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An extremely high number of geographically dispersed, energy-limited sensor nodes make up wireless sensor networks. One of the
critical difficulties with these networks is their network lifetime. Wirelessly charging the sensors continuously is one technique to
lengthen the network’s lifespan. In order to compensate for the sensor nodes’ energy through a wireless medium, a mobile charger
(MC) is employed in wireless sensor networks (WRSN). Designing a charging scheme that best extends the network’s lifetime in
such a situation is difficult. In this paper, a demand-based charging method using unmanned aerial vehicles (UAVs) is provided
for wireless rechargeable sensor networks. In this regard, first, sensors are grouped according to their geographic position using
the K-means clustering technique. Then, with the aid of a fuzzy logic system, these clusters are ranked in order of priority
based on the parameters of the average percentage of battery life left in the sensor nodes’ batteries, the number of sensors, and
critical sensors that must be charged, and the distance between each cluster’s center and the MC charging station. It then
displays the positions of the UAV to choose the crucial sensor nodes using a routing algorithm based on the shortest and most
vital path in each cluster. Notably, the gradient-based optimization (GBO) algorithm has been applied in this work for
intracluster routing. A case study for a wireless rechargeable sensor network has been carried out in MATLAB to assess the
performance of the suggested design. The outcomes of the simulation show that the suggested technique was successful in
extending the network’s lifetime. Based on the simulation results, compared to the genetic algorithm, the proposed algorithm
has been able to reduce total energy consumption, total distance during the tour, and total travel delay by 26%, 17.2%, and
25.4%, respectively.

1. Introduction

Wireless sensor networks (WSNs) consist of many energy-
limited sensors and several sink nodes, where the sensor
nodes can sense events such as temperature, humidity,
and the content of atmospheric pollutants. These func-
tional scenarios require WSN to work consistently. These
application scenarios require the WSN to operate continu-
ously. In particular, the performance of a WSN is limited

by the battery capacity [1–3]. To augment the lifetime of
a WSN as much as possible, many researchers have pro-
posed various approaches. The existing reports can be
divided into three categories, namely, energy conservation
[4], energy harvesting [5], and wireless energy transfer
(WET) [6].

Limited lifetime remains a key factor affecting large-scale
deployment of WSNs. In general, there are two types of
methods to solve the problem. The first method is a
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resource-saving method that uses an optimization method
to improve the efficiency of the WSN. The energy-saving
scheme increases the lifetime of the sensor nodes by reduc-
ing the energy consumption per unit of time or workload.
While the energy of sensor nodes is still limited, this method
cannot fundamentally solve the problem. The second
method is wireless energy transfer (WET). The main idea
is to charge sensor nodes with the use of a magnetic reso-
nance coupling, and the WET can provide a stable energy
source with a controlled charge power. With the help of
the promising WET method, researchers have proposed a
new concept of wireless rechargeable sensor networks
(WRSNs) [7–9]. In WRSNs, sensor nodes can be charged
by wireless charging equipment (WCE). Hence, the WCE
charging schedule becomes a prominent issue in WRSNs.
To date, various perspectives on charge scheduling have
been investigated, including route planning and system per-
formance optimization [10].

In WRSNs, since multihop data routing is usually used
to send data from sensor nodes to the base station, the nodes
that are closer to the base station usually consume more
energy than others, resulting in unbalanced energy con-
sumption patterns (for instance, the energy hole phenome-
non [11]). Hence, a rational charging scheduling scheme
that also takes both effectiveness and fairness should still
be designed to meet the purpose of ensuring the lifetime of
global sensor nodes in WRSN. Additionally, due to the lim-
ited charging capacity of WCVs in WRSNs, several impera-
tive elements in charging planning must be considered,
including the number, movement speed, charging power,
charging range, charging path, and charging period of
WCVs in each charging cycle and period. Moreover, the
joint optimization of charging scheduling and network pro-
tocols of WSNs will certainly minimize charging costs and
progress connectivity, coverage, and lifetime of WRSNs
[12–14].

In the overall framework of the wireless rechargeable
sensor network, there are maintenance stations, base stations
(BS), one or more agents or mobile charging vehicles
(MCVs) on the ground or in the air, and a large number
of rechargeable sensors (Figure 1). In this study, UAV is
used as MCV. The maintenance station can meet the charg-
ing demand. The base station collects and aggregates the
sensor data from the sensors and usually has no energy lim-
itations. After deploying the sensors, the location of each
sensor can be determined. A set of sensors with random bat-
tery capacity is distributed in a certain range. Sensors are
categorized into several clusters based on their position
and residual energy. The sensor collects data and transmits
it to the cluster heads. When the power is less than the
threshold, each sensor sends a real charge request to the
MCV. The request delivery time is assumed to be insignifi-
cant compared to the moving time of the mobile charging
vehicle (MCV) [5].

In this work, two issues of energy efficiency and trans-
mission speed are considered for charging planning. Based
on the needs of wireless sensor networks to continue work-
ing and increase their lifespan, the contributions of this arti-
cle are stated as follows:

(i) Considering the reduction of energy losses for
charging sensor nodes, we seek to provide the short-
est path to reach all sensor nodes

(ii) With the help of tracking the nodes in urgent need
of charging, priority is provided to choose the route

(iii) With the approach of segmenting different areas,
the risk of WSN nodes death is reduced

(iv) By using UAV to charge nodes and also the GBO
algorithm in this article, the time delay of charging
at sensitive nodes is reduced

In the current investigation, we mainly study UAV rout-
ing and charging strategy in WRSN. Section 2 briefly reviews
the literature. We introduce the concepts related to our work
in Section 3. In Section 4, the routing strategy is proposed in
detail. Simulations and analysis are presented in Section 5.
Ultimately, Section 6 concludes and offers suggestions for
further work.

