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The primary goal of this research is to see how effective cloud-based computing services such as Google Earth Engine (GEE)
platform are at classifying multitemporal satellite images and producing high-quality land cover maps for the target year of 2020,
with the possibility of using it on a larger-scale area such as metropolitan Melbourne as a test site. To create high-quality land cover
maps, the GEE is utilized to analyze a total of 80 Landsat-8 images. The support vector machine (SVM) approach is used to classify
the images. Moreover, we use spectral bands, spectral indices, and topographic parameters to improve classification and address
the limitations of existing approaches for classification with restricted input variables. Furthermore, we apply a postprocessing
strategy to increase the model’s performance by removing the salt-and-pepper noise created by misclassified pixels in supervised
classification results. The results demonstrate that given all parameters, the SVM approach achieves an overall accuracy (OA) and
kappa accuracy of 88.47% and 85.34%, respectively. Following the implementation of the postprocessing technique, the OA and
kappa improve to 92.90% and 90.99%, respectively. The results indicate that Landsat-8 multitemporal data, spectral indices,
topographic components, and postprocessing techniques are all important in land cover mapping. Therefore, the use of freely
accessible GEE technology and multitemporal Landsat-8 data ensures that decision makers have the resources they need to track
land cover throughout the year.

1. Introduction

Land cover information is required for a variety of tasks, such
as greenhouse gas emissions monitoring associated with forest
degradation and deforestation [1], natural resources assess-
ment [2], regional and urban planning [3], and global environ-
mental modeling [4]. Landsat images have been the dominant
source of data for extracting land cover information in cities
among the accessible high- and moderate-resolution remote
sensing data because of their higher resolution and long-term
acquisition capacity [5, 6]. The successful launch of Landsat-8
on February 11, 2013, ensured that the Landsat Earth surveil-
lance mission would continue [7]. The Landsat-8 sensors

comprise a thermal infrared sensor with two thermal bands
and an operational land imager (OLI) with nine bands, includ-
ing the high-resolution panchromatic band. Land cover maps
are frequently created using remote sensing imagery classifi-
cation algorithms [8]. However, processing remote sensing
imagery in a time-effective manner and producing accurate
land cover maps remain a challenge for the remote sensing
society.

Machine learning (ML) techniques have been effectively
utilized and expanded in various fields due to their remark-
able abilities of self-learning and adaptive parallel informa-
tion processing [9–12]. In land cover classification, ML
approaches such as random forest (RF) [13], support vector
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machine (SVM) [14], and artificial neural network (ANN)
[15] have been commonly used. In the following, more such
examples are provided. Using Sentinel-2 and airborne data,
Morell-Monzó et al. [16] used RF to effectively quantify and
detect discarded agricultural areas and provide a way to map
citrus and other in severely fragmented plots. LaRocque et al.
[17] applied RF to successfully map 11 types of wetlands in
SouthernNew Brunswick, Canada, by combiningmultisource
remote sensing data. Mao et al. [12] performed different
classification approaches such as ANN, SVM, and RF for
land cover classification in Hangzhou, China. Their findings
revealed that the ANN model performs poorly in critical
urban land cover categorization. Chakhar et al. [18] discov-
ered that among 22 nonparametric classification techniques
for categorizing irrigated crops in a semiarid environment,
SVM and nearest neighbor approaches provided the best
balance of resilience and effectiveness. Fragou et al. [19]
used the SVM classifier to classify land cover in a Mediter-
ranean area from Landsat Thematic Mapper data for vari-
ous years, which achieved an overall accuracy (OA) of 90%.
Zhao et al. [20] implemented various classification methods
such as SVM, RF, and decision tree (DT) to classify land
cover in typical mountainous areas. They discovered that
SVM categorized quickly but needed detailed feature vari-
ables and DT had the best classification performance but
the worst consistency.

