposure
duration or aperture size of the camera. Gu and Li [29]
investigated the various characteristics of the GMAW arc
spectrum information under different parameters. In view
of this, Liang et al. [30] made a qualitative analysis of the fac-
tors affecting the weld pool imaging, such as weld pool radi-
ation, arc radiation, and camera sensitivity, and provided a

favorable theoretical underpinning for designing a reason-
able filter system to extract weld pool information. Accord-
ing to this, Sun [31] analyzed the influence of the arc light
on image quality in the CO2 welding process. According to
the reflected arc light of the weld pool and the thermal radi-
ation intensity of the weld pool itself, a 580nm filter and a
0.1% attenuation sheet were designed as the system to elim-
inate the arc light. Zhao et al. [32] decided on a combination
of an 850nm high-pass filter and 660nm band-pass filter to
capture the weld pool image of stainless steel GMAW plate
according to the self-radiation spectrum of the weld pool
and the quantum efficiency of the camera. In summary, the
imaging effect of the weld pool is influenced by many fac-
tors, such as the thermal radiation of the weld pool itself,
the reflected light of the arc, and the photosensitive charac-
teristics of the camera. The complexity of welding and the
variability of the arc discharge emission spectrum make it
necessary to take appropriate light-filtering measures in the
experiment. To this end, an arc spectrum acquisition system
is hereby constructed to obtain the spectral line characteris-
tic information relationship between the arc spectrum and
the photosensitive characteristics of the CCD during the
welding process, which provides technical support for the
composite light-filtering technology.

In this experiment, the arc spectrum acquisition system
mainly consists of a Sony CCD detector, FX2000 fiber spec-
trometer, and Morpho analysis software, with specific
parameters shown in Table 2. It also combines the analysis
of the camera spectral sensitivity and objective lens spectral
transparency of the visual-sensing system to provide the
optimal wavelength band for the composite filter system, as
shown in Figure 3.

The arc spectrum acquisition system integrates a high-
quality Richardson blazed grating with high optical resolu-
tion, low stray light coefficient, and wide spectral range, as
well as an ultraviolet-sensitive CCD. Real-time acquisition,
processing, and accurate analysis of GMAW arc light spec-
trum data can be realized by installing it on the welding
torch. The collected spectral information is shown in
Figure 3(a). As can be seen from the sensor-acquired
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Figure 2: Schematic diagram of visual sensor interior.

Table 1: Main performance index parameters of CCD.

Performance index Value

Pixel size 5:86 × 5:86 μm

Mechanical dimensions 29 × 29 × 29mm
Frame rate 41 fps

Resolution 1920 × 1200 pixels

Camera weight 42 g

Lens dimensions Φ33:5 × 28:2mm
Lens weight 62.6 g

Filter size M30.5 P = 0:5mm
Aperture range F1.4–F16 C

Photosensitive chip Sony IMX249 CMOS

Integration interface I/O (GPIO)
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information, the arc radiation spectrum consists of continu-
ous spectra and discrete characteristic spectral lines, with
multiple spectral peaks appearing in the 400–620nm band.
The arc continuous spectrum intensity weakens, and the
characteristic spectral lines decrease in the red band (620–
700nm). In this case, the central wavelength of 660nm is
chosen as the optimal filtering wavelength. Besides, it should
be noted that spectral sensitivity and objective lens spectral
transparency matter considerably in the visual-sensing system
as essential physical properties of camera imaging. Sensitivity
represents the ability of the CCD to realize the conversion
between sensor response values and color stimulus values,
while lens transparency refers to the ability of light to pass
through the lens, i.e., the percentage of transmitted light flux
and its incident light flux. Due to the oscillation of the weld
pool during the GMAW welding process, the long exposure
time of the camera and the adjustment of the aperture may
cause image blurring, making it necessary to figure out the
spectral band that can maximize the spectral sensitivity (as
shown in Figure 3(b)) and lens transparency of the camera
while minimizing the interference of the arc, smoke, etc. In
this case, the camera objective lens has not been specially
treated, and the transmittance of different visible light bands
remains the same, all at 85%. Considering that the weld pool
image spectrum band is close to the red band, and based on
the red curve in Figure 3(b), the camera has a higher transmit-
tance at a wavelength of 660nm. On the basis of the above
analysis, the optimal filtering wavelength of the composite fil-
ter system is found efficient inmaximizing the efficacy of spec-
tral sensitivity and lens transparency for the light spectral and
visual sense, as shown in Figure 3(c).

Notably, Fan [25] has made relevant explanations on the
selection of the optimal parameters of the filter system and
explained that the precise narrowband filter composite tech-
nology must be based on the perfect spectral analysis theory.
Band center wavelength in this range is primarily chosen
based on many tests, with the concept of selection being to
determine the optimal center wavelength. Considering that
there is no consistent radiation spectral curve analysis of
each element in the actual GMAW process, the selection of
the central wavelength of the band in this interval needs to
be based on certain experiments to find the appropriate central

wavelength. The influence of the spatter and arc light on the
CCD image quality cannot be fully eliminated, however, by
employing a combined mode of visual-sensing cut-off com-
pound dimming-near infrared narrowband filter. Conse-
quently, further work must be done to develop and enhance
the image preprocessing algorithm for the arc-welding envi-
ronment. It lays the groundwork for rapidly and precisely
extracting the geometric properties of the weld pool.

2.4. Experiment Conditions. Herein, for the purposes of fea-
ture processing and geometric feature extraction, 99.9% CO2
serves as the shielding gas for a welding robot while per-
forming GMAW-CO2 gas-shielded flat butt welding of the
hull structure. To ensure the stability of the welding process
during the test welding, the polarity of the current shall be
direct current (DC) reverse connection, and a comprehen-
sive database of the optimal welding processes can be gener-
ated by evaluating the quality of various types of welding.
See Table 3 for the details.

3. Knowledge Modelling for Weld Pool
Image Processing

3.1. FCM-Sobel Fusion Model. Image processing based on
the welding vision dynamic process relies heavily on the
identification and extraction of image edges, both of which
are crucial to comprehend the whole image. Edge detection
technology is one of the most extensively utilized approaches
in the areas of computer vision and image processing. Used
extensively in processes like contour extraction, feature iden-
tification, and texture analysis, it is a crucial method of
extracting features from images. For many complicated situ-
ations in image processing and application research, edge
detection is an essential first step, and the quality of edge
detection is largely determined by the employed algorithm.

The Sobel operator is one of the commonly employed
operators in edge detection methods [33]. Due to its high pre-
cision in placing edges and its effectiveness in dealing with
images that undergo a grayscale gradual change or undergo
chaotic image processing, it has been widely employed in
image edge detection in various fields. The main idea is to per-
form gradient detection for pixels in the horizontal and verti-
cal directions of the image to calculate the approximation of
the grayscale of the image brightness function.