2. Related Work

Charging problems in wireless rechargeable sensor networks
and the Internet of Things are common exploration chal-
lenges. Utilizing wireless energy transmission technology,
we are capable of transferring electric power from wireless
charging equipment (WCE) to sensor networks and also
providing a new model for increasing the network lifetime.
The current investigation usually uses a periodic and deter-
ministic charging process, but the limited energy and impact
of nondeterministic factors such as topological changes and
sensor failures can be ignored, making them unsuitable for
real networks. In [15], the goal is to minimize the number
of dead sensors, while the maximum use of WCE energy is
given by considering its limited energy. In this effort, the
swarm reinforcement learning (SRL) method is first pre-
sented to attain the independent planning ability of WCE.
Furthermore, to solve the inadequate search problem in
the existing SRL algorithm, this algorithm has been
improved with the help of the firefly algorithm, and a new
charging algorithm, called swarm reinforcement learning
based on firefly algorithm (SRL-FA), is proposed for
demand charging architecture. Article [16] manifests a
demand-based charging strategy (DBCS) in WRSN. More-
over, in the mentioned study, charging scheduling is devel-
oped in four ways: clustering method, selection of charging
sensors, charging route, and schedule. At first, a multipoint
improved K-means clustering algorithm is proposed to bal-
ance energy consumption that can be grouped based on
location, residual energy, and past contribution. Secondly,
to select charging sensors based on demand, a dynamic
selection algorithm for charging nodes (DSACN) is planned.
Third, simulated annealing based on performance and effi-
ciency (SABPE) is designed to optimize the charging path
for a mobile charging vehicle and reduce charging time.
Eventually, in order to augment the efficiency of MCV,
DBCS was suggested.
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In [17], a new criterion is presented which is called the
charging reward. This novel criterion will assist to measure
the quality of sensor charging and then monitor how mobile
charger planning is designed to fill the sensor supply so that
the total charging rewards collected by the mobile charger in
the charging are maximized. It is worthy to note that the
total charging reward collected is subject to the energy
capacity limit of the mobile charger and the charging time
windows of all sensors. Owing to the problem’s complexity,
the deep reinforcement learning technique is utilized to
achieve the moving path for the moving charger.

In [18], a dynamic charging scheme (DCS) in WRSN
based on the actor-critic reinforcement learning (ACRL)
algorithm is proposed. In ACRL, gated recurrent units
(GRU) are presented to record the relationships of charging
actions in time order. Using an actor-network or agent with
a GRU layer, one can choose a desired or nearly optimal sen-
sor from the candidate sensor as the next target of charging
and speed up the model training. Meanwhile, the length of
the tour and the number of dead sensors are considered as
the reward signal. The actor and critic networks are updated
with the function of R and V error criteria.

To attain stable and reliable energy supplements through
wireless charging, it is imperative to optimize the path of
mobile phone chargers. Hence, the objective of article [19]
is to provide a charging strategy and scheduling algorithm
for directional wireless power transmission in WRSN. First,
to regulate the priority of charging requests, the degree of
charging demand is well defined. Thereafter, to avoid node
energy losses, the charger orientation angle selection algo-
rithm is considered according to the charging priority.
Lastly, it formulates the directional charger deployment
problem into a discrete unit disk-covering problem and sug-
gests a trajectory planning scheme based on an improved
genetic algorithm to optimize energy charging efficiency.

In the case of wireless sensor networks charging and the
Internet of Things, it is anticipated that the mobile energy of
wireless charging equipment (WCE) has adequate energy to
recharge the trip and that the amount of energy discharge
per sensor is identical. However, these hypotheses are not
realistic. Actually, the energy of the WCE tour is restricted
by the energy capacity of the WCE, and the energy con-
sumption of different sensors is unbalanced. In the paper
[20], periodic charging scheduling is proposed for mobile
WCE with limited travel energy. In this circumstance, the
connection time ratio is optimized and maximized. Then
this periodic charging schedule guarantees that the energy
of the sensors in the WRSN varies periodically and that
the sensors do not die continuously. To alleviate this prob-
lem, a hybrid particle swarm optimization genetic algorithm
(HPSOGA) is suggested for solving NP-hard problems.

In [21], an effective algorithm has been proposed to
improve the lifetime of mobile wireless networks. It controls
the communication between users and the sensor sink by
solving a simple convex optimization problem. In the cur-
rent study, the systemic performance of this algorithm was
evaluated by bearing in mind that (1) energy storage devices
of sensors are subject to recharging through radiative wire-
less power transfer events, (2) sensor mobility patterns by
random waypoints, Gauss-Markov random and reference
group models are considered, (3) a propagation path loss
prediction model depending on the distance between two
sensors, energy consumption, and the amount of charge
delivered to the sensors, and (4) recharge which is done
through omnidirectional and directional radiation patterns.
Importantly, many of the previous works are not capable
of utilizing the full benefits of WMC because it starts to
recharge the sensor when its energy level reaches the thresh-
old, resulting in an increasing WMC idle time. Moreover,
although there has been an upsurge of interest in using
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Figure 1: Framework of WRSN [5].
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WMC, the restriction of network lifetime was observed.
However, the optimal sharing of WMC energy between sen-
sors can guarantee permanent network performance. There-
fore, the suggestion of an efficient method that jointly solves
these challenges is required. In [22], the Fair Energy Division
Scheme (FEDS) is presented, which will undertake the per-
manent network operation with optimization of energy
sharing at the beginning of each cycle.