To classify Sentinel-2 imagery for boreal landscapes,
Abdi [21] used eXtreme gradient boosting (XGBoost), RF,
and SVM classifiers. With 75.8% OA, the SVM model out-
performed the others in the experiments. Jia et al. [22] used
maximum likelihood and SVM classifiers to explore the OLI
data for land cover categorization in Beijing, China. They
discovered that SVM and OLI data showed satisfactory
results for the land cover classification. When processing
large amounts of satellite data for land cover classification,
ML techniques have obtained satisfactory results. However,
Adam et al. [23] stated that the ANN technique has a signifi-
cant degree of complexity in terms of computing processing.
They also claimed that RF is vulnerable to noise and over-
training. Prasad et al. [24] reported that DT is very sensitive
to modest changes in the training dataset and is often incon-
sistent. According to Naidoo et al. [25], finding an appropri-
ate value of k for the K-nearest neighbors (KNN) approach
is difficult. In addition, land cover information extraction
research is now primarily focused on monotemporal Landsat
data of cities [26]. However, when monotemporal image data
are used to extract land cover information, the accuracy of
information extraction is severely affected due to the phe-
nomenon of “the same object with different spectra and
different objects with the same spectrum.”

Image processing, such as the classification of massive
volumes of image data using ML techniques, is made possible
by cloud-based computing services [27]. Google Earth
Engine (GEE) is a free-to-use cloud-based geospatial analytic
platform [28]. Accessing a large volume of RS data and pre-
processing with GEE have become easier. Prior studies used
single-date Landsat images and classification algorithms. In
addition, most existing techniques have been implemented

for land cover mapping with a restricted number of input
parameters, leading to low accuracy.

Therefore, this study aims to use the ML classification
approach, e.g., SVM, to create a land cover map based on
multitemporal input variables. SVM provides fast calculation
speed and better generalization capacity and accuracy com-
pared with classic learning methods and is frequently utilized
in image and land cover classification. One of the main
advantages of using SVM in comparison to other ML models,
such as RF, is its effectiveness in handling high-dimensional
data and situations involving limited training samples. SVM is
especially well-suited for classification tasks where the num-
ber of features (dimensions) exceeds the number of samples
—a scenario frequently encountered in applications like
remote sensing and image classification. SVM operates by
identifying the optimal hyperplane that maximizes the mar-
gin between classes, leading to improved generalization even
when dealing with a small training dataset. On the contrary,
while RF is also a robust classifier, it may encounter challenges
such as overfitting when confronted with high-dimensional
data or imbalanced class distributions. SVM’s capability to
address such challenges positions it as the preferred choice
for tasks like land cover mapping and others where data
dimensionality and limited training samples are prevalent.
The main contribution of this research is to create a land
cover map for the year 2020 by utilizing Landsat-8 time-series
data for a large-scale area (e.g., the Melbourne metropolitan
area in Australia as a test site) with 9,993 km2 based on the
cloud-based GEE platform. We also incorporated a variety of
data, including spectral bands (SB), spectral indices (SI), and
topographic features (TF), to improve the classification and
solve the ML difficulties with few input variables discussed
before. To put it another way, we looked at a variety of char-
acteristics to see if a multitemporal composite could aid
the model in accurately mapping land cover in the study
area. Furthermore, we applied a postprocessing technique to
remove noise caused by misclassified pixels. We first used an
unsupervised clustering method called simple noniterative
clustering (SNIC) to create superpixel clustering. Then, we
assigned each classified class to each cluster on the basis of
majority voting to remove misclassified pixels and improve
the classification results.

To the best of our knowledge, the presented methodology
has not been performed in the literature, and this is the first
time that the model has been applied on multitemporal
Landsat-8 images with additional input variables and post-
processing to improve land cover classification for the study
area. The developed method was tested in a relatively large
region of the Melbourne metropolitan area in Australia. The
land cover maps’ accuracy is assessed by comparing them
with reference data. We also compared our classification
results with those of other ML methods to show the effec-
tiveness of the proposed technique for land cover classifica-
tion from multitemporal data. Furthermore, we undertook
an examination of the model’s transferability and generaliz-
ability across different geographic regions, yielding valuable
insights into its effectiveness across diverse areas. Through
the application of the model to another region, specifically

2 Journal of Sensors



the Australian Capital Territory (ACT), we evaluated its per-
formance under various conditions, showcasing its capacity
to deliver satisfactory results in land cover mapping across a
range of terrains and landscapes. The results demonstrated
that the suggested land covermapping workflow, which includes
a cloud-based image processing method, could provide a reli-
able way for utilizing multitemporal data and mapping land
cover.