Figure 4 depicts the horizontal and vertical gradient tem-
plates used to calculate the derivatives in the X and Y direc-
tions, with ðM ×NÞ assumed as a resolution of image f ðx, yÞ.

Its mathematical expression can be expressed in the fol-
lowing equations:

Dx = f x − 1, y + 1ð Þ + 2f x, y + 1ð Þ + f x + 1, y + 1ð Þ½ �
− f x − 1, y − 1ð Þ + 2f x, y − 1ð Þ + f x + 1, y − 1ð Þ½ �,

ð1Þ

Dy = f x − 1, y − 1ð Þ + 2f x − 1, yð Þ + f x − 1, y + 1ð Þ½ �
− f x + 1, y − 1ð Þ + 2f x + 1, yð Þ + f x + 1, y + 1ð Þ½ �:

ð2Þ

Table 2: Main performance indexes and technical parameters of
spectral sensor system.

Performance index Value

Dimensions 128 × 90 × 27mm3

Detector 2048-pixel Sony CCD

Trigger delay 11:458 ± 0:208μs
Detection band 365–700 nm

Integral time 1ms–60 s

Communication protocol USB 2.0

Optical focus 72.5mm

Dynamic range 3000 : 1

SNR 400 : 1

Stray light <0.1%
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Its amplitude jΔf ðx, yÞj reflects the highest rate of
strength change at the measurement site ðx, yÞ, whilst the
direction θðx, yÞ corresponds to the greatest direction of
strength increase. The magnitude and direction of the gradi-
ent can be expressed in Equations (3) and (4), respectively:

Δf x, yð Þj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxð Þ2 + Dy

À Á2q
≈ Dxj j + Dy

�� ��, ð3Þ

θ x, yð Þ = tan−1
Dy

Dx

� �
: ð4Þ

Given that both noise and edge have a tendency toward
rapid fluctuations in the gray level, it is important to smooth
the image before attempting edge extraction. If Ω is taken as
that pixel point of the ð3 × 3Þ area centered on coordinate
ðx, yÞ, the center point of the area can be assigned as the
average of these 9 pixels. Then, the image-smoothing calcu-
lation equation can be expressed by the following equation:

S x, yð Þ = 1
9
〠
Ω

f x, yð Þij, i, jð Þ ≠ x, yð Þ, i, jð Þ ∈Ωð Þ: ð5Þ
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Figure 3: The optimal waveband analysis of the composite filter system based on spectral and visual sensor systems.

Table 3: Main conditions of the welding experiment.

Weld condition Parameter

Welding power Pulse MIG-RP

Plate size 300 × 150 × 6mm3

Structural material Q235

Wire material H08Mn2SiA

Shielding gas CO2

Gas flow 15 L/min

Shooting angle 45°

Welding speed 23, 26, and 29 cm/min

Welding voltage 21V

Welding current 150A

Dry extension 15mm

Wire diameter 1.2mm

Assembly gap 1.0mm

Arc length 1.0mm
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Equations (1) and (2) can be used to determine the
gray values in the horizontal and vertical directions,
respectively, while Equation (3) can be employed to get
the amplitude of the pixel gradient. Ultimately, a reason-
able threshold T is selected, and the obtained highest gra-
dient amplitude jΔf ðx, yÞjmax is compared with the T , with
the pixel regarded as the component of the image’s edge if
jΔf ðx, yÞjmax ≥ T . The values are significantly different.
Otherwise, the pixel is not an edge of the image [33]. Evi-
dently, the prerequisite is to understand the specific value
T for the Sobel operator in edge detection processing of
an image. Large-scale simulations or repeating experi-
ments, as recommended by experimenters, are crucial for
the achievement of optimal findings during the design
stage of a test scheme. However, the fuzzy, edge-
uncertain image of the welding process vision cannot be
identified by traditional mathematics. The emergence of
the fuzzy theory provides a theoretical support to solve
the problem [16].

Among the fuzzy-clustering segmentation algorithms,
the FCM-clustering image segmentation algorithm is the
most extensively used, the most perfect, and the most
famous one [34]. FCM is a fuzzy classification algorithm
that uses membership to determine the degree to which
each data point belongs to a certain cluster. In 1973, Bez-
dek [35] proposed this algorithm as an improvement of
the early hard C-means (HCM) clustering method. The
early HCM algorithm is hard for data division, while
FCM is a flexible fuzzy division method. It is an important
method that analyzes and models important data with the
fuzzy theory at present. The sample-category uncertainty
description has been devised, allowing for a more accurate
reflection of reality. The approach has both a theoretical
and a practical significance, and it has been effectively
implemented in many domains, such as the analysis of
enormous amounts of data, data mining, image segmenta-
tion, and pattern recognition [36].

Assuming that the samples Xi = ðx1, x2,⋯, xnÞ are
divided into data sets and n is the number of samples, the
cluster center v of each group can then be calculated. Based
on its membership degree, FCM provides each sample point
with a value between ð0, 1Þ indicating its degree of belonging
to each group. Equation (6) expresses the constraint require-
ment imposed by the normalization of the FCM algorithm
and states that the summation of the membership of samples
in each cluster is 1.

〠
c

j=1
uij = 1, ∀j = 1, 2,⋯, c,∀i = 1, 2,⋯, n: ð6Þ

Then, the FCM objective function defined by the mem-
bership function can be written as the following equation:

JFCM U , vð Þ = 〠
n

i=1
〠
c

j=1
umij d

2
ij, ð7Þ

where u denotes the membership degree; m, the weighting
index (m ≥ 2); dij = kxi − vjk, the Euclidean distance

between the ith cluster center and the jth data point; vj,

the jth cluster center; j ∈ ½1, 2,⋯, c�; and c, the number of
cluster centers. The Lagrangian multiplier approach is
used to minimize the objective function min fJλðU , vÞg
of FCM, enabling it to converge on the best solution
allowed by its constraints. Herein, λ is introduced, and
then, Equation (8) is obtained.

min Jλ U , vð Þf g = 〠
c

j=1
〠
n

xi∈cj

umij xi − vj
À Á2 + λ1 〠

c

j=1
u1j − 1

 !

+⋯+λi 〠
c

j=1
uij − 1

 !
+⋯+λn 〠

c

j=1
unj − 1

 !
:

ð8Þ

Besides, the unconstrained minimization problem
shown by Equation (9) is similar to the one shown by
Equation (8).

min Jλ U , vð Þ = 〠
n

i=1
〠
c

j=1
umij xi − vj
À Á2 − 〠

n

i=1
λi 〠

c

j=1
uij − 1

 !( )
:

ð9Þ

Equation (9) is set to 0 after its derivation yields the
following relationship between equations.