In [23], a charging scheduling algorithm for directional
wireless power transfer in WRSNs is proposed. Firstly, the
charging demand degree is distincted to regulate the priority
of charging requests. Then, to circumvent the occurrence of
the node’s energy being drained, the charger’s orientation
angle selection algorithm based on charging priority is
designed. Finally, it is formulated that the problem of direc-
tional charger deployment is a discrete unit disk cover prob-
lem and proposed a moving path planning scheme based on
an improved genetic algorithm to optimize the energy
charging efficiency. Simulation results illustrate the benefit
of our proposed scheme over the benchmark.

In [24], the WCV charging strategy in WRSN is studied
due to the significance of different sensor nodes in the trans-
mission of data and rough energy consumption. According
to the importance of the sensor node, which is accompanied
by the distance to the base station, we divide the sensor
nodes into two types: sensor nodes in the inner ring and sen-
sor nodes in the outer ring. Therefore, a new charging model
is suggested to adopt various charging strategies for different
sensor nodes. In order to become more efficient, the sensor
nodes of the WCV sensor put one into an inner circle and
then charged several sensor nodes simultaneously in the
outer loop. A new measure called normal dead time is pre-
sented for approximating network lifetime. Maximizing net-
work lifetime is modeled as minimizing the normal amount
of dead time, and an efficient algorithm is presented to min-
imize the amount of normal dead time by searching for opti-
mal charging time sequences. Then, by resetting the
charging time of the sensor nodes, the minimum travel cost
algorithm minimizes the WCV travel distance and ensures
the network lifetime. A cluster head node with more battery
capacity was organized to charge other sensor nodes within a
limited distance. An algorithm for cluster head node energy
predistribution is presented.

Up to date, a great number of optimization methods for
obtaining the charging path with the objective of minimizing
the charging cost have been well documented. However,
autonomous charging path planning for MC in a switchable
network is not considered. Article [11] emphasizes on the
charging path for MC because MC is stopped at each sensor
node until the sensor node is fully charged. In the present
exploration, reinforcement learning (RL) is stated to charge
route planning for MC in WRSN. To enhance MC indepen-
dence, a new charging strategy for RL-based WRSNs (CSRL)
is proposed according to the effects of changing the energy
and location of sensor nodes. In [25], the operation of wire-
less sensor networks on the basis of WPT wireless energy
transfer using a mobile charging vehicle (MCV) provides a
periodic strategy for the permanent operation of the net-
work. The goal is to diminish the total energy consumption

of the system and maintain network performance at all
times. In this context, according to the analysis of total
energy consumption, it proposes an energy-efficient renew-
able scheme (ERSVC) to achieve energy savings. In [26],
using the traditional MTSP model for reference, the mini-
mum energy consumption path and battery capacity plan-
ning model under multiple chargers are established. Then,
the creative balance factor is designed and applied. In the
next steps, an improved genetic algorithm based on the
degree of balance is planned.

The article [27] surveys the problem of the minimum
battery capacity essential for the normal operation of each
sensor when determining the charging path of the mobile
charger. Then, the parameters of the wireless rechargeable
sensor network are studied. In these circumstances, the
objective is to minimize the battery capacity required by
each sensor and ensure the continuous operation of the
wireless rechargeable sensor network with minimal sensor
energy consumption. To minimize the battery capacity of
each sensor, a linear programming model is considered.
Also, the Lingo method is used to solve the model.

Article [28] establishes a new scheduling scheme for on-
demand charging in WRSNs. First, it provides an efficient
network partitioning method for MCS to balance their
workload equally. Thereafter, fuzzy logic was employed to
determine the MCS charging schedule. Besides, it forms an
expression to regulate the charging threshold for nodes that
varies depending on their energy consumption.

Paper [29] focuses on the on-demand wireless recharge-
able sensor networks (WRSNs) to consent for continuing
and sustainable monitoring and provide application-based
services matching goals, circumstances, and the environ-
ment within smart metropolises. This work proposes a cali-
bration fuzzy-metaheuristic clustering routing scheme
(CFMCRS) for on-demand WRSNs. The proposed CFMCRS
assistances from resource-saving and energy supplementary
techniques in addition to using metaheuristic and fuzzy logic
methods to achieve roles and energy distribution in nodes
and across the network. It also uses a multiobjective function
to standardize the network with the nearest-job-next with
preemption (NJNP) charging scheduler to meet WRSN
requirements in smart cities. Based on simulation results,
this strategy can delay the WRSN’s lifetime.

A wireless rechargeable sensor network (WRSN) assisted
by unmanned aerial vehicles (UAV) is a promising applica-
tion in providing a stable power supply to rechargeable sen-
sor nodes (SN). Creating a path for the UAV to traverse all
SNs with the cheapest hacking cost for energy consumption
is an important issue in UAV-assisted WRSN. Based on the
studies in this section, although some exact algorithms and
heuristic methods have been proposed, they cannot achieve
an excellent result for large-scale networks in a tolerable time
and respond well to energy constraints. In this paper, we
examine the problem of UAV trajectory optimization from a
new perspective that the designed trajectory should maximize
the UAV’s energy utilization efficiency. The energy efficiency
problem is decomposed into integer programming and non-
convex optimization problems using the maximum energy of
the UAV. To solve the problem of UAV charging position,
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we speed up the performance of the GBO algorithm by limit-
ing the search direction, initial search position, and search
space. For this problem, large systems are divided into smaller
networks with the help of K-means clustering, and a route
search is done for each cluster.