The paper introduces several main contributions, which
are outlined as follows:

(1) Creation of a regional-scale land cover map using
Landsat-8 time-series data and the GEE platform
with ML techniques.

(2) Integration of SB, SI, and TF to improve classification
and overcome ML difficulties with limited input
variables.

(3) Application of a postprocessing technique to remove
noise caused by misclassified pixels.

(4) Assessment of land cover map accuracy through com-
parison with reference data and other ML methods.

(5) Evaluation of the model’s transferability and gener-
alizability across diverse geographic regions provides
valuable insights into its reliability across different
terrains and landscapes.

2. Methodology

The classification procedure consisted of three main steps:
data collection, classification and accuracy measurement,
and postprocessing step. GEE was first utilized to collect

surface reflectance data for the year 2020, which is the target
year. Then, SB, SI, and TF were calculated. In the second
stage, image classification and accuracy evaluation were per-
formed using the SVM algorithm and a confusion matrix.
Finally, to eliminate noise and improve classification per-
formance, we used a postprocessing phase based on an
unsupervised clustering technique and majority voting. The
general techniques for developing land cover maps are shown
in Figure 1, and more information on each step will be pre-
sented in the subsequent subsections.

2.1. Data and Study Area.Metropolitan Melbourne, the cap-
ital of the state of Victoria, Australia, is the test region, and
it is located at 37.8001°S, 145.3143°E of Australia’s south-
eastern part, with a total area of 9,993 km2. Multitemporal
Landsat-8 satellite imagery was gathered to implement the
classification, and the collection contains multiple cloud-free
images for the year 2020 (12 months). We classified and
evaluated the spatial distribution of land cover classes for
the year using a total of 80 Landsat-8 images. Table 1 shows
the spatial and spectral resolution of Landsat-8 data. Figure 2
depicts the location of the study area.

2.2. Training and Testing Samples. Water body, high vegeta-
tion (e.g., trees, shrubs), low vegetation (e.g., grass, irrigated
pasture), crops, and built-up areas were used to create the
classification scheme in this study. Ground truth samples
were taken using Google Earth images, examination of the
true- and false-color composites of the Landsat-8 data, and
expert knowledge. A total of 4,497 samples were selected at
the pixel level and then randomly divided into training and
testing sets, with an 80–20 split. The suggested model was

Landsat-8
surface

refectance
data 

Cloud
free 

Topographic factorsSpectral indices Spectral bands

Extraction of 
values 

Classifcation
method 

Postprocess
by clustering 

Accuracy
assessment 

Kappa coefcient
Overall accuracy

F1 score

Time series

Input layers

Metrics

12
-m

on
th

 co
m

po
sit

e

Land cover mapGoogle Earth Engine Platform

FIGURE 1: Overall flowchart of the land cover classification process in the GEE platform.
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trained with the training set, and the model’s performance
was evaluated with the testing set.

2.3. Input Data. A time series of input data was obtained to
characterize the training samples and differentiate between
diverse land cover types. As shown in Table 2, 13 input
variables were employed for land cover mapping in the Mel-
bourne metropolitan region for the year 2020, including SBs,

TFs, and SIs. The variables were calculated as a 12-month
average. First, we used eight bands (blue, green, red, near-
infrared, SWIR1, SWIR2, thermal infrared bands 10 and 11)
for the SBs. To maintain spatial consistency among the
Landsat-8 data, the thermal infrared bands were downscaled
to the spatial resolution SBs. For the TFs, advanced land
observing satellite digital elevation model with a horizontal
resolution of about 30m was utilized to determine TFs,
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FIGURE 2: Location of the Melbourne metropolitan region, Australia.

TABLE 1: Spatial and spectral resolution of Landsat-8 satellite data.

