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Profile registration is critical to rail wear measurement with line structured light, and the most popular registration method is
iteration closest point (ICP). Unfortunately, ICP is often invalid in actual applications because it is easy to trap into local minima.
To solve this problem, we propose a hybrid 2D-point-set registration method which combined ICP to branch and bound. In this
way, we can ensure that the ICP algorithm converges to the global optimum. This strategy can achieve high-registration precision,
but it suffers from large computation costs. To address this issue, we propose an acceleration scheme by sparsely sampling the
point-set before registration to relieve computation burden. Extensive experiments are conducted to verify the precision, stability,
and efficiency of our method. The results show that our method has superior precision and stability compared to the other typical
profile registration methods. The ability to achieve fast registration speed which is suitable for dynamic measurement is another
contribution of our work.

1. Introduction

In this study, we work on seeking a fast and high-precision
profile registration method for rail wear measurement. Wear
measurement is one of the most important tasks of routine
track quality inspection [1, 2]. The measurement results,
reflecting the rail section geometry, can be aligned with the
standard profile to obtain the wear information of the rail
[3, 4] and can provide details for the routine maintenance.

With the advantages of high precision and low cost, line
structured light (LSL) has become one of the most popular
methods for rail wear measurement [5, 6]. As shown in
Figure 1(a) [7], the wear measurement system with LSL is
mainly composed of a line laser and a digital camera.

When measuring the rail profile, the system captures the
laser strip projected onto the surface of the rail through the
camera. Then the coordinates of laser strip in Figure 1(b) can
be calculated out easily. Utilizing these coordinates, we can
get the measured profile, and align it with the standard rail

profile to calculate wear [8], which is shown in Figure 2,
where r denotes rotation angle, and [t1,t2]

T denotes transla-
tion vector. LSL is used to acquire the rail profile, and the
process of aligning the measured rail profile to the standard
profile is called profile registration [9].

The key aspect to rail profile registration are precision
and efficiency, and iteration closest point (ICP) [10] is the
preferred method for the registration problems. However,
the precision of ICP is unstable because it is easy to trap to
minima. To address this issue, we attempt to seek a global
optimal registration algorithm for ICP on the planar space in
this paper. In SE(2) space, ICP is first used to obtain a local
optimal solution, and then branch and bound (BnB) is used to
search for a solution with an error smaller than ICP. Finally,
these two steps are alternately executed until the global opti-
mal solution is found. In addition, to satisfy the efficiency
requirements of dynamic measurement for the rail, we pro-
pose an acceleration strategy via sparse sampling for this

Hindawi
Journal of Sensors
Volume 2023, Article ID 6353247, 11 pages
https://doi.org/10.1155/2023/6353247

https://orcid.org/0009-0003-4394-6242
https://orcid.org/0000-0001-7132-9258
mailto:rosyhorse@126.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6353247


algorithm. Thus, the rail profile measurement with LSL will be
more precise and efficient.

The main contributions of this work are as follows:

(1) In 2D space, a global optimal point-set registration
algorithm is derived. In this algorithm, BnB and ICP
are collaboratively used. Compared to the common
global search strategies, our method finds the global
optimal solution to the 2D-point-set registration
problem directly.

(2) For BnB, we derived the feasible range of parameters
and the upper and lower bounds of registration error.
Once a local optimal solution through ICP is acquired,
BnB with given parameter range and bounds will help
the algorithm find a new solution with smaller error.
This can theoretically guarantee the global optimal
solution

(3) To help the above method to be more efficient and
suitable for high-speed dynamic measurement, we
sparely sampled the set of points to be registered.
This can obviously improve registration efficiency
while ensuring precision.

(4) Extensive experiments are conducted to verify the
precision, stability, and efficiency of the proposed
method. The results show that our method ensures
competitive performance compared to the other sim-
ilar typical registration methods.

The rest of this paper is organized as follows: Section 2
presents a brief review of related works. Section 3 illustrates
the principle of rail profile registration. Section 4 introduces
the details of global optimal ICP registration algorithm in
planar space and its acceleration strategy. Section 5 elabo-
rates the experiments and discussions. Conclusions and
future works are drawn in Section 6.