3. Basic Concepts

3.1. Gradient-Based Optimizer (GBO). The metaheuristic
algorithm was first presented by Ahmadian Far et al. in
2020 to solve optimization problems related to engineering
applications. Exploration and exploitation are the two main
steps in metaheuristic algorithms that aim to improve the
convergence speed and/or local optimal avoidance of the
algorithm when searching for a target/situation. GBO is
managed to make an appropriate trade-off between explora-
tion and exploitation using two main operators: the gradient
search rule (GSR) and the local escape operator (LEO). A
simple introduction to this algorithm is explained as follows.

3.1.1. Gradient Search Rule (GSR). First, GBO suggests the
first GSR function, which helps GBO to consider random
behavior in the optimization process to facilitate the explo-
ration and avoidance of local optimal. Directional motion
(DM) is added to the GSR, which is used to perform a suit-
able local search process to facilitate the convergence speed
of the GBO algorithm. Based on GSR and DM, the following
equation is used to update the current vector position (Xm

n)
[30, 31].

X1mn = xmn − randn × ρ1 ×
2Δx × xmn

xworst − xbest + ε

+ rand × ρ2 × xbest − xmnð Þ,′
ð1Þ

ρ1 = x × rand × α − α, ð2Þ

α = β × sin 3π
2 + sin β × 3π

2

� �� �����
����, ð3Þ

β = βmin + βmax + βminð Þ × 1 − m
M

� �3� �2
, ð4Þ

where βmin and βmax are 0.2 and 1.2, respectively, m is the
number of iterations, and M is the total number of itera-
tions. Moreover, randn is a normally distributed random
number, and randn is a small number in the range [0, 0.1].
ρ2 can be calculated using the following relationship:

ρ2 = 2 × rand × α − α, ð5Þ

Δx = rand 1 : Nð Þ × stepj j, ð6Þ

step = xbest − xmr1ð Þ + δ

2 , ð7Þ

δ = 2 × rand × xmr1 + xmr2 + xmr3 + xmr4
4 − xmn

����
����

� �
, ð8Þ

where rand ð1 : NÞ is an N-dimensional random number, r1
, r2, r3, and r4, which are completely opposite to each other,
are different integers randomly selected from ½1,N�, step is a
step size determined by the xbest and xmr1. By replacing the
position of the best vector (xbest) with the current vector
(Xm

n) for Equation (1), the new vector (X2mn) can be gener-
ated as follows:

X2mn = xbest − randn × ρ1 ×
2Δx × xmn

ypmn − yqmn + ε

+ rand + ρ2 × xmr1 − xmr2ð Þ,
ð9Þ

ypn = rand × zn+1 + xn½ �
2 + rand × Δx

� �
, ð10Þ

End

The best and worst solutions

Calculate and evaluate the fitness
function value of each individuals 

Update position of individuals
using Eq. (14) 

Convert the position of individual
tobinary space 

Rand < pr?

Start

Initialize the population of 
individual and assign parameter

Calculate and evaluate the fitness
function value of each individuals 

Update position of individuals
using Eq. (12) 

Set the best and worst solution

Return the best and worst solutions

Stopping condition met?

Figure 2: Flowchart of GBO algorithm [32].
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yqn = rand × zn+1 + xn½ �
2 − rand × Δx

� �
: ð11Þ

Based on the positions X2mn and X1mn of the current
position (Xm

n), the new solution in the next iteration
(Xm+1

n) can be defined as follows:

xm+1
n = ra × rb × X1mn + 1 − rað Þ × X2mnð Þ + 1 − rað Þ × X3mn ,

ð12Þ

X3mn = Xm
n − ρ1 × X2mn − X1mnð Þ: ð13Þ

3.1.2. Local Escaping Operator (LEO). LEO is the second
operator introduced by GBO. LEO is introduced to make
GBO still effective in dealing with complex high-
dimensional problems. LEO is defined using several solu-
tions, including the best position (xbest), solutions X2mn
and X1mn, two random solutions Xm

r2 and Xm
r1, and a

new randomly generated solution (Xm
k). The Xm

LEO solu-
tion is generated by the following scheme:

where f1 is a random number in the interval [-1,1]. f2 is a
random number from a normal distribution with mean 0
and standard deviation 1, pr is the probability, and u1, u2,
and u3 are three random numbers defined as follows:

u1 = L1 × 2 × rand + 1 − L1ð Þ,
u2 = L1 × rand + 1 − L1ð Þ,
u3 = L1 × rand + 1 − L1ð Þ,

ð15Þ

where L1 is a binary parameter with a value of 0 or 1.
Figure 2 shows the flowchart of the GBO algorithm.

3.2. K-Means Clustering. In fact, K-means clustering is a vec-
tor quantization method originally derived from signal pro-
cessing and is popular for clustering analysis in data mining.
K-means clustering is aimed at decomposing n observations
into k clusters, where each observation belongs to the cluster
with the closest mean, this mean is used as a sample.

Given a set of observations (x1, x2, x3,⋯, xn) where each
observation is a d-dimensional real vector. K-means cluster-
ing is aimed at partitioning n observations into K ≤N set S
= fs1, s2, s3,⋯, skg so that the sum of squared differences
from the mean (i.e., variance) for each cluster is minimized.

Its exact mathematical definition is as follows:

argmin
s 〠

k

i=1
〠
x∈Si

x − μik k2 = argmin
s 〠

k

i=1
Sij jVar Sið Þ:, ð16Þ

where μi is the mean of the points in Si. This is equivalent to
minimizing the two-squared deviations of points in the same
cluster:

〠
ClusterCi

〠
Dimension d

〠
x,y∈Ci

xd − ydð Þ2: ð17Þ

Since the total variance is constant, it can be concluded
from the law of total variance that this equation is equal to
maximizing the square of the deviations between the points
of different clusters (BCSS) [33–35].