Bands Wavelength (µm) Resolution (m)

Coastal aerosol 0.43–0.45 30
Blue 0.45–0.51 30
Green 0.53–0.59 30
Red 0.64–0.67 30
NIR 0.85–0.88 30
SWIR1 1.57–1.65 30
SWIR2 2.11–2.29 30
Panchromatic 0.50–0.68 15
Cirrus 1.36–1.38 30
Thermal infrared 1 10.60–11.19 100
Thermal infrared 2 11.50–12.51 100
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including slope and elevation (two variables). Then, using
Equations (1)–(3), we generated SIs such as the normalized
difference water index (NDWI) [29], the normalized differ-
ence built-up index (NDBI) [30], and the normalized differ-
ence vegetation index (NDVI) [31].

NDWI¼ Green − NIR
Greenþ NIR

; ð1Þ

NDBI¼ MIR band 6ð Þ − NIR band 5ð Þ
MIR band 6ð Þ þ NIR band 5ð Þ ; ð2Þ

NDVI¼ NIR − Red
NIR þ Red

: ð3Þ

2.4. Classification Approach. In this work, we used the SVM
method for land cover classification. SVM, a supervised
learning binary classifier that operates on the structural
risk minimization concept, is one of the most prominent
ML algorithms [9, 10]. SVM is often used in land cover
classification because it has a faster computation speed and
better generalization capacity and accuracy than traditional
learning approaches [32]. In the categorization task, SVM
divides a given training dataset on the basis of a hyperplane,
which is known as the maximal margin hyperplane, to max-
imize the distance between them. SVM’s goal is to find an n-
dimensional hyperplane that distinguishes between two
types on the basis of their maximum gap [33]. The following
is the mathematical formula (Equations (4) and (5)):

1
2

wk k2; ð4Þ

yi w ⋅ xið Þ þ bð Þ ≥ 1; ð5Þ

where b is denoted as a constant, wk k is denoted as the norm
of the normal hyperplane, and x and y represent the feature
vector and the target. The cost function L can be represented,
as shown in Equation (6), after multiplying the Lagrangian
coefficient λið Þ:

L¼ 1
2

wk k2 − ∑
n

i¼1
λi yi w∗xið Þ þ bð Þ − 1ð Þ: ð6Þ

Equation (7) can be changed as follows for the nonsepar-
able case of the slack variable ξ [34]:

yi w∗xið Þ þ bð Þ ≥ 1 − ξi: ð7Þ

Afterward, Equation (8) can be expressed as follows,
where v (0, 1) describes the misclassification [35]:

L¼ 1
2

wk k2 − 1
vn

∑
n

i¼1
ξi: ð8Þ

According to a study by Shi and Yang [36], the radial
basis function (RBF) kernel of the SVM method is often
employed in land cover classification tasks because it per-
forms well. The RBF kernel of SVM can be expressed, as
shown in Equation (9):

K xi; xj
� �¼ exp −γ xi; xj

�� ��2� �
; γ>0; ð9Þ

where γ is one of the kernel functions’ parameters.

2.5. Postprocessing Step. Salt-and-pepper noise caused by
misclassified pixels is common in supervised classification
results. To eliminate such noise, the use of postprocessing
methods is generally preferable. Thus, we used unsupervised
clustering methods to replace classified values in each cluster
with the majority value. For the unsupervised clustering
method, we applied the SNIC approach to cluster the image.
The three key parameters of SNIC are neighborhood size,
which avoids tile border artifacts; connectivity, which indi-
cates the contiguity type to combine neighboring clusters
(rook: eight or queen: four); and compactness, which impacts
the clusters’ shape. These parameters were set empirically
based on the features of the research area as follows: neigh-
borhood size= 64, connectedness= 8, and compactness= 0.5.
After clustering, the classified image was overlaid on the clus-
tered image, every classified class was assigned to each cluster
on the basis of majority voting, and the mean pixels were
extracted. This postprocessing step removed the salt-and-
pepper noise caused by the misclassified pixels and improved
the classification results.

2.6. Metrics for Assessing Accuracy. On the basis of OA,
recall, precision, F1 score, and kappa coefficient, we calcu-
lated the accuracy of the proposed model for land cover
classification [37]. The kappa coefficient is a more sophisti-
cated metric that compares random chance with observed
accuracy. OA is a straightforward summary evaluation of a
case’s probability of being accurately classified. The number
of true pixels identified in each category is referred to as
recall. For each category, precision indicates how many accu-
rate pixels have been detected [38]. In imbalanced training

TABLE 2: Number of input variables for the SVM approach utilized to generate the land cover map.