∂Jλ
∂uij

=mum−1
ij xi − vj
À Á2 + λi = 0, ð10Þ
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Figure 4: Image gradient template: (a) horizontal direction Dx ; (b) vertical direction Dy .

8 Journal of Sensors



um−1
ij = −

1
m

λi

xi − vj
À Á2 : ð11Þ

Combining Equations (10) and (11), the value uij con-
taining parameter λi can be obtained via calculation,
which can be expressed as the following equation:

uij = −
λi
m

� �1/ m−1ð Þ
xi − vj
À Á− 2/ m−1ð Þð Þ: ð12Þ

From the constraint condition of Equation (6), the
equation relation containing λi can be obtained as the fol-
lowing equation:

−
λi
m

� �1/ m−1ð Þ
= 〠

c

j=1
xi − vj
À Á− 2/ m−1ð Þð Þ

 !−1

: ð13Þ

Substituting Equation (13) into Equation (12) yields Equa-
tion (14), which specifies the conditions under which the mem-
bership function uij can be updated after the removal of λi:

uij = 〠
c

k=1

xi − vj
 
xi − vkk k

 !2/ m−1ð Þ0
@

1
A

−1

: ð14Þ

The first term in Equation (8) represents a vectorized con-
nection based on the sample data set X.

umi1

umi2

⋮

umic

2
6666664

3
7777775

xi − v1ð Þ2  xi − v2ð Þ2 ⋯  xi − vcð Þ2Â Ã

=

um11 x1 − v1ð Þ2 um21 x2 − v1ð Þ2 ⋯ umi1 xi − v1ð Þ2 ⋯ umn1 xn − v1ð Þ2

um12 x1 − v2ð Þ2 um22 x2 − v2ð Þ2 ⋯ umi2 xi − v2ð Þ2 ⋯ umn2 xn − vnð Þ2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

um1j x1 − vj
À Á2 um2j x2 − vj

À Á2 ⋯ umij xi − vj
À Á2 ⋯ umnj xn − vj

À Á2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

um1c x1 − vcð Þ2 um2c x2 − vcð Þ2 ⋯ umic xi − vcð Þ2 ⋯ umnc xn − vcð Þ2

2
66666666666664

3
77777777777775
:

ð15Þ

It can be observed from Equation (15) that if in the case of
only one item containing uij, let the partial derivative of JλðU
, vÞ to the vj be 0, and solve the cluster center vj, which can
be expressed as the following equation:

∂Jλ
∂vj

= 〠
n

i=1
−2umij xi − vj

À Á� �
= 0: ð16Þ

The known circumstances for Equation (6) can be used to
derive the relationship of the following equation:

〠
n

i=1
umij xi
� �

= 〠
n

i=1
umij vj
� �

: ð17Þ

By solving Equation (17), the necessary conditions for the
vj updating can be obtained as shown in the following equation:

vj =
∑n

i=1u
m
ij xi

∑n
i=1u

m
ij

: ð18Þ

When the objective function JFCMðU , vÞ gets the minimum
value, the vj is adjusted to the best, and the class label described
by each pixel can be obtained from the membership matrix at
this time. Then, the image segmentation result can be obtained.
For this reason, the segmentation is performed by combining
the class label and membership of each pixel neighborhood in
space, and then, there is a spatial function sij as shown by the
following equation:

sij = 〠
k∈N jð Þ

uik, ð19Þ

where NðjÞ represents the spatial neighborhood informa-
tion of the jth pixel in the image. In this experimental testing
process, the best size neighborhood is selected, and the vj is used
as the initial value to iterate and obtain a new uij. Then, the
membership update conditions are modified as shown by the
following equation:

uij′ =
uijsij

∑c
k=1uijsij

: ð20Þ

According to Equations (18) and (20), the FCM algorithm,
which continually optimizes and updates the calculation of uij
and vj, should satisfy two requirements to work. This indicates
that the value of the membership function is closer to 1, allow-
ing the outcome to be infinitely close to the value of the objec-
tive function when the experimental conditions are fulfilled,
and the update is halted when the experimental requirements
are met. Equation (21) represents the termination condition:

maxij u t+1ð Þ
ij − u tð Þ

ij

n o
< ε, ð21Þ

where t refers to the number of iterations and ε is an extremely
small constant to represent the iteration error threshold; that is,
when the uij and vj being updated reach the maximum change
of membership degree and the preceding iteration update does
not exceed the iteration error threshold, it will reach a better
state and eventually converge to the local minimum point of
JFCM. Otherwise, t = t + 1, and it will continue to update the
value of vj and uij. In image segmentation, the FCM member-
ship matrix uij represents the pixels in a gray level image, and
xi belongs to a gray level value center vj. Determining the high-
est degree of membership of a pixel to the center of a gray level
value enables straightforward segmentation of the pixel into
regions with the same gray value.
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Based on the previous analysis, in the visual image pro-
cessing of the welding process, the two approaches are
merged based on the notion of the spatial information
FCM-clustering algorithm and the Sobel operator. Assume
that the ðM ×NÞ gray image matrix is converted into an
ðn =M ×NÞ-dimensional vector, as the data input; the fol-
lowing steps are given for the image-processing algorithm
of the FCM fusion Sobel operator (see Algorithm 1).

3.2. Method Analysis of Image Information Extraction. Weld
quality information, including weld appearance and internal
and exterior flaws, can be reflected immediately in the shape
and geometric properties of the weld pool, since it has the
greatest impact on weld dimensions including the width,
length, and depth. A precise and accurate picture of the weld
pool can be obtained from a visual-sensing intelligent mon-
itoring system of the welding process, and this image can be
further utilized as the foundation for a knowledge model.
Some papers have proposed different edge detection
methods for the weld pool image. For instance, Matsunawa
et al. [37] proposed a new MAG weld pool edge extraction
algorithm based on the component tree model, Gallo et al.
[38] proposed an image-processing method based on the
grayscale characteristics of the weld seam, and Cui et al.

[39] proposed an image-processing method based on a com-
posite edge detection operator. Even though these methods
are beneficial to image processing to a certain extent, many
of them use traditional operators for image processing, with-
out considering the actual situation generated by the welding
process and the uncertainty of the image itself, and lack the
anti-interference ability to the welding process noise.

Based on an investigation of prevailing image-processing
methods and CO2 gas-shielded arc-welding characteristics,
this paper introduces the FCM-clustering method to enhance
image characteristics and enhance and segment the image to
emphasize the image contour. Fuzziness and ambiguity in
the weld pool image created during welding are indeed exam-
ined. Additionally, considering the advantages of the edge
detection method using the Sobel operator in processing
images containing gradual grayscale changes and more noises,
a weld pool contour detection method is developed to extract
geometric features from the image of a weld pool, which uti-
lizes pixel spatial neighborhood information and the FCM-
clustering algorithm in combination with the Sobel operator.
The specific process is shown in Figure 5.