3.3. Fuzzy Logic Technique. Fuzzy image processing can be
defined as a set of all methods that are able to understand,
display, and process images, parts, and features as fuzzy sets.
Fuzzy image processing has three fundamental steps: image
fuzzification, modification of membership values, and if
needed, image defuzzification. The fuzzification step is
attributed to the coding of image data. Besides, defuzzifica-
tion is the decoding of the results. These stages make us
the opportunity to process images with fuzzy techniques.

if rand < pr

if rand < 0:5

Xm
LEO = Xm+1

n + f1 × u1 × xbest − u2 × xmkð Þ + f2 × ρ1 × u3 × X2mn − X1mnð Þ + u2 × xmr1 − xmr2ð Þð Þ
2

Xm+1
n = Xm

LEO

else

Xm
LEO = Xbest + f1 × u1 × xbest − u2 × xmkð Þ + f2 × ρ1 × u3 × X2mn − X1mnð Þ + u2 × xmr1 − xmr2ð Þð Þ

2
Xm+1
n = Xm

LEO

End
End,

ð14Þ
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Hence, the coding of image data (fuzzification) and decoding
of the results (defuzzification) are the most significant stages
that provide us with the ability to handle the image with
techniques as shown in Figure 3 [11, 36].

The most effective element of fuzzy image processing is
that it can be observed in the middle stage, i.e., by modifying
the membership values that can be considered as intelligent,
since these steps make the difference between the approach

and the other. Fuzzy logic is characterized by a wide variety
of membership functions which include triangular, trapezoi-
dal, Gaussian, and bell membership functions. Each of them
has a distinctive influence. The use of appropriate member-
ship by fuzzy system inference increases the effectiveness of
the method. This method assumes the adjacent points of
pixels and then divides them into classes using the member-
ship function [37, 38].

Rules

Fuzzifier Intelligence DefuzzifierInput calculated
parameter 

Periority 

Figure 3: Steps involved in fuzzy image processing [11].

NO

NO

Determine the position of the drone

Check the UAV reserve charge for travel

Clustering of all nodes based on the propheral position
of the sensors with help of K-mean clustering.

Prioritize clusters to determine cluster
using the proposed fuzzy logic

Calculation of priority detection parameters
includes: 

Internal routing for each cluste:
Determine the critical sensor nodes for each cluster by calibrating the
remining energy of the nodes.

Calculate the total displace ment delay and charge time of critical sensors along the path.
Is the calculated delay of the proposed route less than the define standard?

Select routing path

Number of nodes in each cluster.
Number of critical sensors with remaining
battery power of 30% for each cluster.
The average remaining energy of the nodes
in each cluster.
The average distance between the nodes of each
cluster and the center of the charging station.

Define the objective function based on shortest path and the weight of the
paths based on the amount of energy remining in the critical sensors. 
Determine the minimum objective function with the help of GBO algorithm.

Calculate the energy consumption for the proposed rout.
Is the total energy consumed less than energy stored in the drone?

Mamdani fuzzy
system

(i)
(ii)

(iii)

(iv)

Figure 4: Flowchart of proposed plan strategy.
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The image that can be used in fuzzy logic technology
must be transformed into a gray level and then converted
to a membership function (fuzzification step), where its
value can be readily adjusted by fuzzy technology. This could
either be called a fuzzy clustering, a fuzzy rule-based
approach, or a fuzzy integration approach. To realize the
uncertainty in the data, fuzzy image processing is required.
Many of the benefits of image processing based on fuzzy
logic are expressed as follows:

(a) Fuzzy techniques are considered as dominant tools
for displaying and processing an image

(b) It provides us the opportunity to handle and manage
obscurity with efficiency

(c) The conception of fuzzy logic is not complicated

(d) Fuzzy logic offers a huge flexibility

(e) Fuzzy logic is operative even if the data is inaccurate

It is worthy to note that fuzzy logic works better than
others because everything suffers from imprecision, whereas
fuzzy logic makes its understanding by considering
structure.

In several image-processing applications, to handle vari-
ous types of complexities such as object recognition and
scene analysis, it is recommended to utilize human logic
according to if-then rules which can be accessible by fuzzy
set theory and fuzzy logic. In contrast, many reasons like
randomness, ambiguity, and vagueness make uncertainty
in image processing results and data. Furthermore, those
uncertainties have a negative impact on image processing
progress that leads to many complications [39–41].

4. Proposed Work

Based on the studies conducted in different fields for charg-
ing sensors in WRSN, the use of mobile charger brings dif-
ferent problems for planning and scheduling in critical
nodes that require emergency charging. The target subject
is the moving path of the charger vehicle. In this article,

we use a UAV aerial transmission system so that we can
reduce the path well for different urban and moving envi-
ronments such as trees and buildings. We can also create
direct routes between sensor locations for reliable routing.
Compared to other mobile chargers, UAVs consume less
energy between movement paths. It will also be able to be
placed at the closest distance from the sensor for wireless
energy transfer. Therefore, in this work, we consider the
moving position of the UAV near the sensor nodes for
charging. This work reduces the power and power losses to
transfer energy from the UAV to the destination to its lowest
value. Another noteworthy point about the use of UAVs is
the constant speed of the UAV during the route between
the nodes, which makes the route and energy consumption
more accurate and simple. Figure 4 shows the flowchart of
the proposed strategy for UAV movement and sensor charg-
ing. The following steps are explained.