Category Description Input variables number

Spectral bands Blue, green, red, near-infrared, SWIR1, SWIR2, and thermal infrared bands 10 and 11 8
Spectral indices NDVI, NDBI, and NDWI 3
Topographic features Slope and elevation 2
Total variable 13
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data, the F1 score is a quantitative statistic that measures the
balance between recall and precision. The following metrics
(Equations (10)–(14)) can be computed using true positive
(TP), false negative (FN), false positive (FP), and true nega-
tive (TN):

OA¼ TPþ TN
N

; ð10Þ

κ ¼ p0 − pe
1 − pe

; ð11Þ

where

p0 ¼
TPþ TN

TPþ TNþ FPþ FN
and pe

¼ TPþ FNð Þ × TPþ FPð Þ × FPþ TNð Þ × FNþ TNð Þ
TPþ TNþ FPþ FNð Þ2 ;

ð12Þ

F1¼ 2 × Precision × Recall
Precisionþ Recall

; ð13Þ

Precision ¼ TP
TPþ FP

; ð14Þ

Recall ¼ TP
TPþ FN

: ð15Þ

3. Results

Quantitative and qualitative results yielded by the proposed
SVM technique for land cover classification from Landsat-8
data are discussed in this section. Table 3 shows the results of
the SVM approach combined with other elements, such as
SBs, SIs, and TFs, based on all the abovementioned metrics.

On the basis of the table, the SVM model with only SBs
(SVM+ SB) could achieve 84.12% and 79.83% for OA and
kappa. After SIs were added to the model (SVM+ SB+ SI),
the OA and kappa improved to 86.07% and 82.30%, respec-
tively. Also, incorporating TFs into the method (SVM+ SB
+ SI+TF) could even help the model achieve better OA of
88.47% and kappa of 85.34%. In general, the proposed model
with different factors could achieve satisfactory results for
land cover classification for the year 2020. However, integrat-
ing more factors such as SIs and TFs helped the model obtain
better OA and kappa. We illustrated the visualization results
attained by the proposed model with all the SBs, SIs, and TFs,
as shown in Figure 3. The original multitemporal Landsat-8
images, the qualitative results of SVM+ SB, the qualitative
results of SVM+ SB+ SI, and the visualization results of
SVM+ SB+ SI+TF are shown in Figure 3(a)–3(d), respec-
tively. On the basis of the figure, after SIs were incorporated
into the model (SVM+ SB+ SI), the visualization outcomes
were improved compared with the model with only SBs
(SVM+ SB), and the method could achieve a smooth land
cover map. Furthermore, the SVM approach could obtain
better qualitative results when we combined the topographic
information with prior factors. In other words, compared
with SVM+ SB (Figure 3(b)) and SVM+SB+ SI (Figure 3(c)),
the suggested SVM+ SB+ SI+TF (Figure 3(d)) could predict
fewer FPs and FNs for various land cover classes, thereby
producing satisfactory land cover maps.

Moreover, we obtained quantitative and qualitative results
for land cover classification from Landsat-8 data after apply-
ing the postprocessing step to see the effectiveness of the
proposed postprocessing technique in improving the classifi-
cation results. All the accuracy assessment metrics obtained
by the proposed technique for land cover mapping are shown
in Table 4. Evidently, after the postprocessing technique
was implemented, the results of the SVM method with all
the factors were improved. For example, the OA and kappa
for SVM+ SB+ SI+TF increased to 92.90% and 90.99%,
respectively, indicating improvements of 4.43% and 5.65%,

TABLE 3: Quantitative results of the suggested SVM approach for land cover classification.