Based on the previous analysis, the specific process ideas
of this method can be divided into several steps. Firstly, the
source image information in the welding process is obtained

Function FCM-Sobel ()
Input: c, m, Tmax, ε
Output: a membership matrix u = fuijgn,ci,j=1, image edge

Step 1: given a set of n points X = fxigni=1, and set iteration count t = 0;
Randomly initialize cluster centers vð0Þ = fvð0Þj g, vj = ½0, 255�.

Step 2: apply Equation (9) to calculate FCM objective function JðU , vÞ.
Step 3: according to dij, use Equation (14) to calculate membership matrix uðtÞ.
Step 4: fix vðtÞ.

Utilize Equation (18) to revise cluster center vðt+1Þ.
Step 5: amend uðtÞ:

Use Equation (20) to revise membership function uðt+1Þ.
Step 6: compare uðtÞ and uðt+1Þ.

if t > Tmax, then
Obtained vðt+1Þ and uðt+1Þ, iteration over;
Continue to step 7;

else do
t = t + 1, return to step 3.

end.
Step 7: according to the principle of maximum membership.

Pixel xi is classified into the kth class that satisfies the conditions of max fuikg,
k = 1,⋯, c.

Step 8: image segmentation is over.
After division class, respectively label the grayscale of the same and different pixels to form an image segmentation, f ′ðx, yÞ.

Step 9: according to f ′ðx, yÞ, use Equation (5) to smoothen the image.
Step 10: apply Equations (1), (2), and (3) to calculate the Δf ðx, yÞ value.
Step 11: judging image edge.

If Δf ðx, yÞ = 0 or x > 1&&x <m − 1 or y > 1&&y < n − 1 is met, then
ðx, yÞ is the edge point.

else do
Repeat step 10.

end.

Algorithm 1: Code idea based on the FCM-Sobel algorithm.
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through the CCD acquisition system. Secondly, grayscale
image conversion is based on each pixel in the image, and
only the maximum and minimum RGB values are taken,
providing brighter areas and darker areas of the image,
respectively. Then, due to the random uncertainty of the
position of the black-and-white light-and-dark point noise
generated during camera imaging, image transmission, and
other processes, the image should be filtered before extract-
ing the image features. The commonly employed filtering
method selected for this experiment is median filtering. To
clearly display the image-filtering effect, select some salt par-
ticles, and black pepper particles are randomly sprinkled on
the image and mixed with it. The corresponding median
value in the image pixels is calculated, and the original value
of the point is replaced by the intermediate value; that is, a
window is used to move along the image. The median value

of all pixels in the window is used to replace the pixel gray
value at the center of the window, which is completed by
the filtering effect. Furthermore, pixels in the image’s back-
ground and foreground are grouped using pixel spatial
neighborhood information FCM clustering as part of the
segmentation procedure. Following this, a window is posi-
tioned, and its average value relative to the segmented image
around it is determined. With this technique, the image’s
brightness transitions smoothly, the sharp gradient is miti-
gated, and the overall image quality is enhanced, suggesting
that the picture has been softened around the weld pool’s
edge for emphasis. Finally, the Sobel operator is used to cal-
culate the horizontal and vertical gradient approximations of
the smoothed image, and then, the edge points of the image
are obtained. To extract the geometric characteristics of the
weld pool, the size of the bounding rectangle of the edge is

Figure 5: Flow chart of GMAW weld pool image-processing method for ship structure based on FCM-Sobel.
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acquired using the Hough linear transformation, which is
then computed in conjunction with the image calibration
outcomes.

The geometric feature information of the weld pool
mainly includes the maximum weld width, length, circum-
ference, area, and drag angle. By virtue of these characteris-
tics, appropriate technical parameters for monitoring and
regulating the dynamic process of ship GMAW welding in
real time can be achieved. Furthermore, to evaluate the sta-
bility and reliability of the feature extraction method for
analyzing weld pool morphological characteristics during
dynamic welding processes, a comparative experiment is
correspondingly designed between two classical edge detec-
tion methods, the same as Sobel and Otsu, and the classic
K-means clustering algorithm. In addition, there presents a
critical evaluation of the empirical findings from studies that
combine Sobel operators with FCM-clustering algorithms.
The next chapter will focus on analyzing this component.

4. Image Segmentation and Edge Detection of
Weld Pool

4.1. Image Preprocessing. In the GMAW welding process of
the hull structure, the acquired weld pool images are subject
to various kinds of interference, such as arc light, spatter,
and smoke to different extents. Consequently, discrete and
isolated pixels appear in the image, and these kinds of inter-
ference are obviously random unknown noises. Currently,
median-filtering technology in morphology is commonly
used to denoise them. However, these noises will weaken
after image grayscale preprocessing, and the occurrence of
weak noise will significantly reduce the filtering denoising
effect. This will cause the sudden increase or decrease of
the originally uniform or continuously changing grayscale
values, forming some false and blurred edges or contours
and even interfering with the subsequent analysis and pro-
cessing of image information. By objectively analyzing the
collected weld pool images and artificially adding noise pro-
cessing by equivalently treating random noise as salt-and-
pepper noise, that is, evaluating the image’s signal-to-noise
ratio and generating pixels with values of 0 or 255 randomly
distributed in various pixel positions, the effect of filtering
out isolated small noises can be achieved while the original
information after denoising will be retained. Furthermore,

it can completely preserve the edge information of the image
without being affected by filtering, thereby effectively solving
the problem of incomplete noise reduction for small-scale
noises and providing technical support for the subsequent
extraction of weld pool contours. The processing results as
shown in Figure 6.

4.2. Image Segmentation Using Traditional Algorithms. It is
commonly known that the purpose of segmentation is to
separate the target region from the surrounding background
and highlight the edge information of the target region, facil-
itating image edge extraction to be a simpler process. Never-
theless, existing image segmentation research is subject to
limitations that prevent it from satisfying the needs of the
present study. One of these constraints is that the selection
of picture thresholds is still dependent on the experience
knowledge of researchers. It can be seen from Figure 7(a)
that the key to the traditional Sobel operator for image seg-
mentation is to determine the threshold value T . If an
appropriate threshold value can be determined, the image
can be accurately separated to highlight the edge effect. An
absence of practical experience with threshold value selec-
tion is evident in the example, which results in consequences
including a poor separation of image foreground and back-
ground, a significant error, and a lack of continuity in edge
extraction.