4.1. Determining the Position of the UAV. In this case, the
position at the origin of the coordinates is usually taken into
account, and the subsequent positions along the route are
determined, of course, we also define the location of the
UAV charging station at the origin so that the UAV returns
to the hangar and recharges in each period of travel. In these
circumstances, it can be prepared for the next courses.

4.2. Checking the Charge Level of the UAV Storage for Travel.
In this case, checking the stored power inside the battery
happens every period to reach an optimal approach for
recharging the UAV at the charging station.

4.3. Clustering of All Nodes Based on the Environmental
Position of Sensors with the Help of K-Means Clustering. In
this section, based on the number of clusters introduced in
this article, which is equal to 5, the nodes in close positions
are placed in a group or cluster.

4.4. Calculation of Priority Detection Parameters Included

(1) The number of nodes in each cluster

NumberSC = 0.166 Criticalnodes = 0.661 Centraldis = 0.5 Decision-cluster = 0.172BatterySC = 0.297
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(c)

Figure 5: (a) The proposed fuzzy system, (b) input and output membership function, and (c) an example of implementing fuzzy rules.
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(2) The number of critical sensors with a remaining bat-
tery capacity of 30% for each cluster

(3) The average residual energy of nodes in each cluster

(4) The average distance of the nodes of each cluster
with the center of the charging station

These four parameters are normalized on the input of
the priority detection fuzzy logic system in the range
between 0 and 1. Now, these inputs are sent to the member-

ship functions of the fuzzy system so that prioritization is
done based on the defined fuzzy rules.

4.5. Prioritizing the Clusters to Determine the Clusters of the
UAV Movement Path with the Help of the Proposed Fuzzy
Logic. According to various works in Refs. [31–33] in this
article, a fuzzy system is used to select and prioritize clusters.
Sorting the output of the fuzzy system calculated for each
cluster until all clusters are arranged to prioritize the path
selection priority.

4.6. Internal Routing for Each Cluster. In this part, UAV
movement routing is performed for each cluster in the order
of the determined fuzzy priority.

(i) Determining the critical sensor nodes for each clus-
ter by limiting the residual energy of the nodes

(ii) Defining the objective function based on the short-
est path and weighting the paths based on the
remaining energy of critical sensors

(iii) Determining the minimum of the objective function
with the help of the GBO algorithm

4.7. Investigate the Delay and Energy. For this case, in the
final routing, two energy limits and delay must be checked
in this strategy. In the model presented in this work, first,
the calculation of the total displacement delay and the charg-
ing time of the critical sensors along the determined path is
done. The relationships governing these calculations are as
follows:

Calculation of the remaining working time of the MCV
(UAV):

First, we calculate the remaining working time of MCV
as follows:

durationMCV = , ð18Þ

where di−1,i represents the distance between two nodes, dn,0
represents the maintenance station, v is the speed of the
MCV, and τi represents the time the MCV stays near node
i. When the remaining working time is greater than the
MCV duration, the node ensures that it is always working
[42, 43].

4.8. Calculation of the Minimum Remaining Working Time
of the Sensor. The minimum remaining working time of
the sensor in WRSN is calculated by the following relation-
ship:

reTmin = min Ei mð Þ
Pi mð Þ

� �
1 ≤ i ≤ n, ð19Þ

where EiðmÞ is the residual energy of the ith node in the mth
cluster and piðmÞ represents the power of the ith node.

Here, the condition of the proposed strategy is that the
remaining working time of the UAV is less than the mini-
mum remaining working time of the sensors. With this lim-
itation, the condition of convergence and confirmation of
the route determined in this period is approved and goes

Table 1: Fuzzy rule based on fuzzy prioritization.

Num.
Battery
SC

Number
SC

Critical
nodes

Centraldis
Decision
cluster

1 Low Low Low Low 2

2 Low Low Low Mid 3

3 Low Low Low High 4

4 Low Low High Low 1

5 Low Low High Mid 2

6 Low Low High High 3

7 Low High Low Low 3

8 Low High Low Mid 4

9 Low High Low High 5

10 Low High High Low 0

11 Low High High Mid 1

12 Low High High High 2

13 Mid Low Low Low 4

14 Mid Low Low Mid 5

15 Mid Low Low High 6

16 Mid Low High Low 3

17 Mid Low High Mid 4

18 Mid Low High High 5

19 Mid High Low Low 4

20 Mid High Low Mid 5

21 Mid High Low High 6

22 Mid High High Low 2

23 Mid High High Mid 3

24 Mid High High High 4

25 High Low Low Low 8

26 High Low Low Mid 9

27 High Low Low High 10

28 High Low High Low 7

29 High Low High Mid 8

30 High Low High High 9

31 High High Low Low 8

32 High High Low Mid 9

33 High High Low High 10

34 High High High Low 6

35 High High High Mid 7

36 High High High High 8
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to the next stage for implementation; otherwise, the pro-
posed strategy should be implemented again to track the
new route. By applying this condition to the proposed
method, the probability of the death of sensor nodes will
reach zero.

After applying the delay condition in the first step, it is
time to calculate the energy consumption for the proposed
route. In this step, the two problems of energy charging
and energy loss by the UAV are calculated according to
the length of the path.

Figure 6

Table 2: Simulation parameters.