Method Classes Precision Recall F1 score OA Kappa

SVM+ SB

Water 0.9839 0.9899 0.9869

0.8412 0.7983
High vegetation 0.9428 0.885 0.913
Low vegetation 0.6773 0.6208 0.6478

Crops 0.6733 0.7179 0.6949
Built-up 0.8225 0.8944 0.857

SVM+ SB+ SI

Water 0.9886 0.9889 0.9887

0.8607 0.8230
High vegetation 0.9217 0.9261 0.9239
Low vegetation 0.6992 0.7026 0.7009

Crops 0.7241 0.7374 0.7307
Built-up 0.8782 0.8592 0.8686

SVM+ SB+ SI+TF

Water 0.9875 0.9932 0.9903

0.8847 0.8534
High vegetation 0.9546 0.9125 0.9331
Low vegetation 0.7514 0.7536 0.7525

Crops 0.7866 0.7878 0.7872
Built-up 0.8673 0.9107 0.8885
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FIGURE 3: Visualization results of the land cover classification achieved by the proposed model: (a) original multitemporal Landsat-8 image,
(b) results of SVM+ SB, (c) results of SVM+ SB+ SI, and (d) results of SVM+ SB+ SI+TF.

TABLE 4: Quantitative results after postprocessing step for land cover classification.

Method Classes Precision Recall F1 score OA Kappa

SVM+ SB

Water 0.9836 0.9871 0.9853

0.8552 0.8162
High vegetation 0.9253 0.9284 0.9269
Low vegetation 0.6957 0.6971 0.6964

Crops 0.7217 0.7103 0.7159
Built-up 0.8581 0.8613 0.8597

SVM+ SB+ SI

Water 0.9928 0.9844 0.9886

0.9070 0.8817
High vegetation 0.9733 0.9116 0.9414
Low vegetation 0.7956 0.7866 0.7911

Crops 0.798 0.8609 0.8282
Built-up 0.9029 0.9416 0.9219

SVM+ SB+ SI+TF

Water 0.995 0.9925 0.9938

0.9290 0.9099
High vegetation 0.9753 0.9488 0.9619
Low vegetation 0.8881 0.8111 0.8479

Crops 0.8314 0.8864 0.858
Built-up 0.9159 0.9588 0.9368

Journal of Sensors 7



respectively, compared with SVM+ SB+ SI+TF before post-
processing. Figure 4 demonstrates the difference in accuracy
assessment metrics (OA and kappa) attained before and after
postprocessing using the suggested ML method with extra
factors for land cover mapping. The presented SVM method
plus additional factors and the metrics percentage are repre-
sented on the horizontal and vertical axes, respectively. The
results confirmed the efficacy of incorporating more features
such as SIs and TFs into the model, as well as the proposed
postprocessing technique in land cover classification. After
performing the postprocessing approach, we depicted the
qualitative results yielded by the proposed SVM approach
and all the factors. Figure 5 shows the visualization results,
in which Figure 5(a) shows the original multitemporal Land-
sat-8 images, Figure 5(b) provides the qualitative results of
SVM+ SB, Figure 5(c) shows the qualitative results of SVM
+ SB+ SI, and Figure 5(d) presents the visualization results of
SVM+ SB+ SI+TF. As can be seen, the proposed model can
attain higher-quality land cover maps for all the factors com-
pared with the visualization results achieved by the method
before the postprocessing step. Also, on the basis of the visu-
alization results after postprocessing, the proposed SVM
model with all the factors could identify land cover classes
more accurately and produce a better land cover map. This
result confirms the effectiveness of adding the postprocessing
technique and additional features to the model in classifica-
tion. In addition, to scrutinize whether land cover mapping
benefits from incorporating temporal information, we com-
pared the results of the proposed method with the monotem-
poral Landsat-8 data. Table 5 and Figure 6 depict the
quantitative and qualitative results of the technique for the
monotemporal data, respectively. As it is evident, the model
obtained less accurate results for monotemporal data than
multitemporal data with OA of 84.92% and kappa of 80.89%.
Also, the model misclassified pixels that present similar spectral

values when we only used single-date imagery, which leads to
less accuracy for land cover mapping according to the visuali-
zation results. Thus, when land uses include time–variant fea-
tures, incorporating multitemporal information into the
classification framework has improved categorization [39].
Our proposed framework for land cover mapping holds signifi-
cant practical relevance due to its broad range of applications
across various domains. For instance, in urban planning, the
model’s capability to offer detailed and up-to-date land cover
information can play a pivotal role in making informed deci-
sions related to urban expansion, infrastructure development,
and allocation of green spaces. Moreover, environmental moni-
toring agencies can leverage the model’s outputs to evaluate
land use changes, monitor vegetation dynamics, and assess
the impact of land management practices on ecosystems. Our
proposed methodology not only promotes sustainable land use
and resource management practices but also equips decision
makers and stakeholders with vital information to tackle press-
ing challenges in diverse fields.