With the advancement of image-processing research, the
Otsu algorithm is typically regarded as the best algorithm for
threshold selection in image segmentation. Given that it is
simple, steady, and productive in computation, it has been
extensively employed in practice. A binary algorithm with
a global basis is its underlying principle, and how the image
f ðx, yÞ’s gray characteristics μ are distributed is explored.
Suppose that the proportion of the number of pixels in the
foreground of the image to the whole image is ω0, and its
average gray level is μ0, then the background will be ω1
and μ1, respectively, and the interclass variance is recorded
as σ2. The detection of the threshold Th that maximizes var-
iation across classes allows for pixel-level image segmenta-
tion, which explains how the weld pool edge is extracted.
However, when the size ratio between the foreground and
background of the target image is rather different, and the
variance function between classes has two or more peaks, it
will be more difficult to find the maximum threshold Th

Figure 6: Mathematical morphology preprocessing results: (a) original image; (b) grayscale processing; (c) salt-and-pepper noise; (d)
filtering processing.
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between classes, which has serious interference from the
background noise, thus resulting in an unsatisfactory
image-processing effect, as shown in Figure 7(b). However,
as demonstrated in Figure 7, it is still challenging to fulfil
the needs of weld pool image processing in this study with-
out resorting to experience knowledge, even though this
approach provides a processing result better than that of
the traditional Sobel operator.

4.3. Image Segmentation Using Clustering Methods. Aiming
at the analysis of the processing results of the traditional
algorithm, the paper learns the experiential knowledge of
the relevant image processing and explains the problem of
threshold selection and the uncertainty of the image itself
and other factors, thus introducing the classical K-means
clustering method to effectively segment the edges of the
weld pool image in this example. In this approach, in order
to generate a sample feature vector space, the grayscale or
RGB values of each pixel in an image are transformed into
sample data. K points are then chosen as the cluster centers,
and the distances between samples are computed. The
impact of the image region segmentation can be achieved
iteratively by transforming the image segmentation chal-
lenge into data set clustering. Figure 8(a) highlights that
the outcome of the weld pool image segmentation is superior
to that of the conventional technique employed in the previ-
ous chapter, even though the gray value of the image has
been altered by the presence of the background. Besides,
since the number of clusters is limited by the variable,

target-background separation remains challenging for
images with high levels of noise or fuzziness. Furthermore,
limited by the small number of clusters required by the
value, the processing impact fails to fulfil the experimental
conditions.

Similarly, the FCM algorithm is a soft fuzzy-clustering
image segmentation algorithm that extends the K-means
clustering method. Because of its organic integration of
fuzzy theory and image segmentation as well as its higher-
level suitability for representing the ambiguous information
contained within an image, it has sparked the interest of
scholars. Implementing an image segmentation method
based on spatial information FCM clustering improves the
segmentation effect and stability of current FCM-based tech-
niques for noisy images. As an initial point, the algorithm
divides the pixel points of the segmented image into c classes
based on their gray value. The membership degree of ran-
domly picked pixel points in the original cluster is first com-
puted, followed by their position in the group with the
highest degree of membership. With the calculation of the
cluster centers of various types at this time, the membership
matrix is updated according to the new cluster center. Then,
the classes are redivided according to the membership
matrix, the iteration is then conducted until the objective
function converges, and the image segmentation result is
finally obtained. This paper rewrites the objective function
to take into account image pixel information and assesses
the efficiency of the existing segmentation with the pixel
space information included. Besides, it combines the

Figure 8: Processing results of the clustering-based algorithm. (a) The K-means with the (i) segmentation result and (ii) edge
extraction. (b) FCM-Sobel with the (iii) segmentation result and (iv) edge extraction.

Figure 7: Processing results of the traditional-based algorithm. (a) The Sobel with the (i) segmentation result and (ii) edge extraction.
(b) Otsu with the (iii) segmentation result and (iv) edge extraction.
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neighborhood points of each pixel and the Sobel convolution
template to calculate the gradient approximation value, spot
the image edge points, and then realize the extraction of the
weld pool edge. This method, as depicted in Figure 8(b), per-
forms better in predicting the edges of weld pools than other
algorithms. To facilitate the analysis of whether the edge
extraction is optimal, the extracted edge will be fused with
the original gray image of the weld pool in the following arti-
cle. Afterwards, whether it is conducive to the subsequent
application of the weld pool geometric feature extraction will
be further analyzed.

4.4. Feature Fusion of Image Edges. Based on the edge fusion
of the traditional Sobel differential operator [40] in the
experiment, the processing result is shown in Figure 9(a),
where it can be observed that the lack of smooth processing
still exposes the result to a discontinuity in the edge extrac-
tion of the segmented weld pool image. In addition, the
selection of the threshold value is crucial to the success of
this technique, and the inclusion of arc smoke in the contour
fusion has an impact on the following computation of char-
acteristic parameters, such as the weld width and length.
Figure 9(b) shows the fusion result of the weld pool edge
based on the Otsu algorithm. This approach outperforms
the Sobel operator in edge detection for the segmented target
area image. From an outside perspective, however, the inter-
ference of the arc light, smoke, and other elements during
the welding acquisition process makes this technique unfa-
vorable to image processing. Given these internal con-
straints, the algorithm places a premium on prior
knowledge in the case of determining the upper bound of
interclass variance. This approach is cumbersome and
time-consuming and lacks certain essential practical infor-
mation, which contributes to substandard edge extraction
outcomes. Figures 9(c) and 9(d) present the fusion results
of the weld pool edge by the K-means clustering and
FCM-clustering fusion Sobel algorithm, respectively. As
shown by the result analysis of the edge fusion, the typical
K-means clustering approach for detecting the weld pool
edge is subpar, considering its sensitivity to noise and anom-
alous points and its reliance on previous knowledge to deter-
mine the K value of the number of clusters. FCM has
enhanced the K-means algorithm, which is a flexible fuzzy-
clustering division approach. Optimization is achieved by

using the membership function. After optimization, it com-
bines well with the Sobel operator to handle increased levels
of background noise. Specifically, it removes the edge of the
weld pool without having to pick a Sobel threshold. Figure 9
demonstrates the superiority of this very method over com-
peting algorithms in terms of the consistency and precision
of edge detection and fusion, and it also demonstrates the
remarkable resistance of this method to noise. The geomet-
ric features of the weld pool have been extracted comprehen-
sively and are smooth, as is required for the experiment, and
a solid groundwork has been formed for future studies on
the practical use of this method.