Parameters Values

Node number 100-50

Field size (m2) 400∗400
Location of CS 0,0

Initial energy (J) 50 + rand Nð Þ∗10
Battery capacity of UAV 1000 kj

Charging loss rate(ρ) 0.2

Energy threshold for sending a charging request 0:5Emax – 50%
UAV speed (m/s) 3-5-8

UAV charging efficiency (η) 0.5

UAV moving consumption (J/m) 8

UAV charging power (W) 10

UAV recharging duration (min) 10

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350 400

89.8486

Figure 7: Representation of wireless rechargeable sensor network with 100 nodes.
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4.9. Energy Charging Model. The energy charge model is
defined as the Ferris free space model in (20) [40].

Pr dð Þ = GtxGrxη

Lp

λ

4π d + δð Þ
� �2

Ptx , ð20Þ

where Gtx is the gain of the source antenna, Grx is the
gain of the receiver antenna, η represents the rectifier effi-
ciency, Lp represents the polarization loss, λ is the wave-
length, d is the distance of the UAV charge to the sensor
node, which is equal to 1m in this work. δ value is 0.2316
as a parameter to adjust the Ferris free space equation for
short-distance transmission, and Ptx is the MCV source
power. Power consumption for the rest of the UAV can be
calculated for each sensor, which is introduced in this article
with Puav .

4.10. Energy Consumption Model during UAV Travel. To
calculate the energy consumed during the distance traveled
by the UAV, due to the same speed of movement, this
amount of energy is constant along the path. For modeling,
in this regard, the amount of energy consumed is:

Etour = α:L, ð21Þ

where L is the total distance traveled during the travel of one
charging period. α will be the energy consumption coeffi-
cient of MCV along the path, which is assumed to be 0.3 j/
m for the UAV in this article.

Etot = Etour + 〠
N

i=1
PUAV:Ti + Er: ð22Þ
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250

300
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(b)

Figure 8: Display routing and clustering results for a network with 100 nodes.
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Based on this, the total amount of energy consumed dur-
ing the tour of a specific period is calculated as follows:

Where Er is the energy required to fully charge the sen-
sor node and It is the amount of time the charger stays next
to sensor node i and is calculated by the following equation:

Ti =
Er

Pr 1ð Þ : ð23Þ

In order to implement the strategy proposed in this arti-
cle, in the proposed method, the total energy consumption
should be less than the periodically charged energy of the
UAV, so that the MCV can fully charge both the critical
nodes and return to the charging station.

4.11. Proposed Fuzzy Logic System. In this section, the cluster
prioritization system is presented with 4 parameters defined
in the previous section and fuzzy rules [31, 32]. In this case,
we use the parameters of the number of nodes in each cluster
and the number of critical nodes with residual power less
than 30%, the average energy of the nodes in the cluster,
and the distance of each cluster from the maintenance cen-
ter, which are introduced at the origin of the coordinates,
as the input of the fuzzy system (Mamdani type). According
to the total number of rechargeable sensor network nodes
and the dimensions of the environment, these four parame-
ters should be determined for the interval [0,1] for the input
of the fuzzy system. Figure 5 shows the structure and input
and output membership functions for the defined fuzzy sys-
tem. Triangular, trapezoidal, and Gaussian membership
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Figure 9: Display of wireless rechargeable sensor network with (a) 30 and (b) 50 nodes.
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functions are used in this fuzzy logic. Table 1 also shows the
written rules for cluster selection and prioritization. The
basis for defining the fuzzy rules for the prioritization system

in the clusters will depend on the four input parameters of
the fuzzy system, so the lower the average battery charge
(battery SC), the lower the priority value of the cluster, that
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Figure 10: Display routing and clustering results for a network with 50 and 30 nodes.
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is, it is placed in the primary and emergency order for the
UAV’s path. Also, the lower the number of node members
(number SC), the lower the priority value of the cluster,
and for the number of critical nodes for the need to charge
(critical nodes), the lower priority value is set, and finally,
the lower the distance between the center of the nodes and
the origin (centraldis), the higher the prioritization (i.e.,
lower cluster priority value). At this stage, the fuzzification

operation is performed for the number of clusters in the
WRSN, and the final value is obtained. Then, based on the
priority defined in this work and the ascending sorting of
the outputs of each cluster, the placement order for the
UAV route is introduced. The numbering of the clusters is
introduced in order from minimum to maximum based on
the fuzzy output of each cluster.

4.12. Routing with GBO Algorithm. After selecting and prior-
itizing the clusters, in each cluster, sensitive and critical
nodes with less than 30% remaining energy are selected,
highlighted, and activated for charging by the UAV. In this
step, for each cluster, the fuzzy priority of the UAV route
is determined with the help of a gradient-based optimization
algorithm for the following proposed objective function. In
the first cluster, the initial position of the UAV is selected
as the hangar, which is located in the maintenance center
at the origin of the coordinates with the positions 0 and 0
introduced, and for the next clusters, the initial position of
the location of the last routed node in the previous cluster
is introduced. The basis for defining the objective function
in each cluster is the path length of the selected nodes and
the weighting of each critical sensor node based on the
defined function of the following mathematical model:

fitnessfunction = 〠
n−1

k=1
2ROC z kð Þð Þ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x z k + 1ð Þð Þ − x z kð Þð Þ½ �2 + y z k + 1ð Þð Þ − y z kð Þð Þ½ �2

q
,

ð24Þ

where Z is the number of nodes selected under the algorithm
in the cluster and ROC is the relative amount of remaining
power of the selected nodes Z which is defined in the range
of 0 and 1. Figure 6 shows the MATLAB code of the
function:

5. Simulation Results

In this section, extensive simulation experiments are con-
ducted to evaluate the performance of WRSN.