4. Discussion

To better provide insights into the land cover classification
performance of the proposed SVMmodel, we also applied the
classification and regression trees (CART) method to similar
multitemporal Landsat-8 data and compared the results.
Table 6 shows the qualitative results of calculating the accu-
racy of all assessment indicators. The results demonstrate that
adding additional factors to the CART model such as SIs and
TFs could help the model improve the results similar to the
SVMmethod. For example, integrating TFs with the previous
factors (SB and SI) helped the CART method improve OA
and kappa to 85.24% and 81.23%, respectively. However, the
CART approach generally achieves lower accuracy than SVM
for land cover classification. For instance, the OA and kappa
for CART+ SB decreased to 4.7% and 6.04%, respectively,
compared with the SVM+ SB technique. These findings
prove that the SVMmethod is more generalizable and super-
ior to the CART method for land cover classification from
multitemporal Landsat-8 images. Figure 7 illustrates the visu-
alization results of land cover classification achieved using the
CART approach with different parameters. Figure 7(a)–7(d)
presents the original multitemporal Landsat-8 image, CART
+ SB results, CART+ SB+ SI results, and CART+ SB+ SI
+TF results, respectively. Evidently, adding SIs and TFs to
the model could help it categorize land cover classes more
effectively and generate better visualization outcomes than a
CART classifier that solely uses SBs. In practice, using simply
SBs, the CARTmodel was unable to reliably identify the pixels
of land cover classes, particularly inmore complicated regions
with more obstructions, thereby generating low-resolution
maps. Furthermore, with or without other components, the
CART technique predicted more FPs and FNs than the SVM
method, particularly for the crops and low vegetation classes,
which leads to less accurate land cover maps than the SVM
model. Both CART and SVM results demonstrated that add-
ing SIs and TFs to the SVM classifier and postprocessing
techniques could enhance the classification performance of
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FIGURE 4: Performance metrics (OA and kappa) achieved by the
proposed ML method, including additional factors before and after
postprocessing for land cover classification.
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multitemporal Landsat-8 images and produce a high-quality
land cover map for large-scale areas such as the Melbourne
metropolitan region. The results were compared with those of
other studies to further investigate the advantage of the sug-
gested method for land cover categorization from multitem-
poral Landsat-8 data. The results of the other studies were
taken from the main published articles, but the proposed tech-
nique was built using an experimental dataset. For example, Jia
et al. [22] applied SVM and maximum likelihood methods for
land cover classification from Landsat-8 OLI images in Beijing,
China. They used OA and kappa metrics to calculate the accu-
racy of the proposed methods for land cover mapping. They

obtained OA of 91.3% and kappa of 0.89% for SVM andOA of
90.4% and kappa of 0.88% for the maximum likelihood
method. Man et al. [40] used time-series Landsat-8 images
to classify land cover in Hanoi, Vietnam, based on the ensem-
ble method, which combines the best of some ML classifiers
such as multilayer perceptron (MLP), logistic regression (LR),
SVM, and XGBoost. They achieved OA and kappa of 83.2%
and 0.77% for XGBoost, 82.6% and 0.77% for LR, 82.9%
and 0.78% for SVM, 83.1% and 0.78% for MLP, and
84% and 0.79% for ensemble technique, respectively. In con-
trast, our proposed method, which includes additional input
variables and postprocessing technique, achieved higher OA

Water
High vegetation

Crops

Low vegetation
Built-up

(a)

(b)

(c)

(d)

FIGURE 5: Visualization results of the land cover classification achieved by the proposed model after postprocessing: (a) original multitemporal
Landsat-8 image, (b) results of SVM+ SB, (c) results of SVM+ SB+ SI, and (d) results of SVM+ SB+ SI+TF.