4.5. Validation of Contour Extraction. The weld pool edge
plays a significant role in the whole, as it determines the gen-
eral shapes of the weld pool. After the segmentation of the
weld pool image, the region of interest obtained from the
binary image is relatively clear, but there is still a small
amount of noise. To successfully collect the valuable edge
information of the weld pool and to obtain correct geometric
feature information of the weld pool picture, it is necessary
to further identify and process the edge of the weld pool
image, so as to provide the groundwork for future studies.
At present, the typical methods for edge detection of weld
pool images commonly used by researchers include the
Sobel, Robert, and Canny detection operators [41]. As a seg-
mentation condition, a suitable threshold value is typically
provided by the operator while utilizing these operators for
edge detection. However, for different images, different
thresholds need to be selected. Therefore, one of the obsta-
cles in image-processing research is to determine the best
threshold condition; fortunately, the emergence of fuzzy-
clustering analysis provides scholars with an opportunity
to solve this problem. Since it is commonly considered that
the edge of a picture is fuzzy during processing, this paper
focuses on the uncertainty, fuzziness, and other elements
of the image. In addition, fuzzy theoretical knowledge and
experience knowledge are presented, and a visual edge detec-
tion approach for weld pools is implemented based on the
image pixel space information FCM-clustering fusion Sobel
operator. Then, using the dualities of the Hough transform
between points and lines, an external rectangle containing
information about its contour is generated. Using the previ-
ously calibrated coordinate data, the concluding step is to

Figure 9: Fusion results of different-based algorithms: (a) Sobel; (b) Otsu; (c) K-means; (d) FCM-Sobel.
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calculate the geometric feature parameters. Please refer to
Figure 10 for a comprehensive view on how to extract the
edge of a weld pool.

In order to offer further validation of the methods uti-
lized in the article, image edge-processing results of the weld
pool produced at varying currents, voltages, and welding
speeds are shown in Figure 11. The Sobel operator and Otsu
algorithm are used to extract the edge characteristics of the
weld pool area, and their approximate edges can be effi-
ciently extracted when the acquired image is radiated inde-
pendently in the weld pool area to differentiate their
brightness from the backdrop color. Unfortunately, welding
smoke still exerts an impact and expands the size of the
closed edge region relative to the weld pool area. Moreover,
the edges are not smooth enough, and there remain a few
noise points. With the advancement of image segmentation
functioning as the turning point of image edge feature
extraction, this paper presents the K-means clustering tech-
nique to effectively segment the weld pool area and then
acquire the image edge features, all in line with the charac-
teristics of the picture. The result is noticeably superior to
the previous two approaches. Though effective, K-means is
prone to oversegmentation because it places too much
emphasis on prior experiences. Considering this research,
this paper is capable of effectively extracting and fusing the
edge contour into the original gray image for comparison,

but the welding process parameters, arc light, spatter, and
other interference levels are inconsistent. This is accom-
plished by utilizing merits of the spatial information FCM-
clustering algorithm and Sobel. Figure 11 (iv) demonstrates
that its processing implications are considerable, and the
extraction accuracy is strong, allowing it to satisfy experi-
mental requirements.

In summary, due to the interference of the arc light,
smoke, and spatter during the GMAW welding process of
the ship hull structure, the collected weld pool images are
affected by random noise to varying degrees. Considering
the fuzzy and uncertain random factors of the research
object, an image-processing fusion method is proposed
based on FCM with fuzzy clustering as the core and the
Sobel operator. The fuzzy membership function is used to
characterize the pixel location classification of the image seg-
mentation, and clustering analysis is applied to the member-
ship matrix for the convergence iteration and objective
function optimization. This pixel classification information
establishes a balanced segmentation function to optimize
the identification of Sobel operator parameters, further com-
bining convolution sum operations to solve gradient changes
and obtain edge pixel coordinates, thus achieving effective
segmentation and accurate edge extraction of weld pool
images. Compared with traditional methods, this approach
can effectively suppress the pseudoedge phenomenon caused

Figure 10: The flow of welding edge processing: (a) original image; (b) gray value processing; (c) salt-and-pepper noise processing; (d)
filtering; (e) FCM segmentation result; (f) smoothing; (g) edge extraction; (h) Hough transform processing; (i) edge fusion image.
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by the unclear edge detection brought about by the overreli-
ance on prior knowledge in the Otsu algorithm, overcome
the defects of the Sobel operator being susceptible to external
noise interference and affecting edge positioning due to
threshold changes, and avoid the problem of excessive seg-
mentation caused by the limitation of accuracy in the K
-means method due to the unknown empirical value of the
cluster number K . The simulation results of edge segmenta-
tion and extraction show that the proposed fusion method
successfully provides complete, smooth, and continuous
image edge information that is more consistent with the
original image and has stronger noise resistance.

5. Geometric Feature Extraction

Extracting the geometric information of the weld pool edge
is the ultimate objective of weld pool image processing. After
capturing and processing images, the intricate edge structure
of the weld pool remains discernible. However, calculating
the geometric size characteristics of the weld pool is neces-
sary for future research into the connection between the
weld pool form and welding process parameters and for
real-time surveillance of the weld pool status. Successful
weld pool edge information is gathered by the sequence of
image-processing stages. This experiment is aimed at

Figure 11: Image-processing results of weld pool captured under different working conditions: (a) 95A-19V-23 cm/min; (b) 150A-21V-
23 cm/min; (c) 150A-23V-26 cm/min; (d) 125A-19V-26 cm/min, in which the (i) Sobel-, (ii) Otsu-, (iii) K-means-, and (iv) FCM-
Sobel-processing results are shown.
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establishing a correlation between the size of the weld pool
and the pixels that line its edge. In order to do this, the geo-
metric properties of the front weld pool, such as its width
and length, are extracted after screening the smallest circum-
scribed rectangle of the maximum closed area using the
Hough transform analysis technique (i.e., the weld pool
edge).

5.1. Geometric Calibration Modelling. The geometric shape
and size of the weld pool can reflect the quality of weld-
ing formation. Figure 12 provides a detailed description
of the geometric parameters [42, 43] of the front of the
weld pool. After image processing, the sum of all the
pixels included in the whole edge of the weld pool from
the head of the weld pool to the tail of the weld pool is
the corresponding weld pool area S. The amount of pixels
that constitute the contour line of the weld pool edge is
equal to the weld pool’s perimeter C. The maximum
width W of the weld pool is obtained by calculating the
number of pixels contained in the maximum width BC
of the weld pool perpendicular to the welding direction
in the transverse image. W reflects the width of the weld.
The front weld pool length L is obtained by calculating
the number of pixels contained in the maximum length
DA of the weld pool parallel to the welding direction.
Given that the position of the lens is perpendicular to
the direction of the welding seam during longitudinal
shooting, the length value extracted from the longitudinal
image is close to the truth value. When horizontal image
processing is performed, the back drag angle α of the
weld pool is the angle created between the furthest point
A at the end of the weld pool and the maximum hori-
zontal distance BC; the mathematical expression is shown
in Equation (22). In addition to reflecting the slender
width of the weld pool, it furthermore reflects variations
in the edge curvature.