2. Related Works

Profile registration directly determines the measurement
precision, so it has become the research emphasis of rail
profile measurement. In recent decades, there are many stud-
ies on the registration problems [12, 13], most of them take
the profile to be measured and the standard model as two
point-sets, and implement registration by solving the rigid
transformation of them. ICP can be directly applied to point-
sets without depending on the features of original data. In
addition, it has concise concept and stable performance.
Therefore, it is become the most popular registration algo-
rithm in engineering practice and theoretical research for
rigid transformation of point-sets [14]. Simultaneously,
ICP is also the most commonly used method for rail profile
registration [15, 16]. To improve the robustness and preci-
sion of ICP, Xiong et al. [17] proposed a registration method
based on adaptive ICP and Kalman filtering. Yi et al. [18]
proposed a sparse ICP algorithm for registration of non-
worn regions of rails. Gao et al. [10] proposed a novel prob-
ability iterative closest point with normal vector algorithm
for robust rail profile registration. Yang et al. [7] proposed a
sparse scaling iterative closest point for rail profile inspection.
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FIGURE 1: Schematic diagram of LSL: (a) measurement device and (b) the coordinates of laser strip.
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FIGURE 2: Rail profile registration.
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Shi et al. [19] uses KD tree to improve ICP to achieve high-
precision registration.

However, these ICP-based methods are often easy to trap
into local minima in actual applications. Under these cir-
cumstances, the registration result is incorrect, thus resulting
in wrong registration results. There are many approaches to
solve the local minima for ICP. In this paper, we roughly
divide these methods into three categories: preregistration
methods, global methods, and globally optimal methods.

The preregistration methods attempt to use other meth-
ods to give a rough registration result for the two point-sets.
Then this result is taken as the initial value of ICP to increase
the probability of it to achieve global optimization. The most
frequently used preregistration methods include that feature
histogram [20], shape context [21], local preserving of fea-
tures [22], and minimum relative motion entropy (MRME)
[23]. These methods can improve the registration accuracy of
ICP evidently. However, once the initial value is estimated
inappropriately, it will inevitably lead to incorrect registra-
tion results.

The global methods usually combine ICP with nature-
inspired optimization algorithms [24, 25], such as particle
swarm optimization [26, 27], genetic algorithm [28, 29], sim-
ulated annealing method [30, 31], discrete cat swarm opti-
mization [32], and coati optimization algorithm [33]. These
methods can make ICP to jump out local minima in a prob-
ability, but it cannot theoretically guarantee the global opti-
mal solution. Nevertheless, it will inevitably increase the
amount of calculation.

The globally optimal methods attempt to seek a reliable
algorithm that can ensure the global optimum, and the BnB
method [34, 35] is usually the preferred method for such
schemes. Go-ICP [36] is the representative of such methods.
In SE(3) space, it uses the oc-tree to subdivide the initial
space into smaller subspaces, uses the BnB method to remove
the unfavorable space, and continues to subdivide the space
that meets the threshold conditions, thus finding the global
optimal transformation. In addition, Liu et al. [37] has
decoupled the translation and rotation optimization and
proposed a fast BnB algorithm, which improved the algo-
rithm efficiency. In addition, AA-ICP [38] also provides an
acceleration scheme. These methods guarantee the global
optimal solution for ICP theoretically. However, the com-
plexity increases exponentially. When there are too many
points in the set used for registration, it often cannot be
applied in practice because of poor efficiency. These methods
can theoretically find the global optimal solution for ICP.
However, its complexity increases exponentially. When there
are too many points in the set used for registration, it often
cannot be used in engineering practice because of the slow
convergence speed.

Technically, our study belongs to globally optimal meth-
ods. We attempt to seek a global optimal registration algo-
rithm for ICP to guarantee its global optimal solution. In the
following, we will design a new strategy for this issue and
attempt to relieve the calculation burden. This will make this
method more suitable for dynamic rail profile registration.

3. The Principle of Rail Profile Registration

In the abstract, we have briefly introduced to the concept of
rail profile registration. To present this problem in detail, we
first introduces the mathematical model of LSL illustrate how
to acquire the coordinates of the laser stripe, and then give an
supplement to the profile registration problem.