5.1. Model of Study and Simulation. As shown in Table 2, we
randomly deploy {100} nodes in a square field of 400m by
400m. The coordinates of the maintenance station are at
(0, 0), and the UAV is charged there. The information from
the nodes, after being received by the individual nodes, is
relayed to the center of the station. The sensor node sends
a charge request to the station when the remaining energy
is below the threshold. In our event-driven simulator,
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Figure 11: Bar diagram comparing the results for energy
consumption and travel distance and time with changing the
number of sensor nodes.

Table 3: Comparison of different algorithms for a network with
100 sensor nodes.

Parameters GA GBO

Total energy consumption 7:30E + 04 5:40E + 04
Total distance during the tour 8:10E + 03 6:70E + 03
Total travel delay 2:95E + 03 2:20E + 03
Simulation time(s) 465 334
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measurement data is simulated as events occur at random
times and in random locations. Whenever an event occurs
within the range of the sensor node, the node captures the
event and sends it to the BS through the constructed route.
The mobile charging process is simulated using m-file code
in MATLAB 2017b software.

5.2. Showing Results. In this section, the results of a sample
system from Figure 7 are shown for the number of 100

rechargeable sensor nodes. According to the figure, the
remaining battery capacity of each node is introduced.
Nodes with a distance of less than 100 meters will be able
to communicate with each other and are connected with a
blue line, and communication exchange is more in crowded
areas. In this section, the routing results for critical sensors
with a charge percentage less than 50% have been discussed
using the proposed strategy method of combined fuzzy logic
with the GBO algorithm. The basis of wireless energy
request from UAV by nodes can be introduced by limiting
the residual energy threshold of nodes. By changing this
threshold value, the performance of the system can be chan-
ged for the charging speed and charging of all nodes and the
initial charging of the UAV. Each time the charging strategy
is applied, the energy capacity of the batteries is reviewed
and quantified in the problem.

Figure 8 shows an example of the system response for
the studied network. In this image, the steps for applying
the proposed charging techniques are shown. Figure 8(a)
shows the results of clustering sensor nodes based on loca-
tion with the help of the K-means algorithm, and then fuzzy
prioritization is performed to select the cluster. The priority
order of the clusters is quantified with the help of fuzzy rules,
and the clusters with a lower priority value will have a higher
chance to be charged early by the UAV.

Figure 8(b) also shows the routing results according to
the objective function defined in this article with the help
of the GBO algorithm in each cluster. The selection of the
routes between the critical nodes is based on the sensitivity
of the nodes to reach the charge and minimize the travel dis-
tance. Also, Figures 9 and 10 show the simulation results for
other examples of the network with 50 and 30 nodes. To
evaluate and compare the effectiveness of the suggested
design, simulation of other cases is used. The bar graph of
the comparison results for networks with different numbers
of nodes is shown in Figure 11. As can be seen, by reducing
the number of sensors in the network, the amount of energy
consumed and the distance and travel time are reduced. In
Table 3, three important parameters of energy, time, and
length of travel and one parameter of simulating the dura-
tion of program execution and decision-making for choos-
ing routes are compared in two genetic algorithms and
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Figure 12: The graph of changes in the number of clusters on the
results.
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Figure 13: Graph of UAV speed changes on total delay.
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GBO, which obtained better answers based on the results of
the GBO algorithm. The results discussed in this table are
analyzed for a network with 100 nodes.

The important point to analyze the results in this paper
is the performance of the proposed technique for changes
in the number of clusters and the speed of the UAV. There-
fore, in Figure 12, the graph shows the changes in the num-
ber of clusters for the system with 100 sensor nodes.
According to this figure, by increasing the number of net-
work clusters for charging for the number of 4 clusters, the
target parameters including the total flight delay, the dis-
tance traveled, and the UAV charging energy will decrease,
and then by further increasing these parameters, we have
achieved an increase in the target parameters. For clustering
with the number of 4 clusters, we have been able to obtain
the best response for the charging performance of the sensor
network, which provides the best responses in terms of
energy consumption, delay, and the length of the UAV’s
travel path. According to Figure 13, which shows the varia-
tion in UAV speed, it reduces the total flight delay during
travel and helps to improve the performance of the WRSN
charging system. Finally, the performance of the GBO algo-

rithm for 1000 iterations of path tracing for the network
with 80 nodes is checked and shown for each cluster in
Figure 14. In this figure, it can be seen that all the clusters
have reached their global minimum after the period of 300.

6. Conclusion

The current study manifests an on-demand wireless charg-
ing algorithm with the help of drones based on fuzzy logic
system, and a gradient-based optimization algorithm called
fuzzy-GBO is proposed. Using the combined clustering
strategy based on fuzzy logic and the GBO routing algo-
rithm, fuzzy-GBO can help the UAV to achieve independent
path planning. Moreover, fuzzy-GBO fully considers the
operation of the UAV with limited energy and the response
to charging requests. Therefore, fuzzy-GBO can improve the
performance of UAVs and sensor networks. Subsequently,
experiments are conducted to verify the performance of
fuzzy-GBO, which is compared with classical on-demand
charging algorithms. Remarkably, the simulation results
reveal that the fuzzy-GBO is well designed and can effec-
tively increase the lifetime of the networks as well as the
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17Journal of Sensors



energy utilization of the UAV under the limited energy of
the UAV. It is worthy to note that we further analyze how
parameters such as the number of sensor nodes, UAV speed,
and the number of clusters affect SRL-FA.

In the future, we plan to expand this work by using mul-
tiple UAVs and considering the energy consumption
dynamics of sensor nodes. Also, the uncertainties of energy
consumption and different charging conditions are investi-
gated for each sensor node. It may lead to more cooperation
among them to address more practical problems in WRSNs.
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