α =
2 DA2 + BC/2ð Þ2À Á

− BC2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA2 + BC/2ð Þ2

q� �2 : ð22Þ

Intuitively understanding the location and shape of
the weld pool is possible with the resulting image. How-
ever, the shape of the weld pool in the image has geo-
metric deformation and size change because of the
angle at which the CCD camera captures the image. Cal-
ibration of the weld pool image is required to transform
the data represented by its number of pixels into its
physical dimensions. Zhang [44] introduced a versatile
novel technique for generating a radial lens distortion
model within the context of a camera calibration
approach, one that is simple to calibrate and offers a con-
vincing theoretical underpinning for precise camera cali-
bration. Wu [45] took a picture of the calibration object
through a camera and directly used a ruler for calibra-
tion. The scale factor between the actual size of the scale
object and the distance between image pixels is deter-
mined without the requirement for quantifying the length
of the calibration object individually. For the sake of this
experiment’s calibration, this technique gives inspiration.
Based on this, a system that exploits passive vision tech-
nology to continuously monitor and gather images of a
weld pool is hereby presented. The horizontal and vertical
pixels are altered because of the angle formed by the
laboratory-based CCD camera with the weldment during
the experiment. Therefore, the calibration coefficients of
the X-axis and Y-axis of the visual image coordinate sys-
tem need to be calibrated, and what this experiment only
needs to know is the size of the weld pool instead of its
absolute coordinates. The camera is calibrated using a
basic linear model, as shown by this characteristic. In
actual imaging, the lens of the CCD camera is not a
wide-angle lens, and the shooting range is henceforth
constrained and its viewing angle is restricted. The CCD
camera is in the same relative position as the standard
processing, and the calibration panel is captured using
the same parameters.

5.2. Geometric-Pixel Conversion Calculation. Typically, as
part of the calibration process for CCD cameras, an object
of known size and shape is mounted in front of the camera,
the CCD captures an image of the object, and the necessary
parameters are calculated using the equation. The calibra-
tion board used in this experiment is black and white, and
each row and each column are composed of a 10 × 10mm
planar array panel consisting of square blocks, as shown in
Figure 13. The scale coefficient between the coordinate sys-
tem of the authentic workpiece and the coordinate system
of the image is a parameter that requires calibration, which
is applied both horizontally (in the vertical welding direc-
tion) and vertically (along the welding direction). Set the Y
-axis to be perpendicular to the welding direction and the
X-axis to be parallel to the welding direction [46], where
kx and ky represent the calibration coefficients for the X-
and Y-axes, respectively. The calibration panel of the black
and white lattice with a known side length is placed on the
working platform, and the calibrated target image is then
captured by the CCD camera. The image pixels Nx and Ny

are calculated and occupied by certain sizes xscale and yscale

BC

A

D

O

Y

X

L

W

α

Figure 12: Weld pool characteristic parameter schematic diagram.
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in two directions in the image, respectively. On the target
image, the information is searched line by line from top to
bottom and from left to right. The first corner of the block
is marked as x1 and then searched line by line from bottom
to top to get the next corner, which is marked as x2. The
coordinates of several checkerboard intersections are shown
in Table S1 (Supplementary Materials). In a comparable
way, the information is searched from left to right and
from right to left column by column to obtain the leftmost
and rightmost corner points of the calibration object box,
which are denoted as y1 and y2, respectively.

The actual size of the side length of the square in the
known calibration object is 10 × 10mm, from which the cal-
ibrated scale coefficient is obtained as shown in Equation
(23) and the unit is mm/pixel:

kx =
xscale
Nx

=
10

x2 − x1
,

ky =
yscale
Ny

=
10

y2 − y1
:

8>>><
>>>:

ð23Þ

Then, in accordance with its calibration concept, the cor-
responding scale coefficients of the perimeter and area of the
weld pool can be calibrated in the same way, which are
recorded as Cxy and Sxy, respectively, as shown in the follow-
ing equation.

Cxy = 2 ×
xscale
x2 − x1

� �
+ 2 ×

yscale
y2 − y1

� �
,

Sxy =
xscale
x2 − x1

� �
×

yscale
y2 − y1

� �
:

8>>><
>>>:

ð24Þ

The outcomes of the experiments demonstrate the effec-
tiveness and simplicity of this approach. Table 4 displays the
consequences of this calibration.

5.3. Comparison of Extraction Accuracy. Once the calibra-
tion coefficients are accomplished in both the horizontal
and vertical dimensions, the actual distance between two
points in the image directions can be determined using the
conversion equation. The maximum width and length of
the weld pool utilized in the calculation are those shown
above. Calibration conversion is shown in Equation (25),
and the unit is mm:

Xw =W × kx,

Yl = L × ky,

(
ð25Þ

whereW and L represent the pixel distance of the maximum
width and length corresponding to the edge contour of the
weld pool, respectively, and Xw and Yl are the calculated
dimensions of the maximum width and length of the weld
pool, respectively. To confirm the viability of the vision-
sensing system and image-processing algorithm, the weld
width is acquired by operating a welding test that adjusts
the welding speed, and the calculated dimension of the weld
width is obtained by converting the calibration scale factor
formula. Meanwhile, in order to evaluate and compare the
performance of knowledge modelling, it is also necessary
to measure the ground-truth actual value of the weld size.

The instrument used to measure the actual weld seam
size is a metallurgical microscope (research level), as shown
in Figure 14(a), which adopts an infinity optical system and
can achieve functions such as measuring the size of internal
structures of metals and alloys and identifying defects.
Besides, it has a long-worked distance, high color revivifica-
tion degree, and reliable imaging optical quality. Equipped
with corresponding measurement analysis software, electric
stage, and focus drive, it meets the measurement needs of
various types of metals in different forms. In this case, the
formed weld seam of a 6mm low-carbon steel plate for the
hull structure is used as the measurement object, and the
welding process parameters include welding current I =
150A, arc voltage Vw = 21V, and welding speed Vs = 23,
26, and 29 cm/min. The actual position corresponding to
the weld pool at the specific moment can be determined by
using the conversion relationship between the length of the
formed weld seam and the welding speed. The actual posi-
tion of the weld pool corresponding to the test image is
determined by independently marking the baseline, and
the weld seam contour line is observed and extracted based
on the edge detection function. The actual weld width of
the weld pool at the corresponding position is automatically
obtained by adding auxiliary lines, as shown in Figures 14(b)
and 14(c).

The forming features of the weld size are an important
premise to ensure welding quality, such as the front weld
width, reinforcement, and weld depth. However, in practical
engineering applications, the complexity of the ship struc-
ture and various processes as well as the limitation of the
environmental conditions make it difficult to directly
observe the three-dimensional geometric characteristics of
the weld pool in real time. Therefore, the performance

Figure 13: Calibration panel.
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evaluation of the proposed technique is mainly based on the
weld width determination accuracy comparison.