3.1. The Mathematical Model of LSL. As shown in Figure 3,
Ocxcyczc denotes the camera coordinate system, and Ouv
denotes the imaging plane coordinate system of the camera.
OLxLyL denotes the plane coordinate system of the laser, and
its origin OL is the intersection point between the camera
optical axis Oczc and the laser plane. P denotes a point on the
laser plane. We set its coordinate in the camera coordinate
system as (x, y, z)T, and its projection coordinates in the
imaging plane coordinate system of the camera as (u, v)T.
Thus, we can get

γ
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75¼ K
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75: ð1Þ

In Equation (1), γ denotes a nonzero constant. K denotes
a matrix with the size of 3× 3, which is called the intrinsic
matrix of the camera [39].

We set the equation of the laser plane in the camera
coordinate system as follows:

axc þ byc þ czc þ d ¼ 0: ð2Þ

In Equation (2), a, b, c and d denotes the coefficients of
plane equations. [40] We can get the equation of line OcP
through Equation (1), and can obtain the coordinate of any
point on the laser stripe by combining OcP with Equation (2).

In this way, we can calculate the 3D coordinate set of the
entire laser stripe. Then, we project this 3D-point set onto
the laser plane to form a 2D-point-set. Thus, the 2D coordi-
nates of the laser stripe shown in Figure 1(b) can be acquired.
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FIGURE 3: The mathematical model of LSL.
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In addition, to guarantee high-measurement precision, we
often adopt mechanical devices to make the laser plane as
strictly parallel to the rail section rail as possible.

3.2. Rail Profile Registration. The laser strip projected onto
the surface of the rail reflects the real geometry of the rail
section. After we acquired its coordinates, we can align it to
the standard profile, and this process is called rail profile
registration.

Usually, there is obvious wear on the railhead, but no
wear on the railwaist, and we only concern the wear at the
railhead. Therefore, during the registration process, we only
use the waist of the measured profile and the standard pro-
file. We denote these two railwaist profiles as X and Y,
respectively. The goal of rail profile registration is to seek a
suitable rotation matrix R and translation vector t to make X
align to Y, i.e.:

RX þ t → Y ; ð3Þ

where in Equation (3),

R¼ cos r sin r

−sin r cos r

" #
; ð4Þ

t ¼ t1

t2

" #
: ð5Þ

Once the transformation from X to Y is obtained, we can
easily get the wear of the railhead based on this transforma-
tion, which is shown as Figure 2.

4. Fast and Global Optimal ICP Algorithm for
2D Point-Set

In this section, we will discuss how to derive a globally opti-
mal registration method for 2D-point-set X to Y, and then
seek an acceleration strategy for this method.

4.1. ICP. ICP was first proposed in 1992 [11]. Although after
more than 30 years, because of its concise concept and excel-
lent performance, it is still the most preferred method for
handling point-set registration problems. Most of the other
registration methods are variants to improve the perfor-
mance of ICP. In this section, we provide a brief introduction
to the concept of ICP.

We set two 2D point-sets as X= {xi}, i= 1,2,…,m and
Y= {yj}, j= 1,2,…,n. ICP can acquire a rotation matrix
R2SO(2) and translation vector t2R2 to align X to Y. For
this, we first need to minimize Equation (6) as follows:

E ¼ ∑
m

i¼1
ei R; tð Þ2 ¼ ∑

m

i
Rxi þ t − yj∗



 


2: ð6Þ

In Equation (7), ei(R, t) denotes the residual error for xi.
Given (R, t), the point yj ∗2Y is denoted as the optimal cor-
respondence of xi, which is the closest point to the

transformed xi in Y, i.e.:

j∗ ¼ argmin
j2 1;2;⋯;nf g

Rxi þ t − yj



 


2: ð7Þ

Here j∗ is a function of (R, t) and xi. In general, Equation (7)
can be implemented by KD-tree. When the correspondences
in the point-sets are determined by Equation (7), Equation (6)
can be used to recalculate R and t. For point-to-point registra-
tion problem, there is a closed-form solution for
Equation (6) [41].

Given an initial transformation (R, t), ICP iteratively
solves the problem by alternating between estimating the
transformation with Equation (6), and finding closest-point
matches with Equation (7).

4.2. Global Optimal ICP for 2D Point-Set. ICP is a typical
nonconvex optimization problem. Therefore, it can only
ensure that the algorithm converges to the local optimum.
For this, Go-ICP uses BnB to achieve global optimal regis-
tration for 3D point-set [36]. Inspired by this, we attempt to
promote this scheme to a 2D space to acquire global optimal
registration for the 2D point-sets X and Y.

4.2.1. BnB for 2D Point-Set Registration.When using BnB, we
need to determine the feasible range of parameters and the
upper and lower bounds of E. Once a local optimal solution
for R and t through ICP is acquired, BnB with given param-
eter range and bounds will help the algorithm to find a new
solution with smaller error. In the following text, we will
derive these two elements in 2D space.

(1) Feasible Range of the Parameters. For the rigid regis-
tration problem of 2D point-sets, the parameters involved
include rotation matrix R and translation vector t. There are
a total of six parameters in R and t. R denotes a matrix with
the size of 2× 2, and t denotes a vector of 1× 2.

For convenience, we convert R to angle–axis representa-
tion [42] as follows:

R¼ exp r½ �×ð Þ ¼ I þ r½ �×sin rk k
rk k þ r½ �2× 1 − cos rk kð Þ

rk k2 :

ð8Þ

In Equation (8),

r½ �× ¼ 0 r

−r 0

" #
: ð9Þ

In the following, we denote the rotation matrix corre-
sponding to r as Rr.

In this way, the number of parameters representing rota-
tion and translation can be reduced to 3, they are one rota-
tion angle and two translation parameters.

Obviously, the feasible region of r can be [−π, π]. For t,
we define its feasible region within a square [−θ, θ]2, where θ
can be taken a relatively larger value.
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(2) The Upper and Lower Bounds. It is easy to determine
the upper bound of E, which is shown as Equation (10).

E ¼ ∑
m

i¼1
ei Rr0; t0ð Þ2: ð10Þ

In Equation (10), Rr0 and t0 denotes the initial value of Rr

and t. This means that the maximum E cannot exceed the
result calculated from the initial values of Rr and t.

The lower bound of E can be defined as follows:

E ¼ ∑
m

i¼1
max ei Rr0; t0ð Þ − γri þ γt

À Á
; 0

À Á
: ð11Þ

In Equation (11),

γri ¼ 2sin min
σr
2
;
π

2

� �� �
xik k; ð12Þ

γt ¼
ffiffiffi
2

p
σt: ð13Þ

In Equations (12) and (13), σr and σt denote uncertainty
radius of rotation and translation, respectively. They are the
parameters that need to be assigned in the algorithm.

The specific derivation process of Equation (11) can be
referred to Go-ICP. To further simplify the calculation, Go-
ICP adopts a nested BnB strategy. In the strategy, an outer
BnB searches the rotation and solves the bounds and corre-
sponding optimal translations by calling an inner transla-
tion BnB.

4.2.2. Hybrid ICP and BnB. The specific algorithm process
can be referenced to Go-ICP. Its basic idea is as follows:

Every time BnB searches for a solution with an upper
bound of error smaller than the current one in the parameter
branch, we implement ICP using r and t corresponding to
this solution. ICP and BnB are implemented collaboratively
until the error function is small enough. Figure 4 vividly
depicts this process.

4.2.3. The Difference between the Proposed Method and Go-
ICP. The main technological process of the proposed method
is similar to that of Go-ICP. However, Go-ICP is used to
solve the registration problem in 3D space, and the proposed
method is designed to tackle the rail profile registration
problem in 2D planar. Therefore, the quantity, feasible
regions, and boundaries of the parameters in the proposed
method are all different from those of Go-ICP, which are
described in Section 4.2.1. Specifically, there are six parame-
ters include three rotations and three translations in Go-ICP,
but only three parameters with one rotation and two transla-
tions in the proposed method. Due to fewer parameters
involved in the operation, the operation speed will greatly
increase. This is more suitable for high-speed dynamic mea-
surement of the rail profile.