In this case, three sets of welding conditions representing
different process parameters, namely, welding current I =
150A, arc voltage Vw = 21V, and welding speed Vs = 23,
26, and 29 cm/min, are selected. The visual information col-
lected in this way serves as the test data set for the image-
processing model. To reduce the random impact of the test
image selection on the sample size, weld pool images at three
typical moments during the welding steady state are selected
as the characteristic test data for this type of condition.
Then, four processing methods are used to calculate the weld
width values, corresponding errors, and accuracy evaluation
indexes for the three test images at different moments under
each condition and calculate their mathematical expecta-
tions The specific calculated values are shown in Table 5.

The parameters of the fusion width in Table 5 are
broader than those of the measured weld width, which is
attributed to the fact that the contrast between solid and

molten low-carbon steel is indiscernible and the arc interfer-
ence is noticeable. The error between the calculated value x
and the actually measured value μ is called absolute error
Ea, and the ratio of the absolute error to the actual value is
called a relative error Er , as shown in the following equation.

Ea = x − μj j,

Er =
Ea

μ
× 100%:

8><
>: ð26Þ

After calculation, the absolute error between the calcu-
lated width by the hereby proposed method and the actual
value is better than that of the other three methods. See
Figure 15 for an illustration of how the processing impact
of this method is within an error margin with only
0.08mm on a range of welding speeds. In comparison to
the conventional Sobel, Otsu, and K-means algorithms, to
satisfy the welding’s real requirements, the extraction

(a) Metallurgical microscope

(b) Weld appearance (c) Software measurement

Figure 14: Analysis on the weld measurement of the ground-truth actual value using a metallurgical microscope.

Table 5: Computed and measured value of weld pool width.

Welding speeds (cm/min)
Algorithm-weld pool width (mm)

Sobel Otsu K-means FCM-Sobel Actual value

23 9.13 9.07 8.91 8.85 8.77

26 10.44 9.02 8.47 8.80 8.73

29 9.07 8.96 8.80 8.74 8.68

Table 4: Camera calibration results of the proportional coefficient.

Calibration panel (mm) kx (mm/pixel) ky (mm/pixel) Cxy (mm/pixel) Sxy ((mm/pixel)2)

10 × 10 0.0546 0.0553 0.2201 0.0030
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precision of the implemented method is augmented by 77%,
73%, and 40%, respectively. At the same time, it is proven
that the visual-sensing system and image-processing algo-
rithm developed to be utilized in a weld pool are both effec-
tive and trustworthy.

Considering the considerable discrepancy between the
width projected by the other three methods and the real
value, it is not worthwhile to continue to calculate the addi-
tional geometric parameters of the weld pool. Accordingly,
this paper does not conduct further research. The foregoing
analysis suggests that the approach approximates the actual
weld width more closely, lending support to the idea that it
has relevance to merit further experimentation. The area,
length, circumference, and trailing angle of a weld pool,
among other geometric characteristics, can be determined
by employing this technique. As shown in Table 6, this pro-
vides valuable benchmark data for online and real-time
monitoring of the dynamic condition of the welding process.

After a series of previous analyses, image segmentation
and edge detection methods are technical prerequisites and
accuracy guarantees for geometric feature extraction of the

GMAW weld pool in the ship hull structure. Based on the
premise of obtaining effective edge contour information,
the present research relies on the Hough transform and a
predefined neighborhood window function to traverse and
examine the edge line segment set, discriminates the edge
set in the rectangular buffer optimization area using angle
resolution parameters generated by the corner detection
method, and obtains the optimal contour pixel information.
Referring to the shooting angle of the visual sensor and the
weld seam of the plate, a planar array calibration plate is
selected to establish a linear geometric-pixel transform
model, solving the coordinate system direction ratio between
the collected image pixels and the actual workpiece position.
In addition, a function is set up for the change of weld pool
size features based on the imaging principle of CCD cam-
eras, and left- and right-view image calibrations are used to
achieve lossless conversion between corner pixel coordinates
and physical coordinates. By comparing different experi-
mental results with traditional methods, the proposed fusion
method achieves the highest accuracy in extracting the weld
pool width, with an average error within 0.08mm, meeting
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Figure 15: Calculation error of different methods under different welding speeds. The histogram represents the calculation error. The line
chart represents the calculation accuracy.

Table 6: Computed values of other weld pool characteristics.

Speeds (cm/min) Length (mm) Area (mm2) Perimeter (mm) Angle (°)

23 6.63 47.27 108.12 49.15

26 6.41 43.41 105.27 48.69

29 6.30 38.85 98.90 48.51
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engineering requirements. Similarly, other geometric fea-
tures of the weld pool, such as area and trailing angle, are
calculated to provide research ideas for the development of
an intelligent monitoring technology of the hull structure
GMAW in the future.

6. Conclusions

The arc light, spatter, smoke, and other phenomena devel-
oped in the highly nonlinear process of the hull structure
GMAW are the primary focus of this paper, which explores
the impediments in image acquisition and feature extraction
of the weld pool. In order to optimize and develop the visual
sensing of welding dynamics to acquire high-resolution
images, a technique of image processing is created using
FCM-Sobel fusion, which can accomplish the edge retrieval
and accurate extraction of the weld pool. Besides, to com-
pare the algorithms with conventional techniques, various
experimental schemes are formulated using the corner
detection algorithm in conjunction with the Hough trans-
form technology for extracting geometric characteristics
from segmented images. The specific conclusions are as
follows:

(a) Taking the hull structure GMAW as the research
object, a cut-off composite dimming and near-
infrared narrowband filtering system is designed
and developed by analyzing the characteristic spec-
tral lines of the arc light, and a special CCD camera
is selected to build an experimental platform for
visual-sensing detection. With the experimental plat-
form, the image of the weld pool acquired has higher
sharpness and has less interference from the arc light
and smoke

(b) The clustering advantage of the FCM-Sobel fusion
method can effectively reduce noise interference to
achieve accurate segmentation of the weld pool
image and calculate its pixel gradient value to
improve the accuracy of edge detection. The simula-
tion results demonstrate that under different welding
process conditions, in comparison to the established
techniques including K-means, Otsu, and Sobel, the
FCM-Sobel fusion model generates smoother and
more continuous image-processing information,
with no breakpoints, less noise, and more accurate
edge extraction

(c) The corner detection technique is used in conjunc-
tion with the Hough transform to map image space
into parameter space and provide a lossless transfor-
mation of pixel coordinates and distance coordinates
in parameter space. The simulation results of geo-
metric feature extraction reveal that the FCM-Sobel
fusion technique has the maximum extraction accu-
racy of the weld pool width under varying welding
circumstances. The absolute error is maintained
under 0.08mm and fulfils the engineering require-
ment. The accuracy of the fusion model is increased
by 40%, 73%, and 77%, respectively, when compared

to that of conventional approaches like K-means,
Otsu, and Sobel. A superior visual information feed-
back for the dynamic monitoring of welding quality
is also presented through the calculation of the sig-
nificant characteristic parameters of the weld pool
area, perimeter, length, and back angle
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