In addition, different from the oc-tree data structure in
Go-ICP for rotation and translation, the rotation in our

method uses a binary tree, and the translation uses a quad-
tree. Because rotation has only one parameter, each branch
of r has two subbranches. Translation has two parameters, so
each branch of t has four subbranches. This also contributes
to relieving computational burden.

4.3. Sparse Sampling. According to the analysis in Section 4.2,
this algorithm needs to calls to BnB and ICP to process the
point-set repeatedly. Generally, the quantity of the points in
the point-set directly determines the calculation speed of the
algorithm.

The dynamic measurement of rail profile requires fast
algorithm speed, so we sample point-set sparsely before reg-
istration. In this section, we will try to compress the number
of points in the set as much as possible while preserving the
geometric features of the profile.

We use discrete curvature norm [43] to sample the points
in the set. The result of this method is that areas with evident
geometric changes retain more points, while areas with gen-
tle changes in geometric features retain fewer points.

We select point xi and its nearby point xj separated by K
points on the profile point-set, and ni and nj denote the
normal vector at point xi and xj. Then we calculate the angle
between these two normal vectors according to Equation (14)
as follows:

θi ¼ arccos
ni ⋅ nj
nij j nj
�� ��

 !
: ð14Þ

Setting a threshold θT, and if

θi>θT ; ð15Þ

we define the area between xi and xj as a dense sampling area,
or define it as nondense sampling area. The sampling-ratio is
higher in the dense sampling areas, while it is lower in the
nondense sampling areas.

ICP
BnB

ICP

BnB
ICP

E

FIGURE 4: BnB and ICP collaboratively update the upper bounds of E.
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The sparse sampling result for the rail profile point-set is
shown in Figure 5. We see that by sparse sampling, there are
fewer points in the point-set, but geometric features are well-
preserved.

4.4. Algorithm Description. In this section, we provide a brief
description to the proposed fast global optimal ICP algo-
rithm to 2D-point-set, which is shown in Algorithm 1.

Firstly, we initialize the parameters. In this step, we will set
the initial values for rotation and translation, and set other
parameters. Then, we sparsely sample rail profile point-set
using the method in Section 4.3. Finally, we use the method
in Section 4.2 for registration.

5. Experiments and Discussion

In this section, we validated the precision, stability, and efficiency
of the proposed method through experiments. The experi-
mental environments and devices are shown in Figure 6.

As shown in the Figure 6, the experiment is conducted on
a track built in the laboratory. The main devices involved in
the experiment include a camera, a laser, and a section of rail.
The rail in the experiment is new and has no wear.

All the rail profiles in the following experiments are
acquired by these devices; the main parameters of them are
listed in Table 1.

5.1. Precision and Stability Comparison Experiment. In this
section, we analyzed the precision and stability of our
method. To verify the superiority, we tested the precision
of similar registration algorithm include ICP [11] and RSICP
[44]. In addition, we attempt to apply typical natural-inspired
algorithms to ICP and compare them with our method. The
nature-inspired optimization algorithms used for comparison
include classical simulated annealing (SA) [30] and the recent
algorithm called coati optimization (CO) [33]. We name them
SA-ICP and CO-ICP, respectively.

The rail profile for this experiment was acquired stati-
cally. Besides, we employ Euclidean distance between the
correspondences to visualize the registration error of the
correspondence to verify the performance of these methods.

The comparison results of ICP, RSICP, SA-ICP, CO-ICP,
and the proposed method are shown in Figure 7. Apparently,
the traditional ICP cannot accurately register the two pro-
files. As shown in Figure 7(a), the maximum deviation is
4.983mm because the traditional ICP can only converge to
local optima. Once the initial value is inappropriate, it can
lead to significant registration errors.

Input: 2D point-set X and Y
Output: Optimal rotation and translation (R∗, t∗);
Initialization: (R, t)←(R0, t0), ϵ→0, and the other
parameters;

Step1: Sparse sampling for X and Y
Step2: Implement ICP, update (R, t), and calculate E

if

E< ϵ

goto Step4

else

goto Step3

Step3: Implement BnB, update (R, t), and calculate E

if

E< ϵ

goto Step4

else

goto Step2

Step4: End.

ALGORITHM 1: Fast global optimal ICP algorithm to 2D-point-set

Sparse sampling

Intensive

sampling area

Nondense

sampling area

FIGURE 5: Sparse sampling for the rail profile point-set.

Laser

Camera

Rail

Laser stripe

FIGURE 6: Experimental environments and devices.

TABLE 1: Parameters of the devices.

Device Type Main parameters

Laser DS1235
Wavelength: 635–650 nm
Straightness: <0.3%
work distance: <500mm

Camera MV-CA004-10UM

Sensors: CMOS, IMX287
FPs: 526.5
Single pixel size: 6.9× 6.9 µm
Resolution ratio: 720× 540

Rail – 60 kg/m

6 Journal of Sensors



As shown in Figure 7(c)–7(e), RSICP, SA-ICP, and CO-
ICP have improved registration accuracy to a certain extent.
Our method solves the local minimum problem during the
registration process. Regardless of the initial position, it always

converges to the global optimum. Consequently, the precision is
improved. In Figure 7(f), themaximumdeviation is 0.0337mm,
which is more accurate than that of RSICP, SA-ICP, and
CO-ICP.

ðaÞ
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FIGURE 7: Comparison of the proposed method with other methods (unit: mm): (a) original position, (b) ICP, (c) RSICP, (d) SA-ICP, (e) CO-
ICP, and (f ) the proposed method.

TABLE 2: RMSE of ICP, RSICP, SA-ICP, CO-ICP, and the proposed
method.

Method RMSE (mm)

ICP 2.0736
RSICP 0.0277
SA-ICP 0.0231
CO-ICP 0.0205
Proposed 0.0182

TABLE 3: RMSE of the ICP, RSICP, SA-ICP, CO-ICP, and the
proposed method under the influence of different levels of noise.

Method
RMSE (mm)

σ= 0.003 σ= 0.005 σ= 0.01

ICP 2.673 3.865 5.862
RSICP 0.0483 0.112 0.495
SA-ICP 0.0455 0.158 0.544
CO-ICP 0.0389 0.149 0.322
Proposed 0.0252 0.095 0.154

TABLE 4: Comparison of the runtime, memory consumption and
CPU cost of the ICP, RSICP, SA-ICP, CO-ICP, and the proposed
method.

Method Runtime (ms) Memory (kB) CPU (%)

ICP 12.3 972 12.5
RSICP 17.7 1,080 12.5
SA-ICP 632.58 2,880 12.5
CO-ICP 965.27 2,880 12.5
proposed 25.8 1,440 12.5

TABLE 5: Sampling rate settings.

No.
Sampling ratio (%)

Dense sampling areas Nondense sampling areas

1 100 100
2 80 50
3 70 45
4 60 40

Journal of Sensors 7



Table 2 shows the root-mean-square error (RMSE) of
these three registration results. Evidently, the RMSE of the
proposed is less than that of other methods.

To compare the stability of the proposed method and
other algorithms, we added Gaussian random noise to the
acquired rail profile to simulate the vibration during mea-
surement. Then, we registered the noisy profile onto the
standard profile by these five methods to verify the stability
of them.

Table 3 shows the RMSE of these registration results under
different noise levels. Similarly, under the same noise level, the
RMSE of our method is less than that of others under noise.

5.2. Efficiency Comparison Experiment. The proposed method
is implemented in the Visual Studio 2019. All the codes are
programed by C++ and examples were run on a personal
computer with Intel i7 3.6GHz CPU and 16GB RAM. The
sampling ratio of dense sampling areas is set to be 70%, and
that of nondense areas is set to be 45%. In addition, we tested
ICP, RSICP, SA-ICP, and CO-ICP under the same condition
for comparison.

In this experiment, we used the above five methods to
register 10 rail profiles, respectively. Table 4 shows the average
runtime, memory consumption, and CPU cost of these three
methods. The results indicate that the proposed method has

0.0209

0.0141

0.00723

0.000398

ðaÞ

0.0295

0.0213

0.0130

0.00474

ðbÞ

0.0362

0.0258

0.0154

0.00515

ðcÞ

0.0917

0.0638

0.0359

0.00811

ðdÞ
FIGURE 8: The registration deviation of our method under different sampling ratios (unit: mm): (a) ratio No. 1, (b) ratio No. 2, (c) ratio No. 3,
and (d) ratio No. 4.

TABLE 6: The RMSE of our method under different sampling ratios.

No. of sampling ratio RMSE (mm)

1 0.0122
2 0.0155
3 0.0194
4 0.0588

TABLE 7: Time consumption of our method under different sam-
pling ratios.

No. of sampling ratio Runtime (ms)

1 136.2
2 65.8
3 26.5
4 22.1

8 Journal of Sensors



similar memory consumption and CPU cost to other meth-
ods. Besides, the convergence speed of our method is only a
few milliseconds slower than ICP and RSICP, but apparently
faster than that of SA-ICP and CO-ICP.

This indicates that our method satisfies the requirements
of dynamic measurement for the rail. In a word, our method
is not only highly precise but also highly efficient.

5.3. The Influence of Sampling Ratio on Efficiency and Precision.
In the Section 4.3, we know that the quantity of points in the
point-set directly affects the calculation speed. Evidently, the
more points, the lower the computational efficiency is. In this
section, we quantitatively discussed the influence of sampling
rate on the precision and efficiency for registration. For this, we
tested the precision and time consumption of rail profile regis-
tration under for different sampling ratio. The four different
sampling ratios are shown in Table 5.

Figure 8 shows the registration deviation of our method
under the different sampling ratios. Overall, the lower the sam-
pling ratio, the worse the registration precision will be. When
the sampling ratio of dense sampling areas is lower than 60%
and the sampling ratio of dense sampling areas is lower than
40%, the registration precision will be gradually decreased until
it cannot satisfy the requirements of rail profile measurement.

Table 6 shows the RMSE of our method under the dif-
ferent sampling ratios, we see that when the sampling rate is
too low, the registration error will also increase evidently.

Table 7 shows the time consumption of our method
under different sampling ratios, we see that the lower the
sampling ratio, the faster the algorithm speed will be. In a
word, the sampling ratio is positively correlated with preci-
sion but negatively correlated with efficiency. In actual mea-
surement, we need to set appropriate sampling ratio to
balance the precision and efficiency.

5.4. Application of Rail Wear Measurement. In this section,
we have conducted the dynamic measurement of rail wear
along the Beijing–Jiulong line in China to verify the effec-
tiveness of the proposed method in the actual situations.

Figure 9 shows the measurement results of a severely
worn-out rail section. We compared the precision of our
method with that of the Calipri [44], which a commonly
used instrument in static track inspection. It can be observed
that the measurement results of the two methods are quite
close. Compared with the result measured by Calipri,
Figure 9(b) indicates that the precision of our dynamic
method is as precise as the industry instrumentation. There-
fore, it can be concluded that the proposed method is suitable
for the dynamic measurement of rail wear under actual
environment.

6. Conclusion and Future Works

In this paper, we have proposed a fast global optimal regis-
tration method to 2D-point set, and applied it to the rail
profile registration. The main works we have done in this
paper are as follows:

(1) We defined the feasible region and he upper and
lower bounds of rotation and translation parameters
in the error function in SO(2) space. Then we pro-
mote Go-ICP to 2D space to realize global optimal
registration of 2D-point-sets.

(2) Considering the strict real-time requirements in
dynamic measurement of the rail profile, we sparse
sampled the point-set before registration. This
scheme improves the efficiency of the algorithm
evidently.

(3) Extensive experiments indicated that our method
does not need too much computational cost but
can keep stable measurement performance.

Although sparse sampling improves the efficiency of the
proposed method, experiments have shown that this strategy
comes at the cost of reducing precision. In the future, we
intend to seek a fast global optimal registration algorithm
without sparse sampling the original point-set.
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FIGURE 9: Comparison results of the proposed method and the Calipri (unit: mm): (a) Calipri and (b) the proposed method.
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