TABLE 5: Quantitative results for land cover classification based on monotemporal data.

Method Precision Recall F1 score OA Kappa

SVM+ SB+ SI+TF

Water 0.9936 0.9563 0.9746

0.8492 0.8089
High vegetation 0.9671 0.8697 0.9158
Low vegetation 0.8255 0.6385 0.7200

Crops 0.6895 0.7792 0.7316
Built-up 0.7229 0.9640 0.8262
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and kappa accuracy of 92.90% and 90.99%, respectively,
thereby confirming the effectiveness of the proposed method
for land cover classification from multitemporal Landsat-8
images for large-scale areas compared with other studies.

We also applied the model to different regions, such as
the ACT, to analyze its performance under various conditions
and evaluate its generalizability and transferability across
diverse geographic areas (Figure 8). The model achieved an

Water
High vegetation

Crops

Low vegetation
Built-up

FIGURE 6: Visualization results of the land cover classification achieved by the proposed model for monotemporal data.

TABLE 6: Quantitative results of the CART technique for land cover classification.

Method Classes Precision Recall F1 score OA Kappa

CART+ SB

Water 0.985 0.9822 0.9836

0.8082 0.7558
High vegetation 0.9467 0.8311 0.8851
Low vegetation 0.5942 0.5467 0.5695

Crops 0.581 0.6824 0.6276
Built-up 0.7904 0.8883 0.8365

CART+ SB+ SI

Water 0.9839 0.9885 0.9862

0.8278 0.7814
High vegetation 0.9402 0.8733 0.9055
Low vegetation 0.6415 0.5795 0.6089

Crops 0.6576 0.6928 0.6747
Built-up 0.8004 0.9019 0.8481

CART+ SB+ SI+TF

Water 0.9853 0.9914 0.9883

0.8524 0.8123
High vegetation 0.9407 0.8978 0.9187
Low vegetation 0.6514 0.6819 0.6663

Crops 0.7323 0.7146 0.7234
Built-up 0.8441 0.8834 0.8633
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OA of 87.89% and a kappa of 81.37%, signifying its effective-
ness in land cover mapping for this new region. Nevertheless,
we observed variations in accuracy among different land
cover classes. The model faced challenges in accurately classi-
fying low-vegetation areas (e.g., grasslands) and crops, result-
ing in lower F1 scores for these categories compared to others.
One potential reason for this discrepancy could be related to
the phenology of grass and crops, as their spectral character-
istics may exhibit significant variations throughout the year.

Further investigation into the optimal timing of data
acquisition for distinguishing between these classes could
potentially enhance their accuracy. Moreover, the spatial
heterogeneity in agricultural practices and growth stages of
crops might have contributed to classification difficulties.
Incorporating more diverse datasets, such as synthetic aper-
ture radar (SAR) images, could offer complementary infor-
mation and improve the model’s ability to discriminate
between land cover classes, especially in challenging environ-
mental conditions. Additionally, testing robust models like
deep learning algorithms could prove beneficial in addres-
sing the challenges we observed and enhancing the accuracy
of different land cover classes on the maps. Deep learning
models, renowned for their capacity to automatically learn

intricate patterns and feature representations from data, have
exhibited promising results in image classification tasks.
Despite these challenges, the model’s overall satisfactory per-
formance underscores its generalizability and transferability
to diverse geographic areas. As we continue to advance in the
field of land cover mapping, future research efforts can focus
on investigating the effectiveness of these cutting-edge techni-
ques and addressing temporal- and dataset-related considera-
tions. This endeavor aims to ultimately achieve comprehensive
and reliable results for land cover classification across diverse
regions.

5. Conclusion

This work provides an effective approach for mapping land
cover for a large-scale area like the Melbourne metropolitan
and ACT regions, Australia, by using cloud-based image pro-
cessing technologies such as GEE. On the basis of the SVM
model, high-quality land cover classification maps were cre-
ated from multitemporal Landsat-8 data. To improve the
classification results, we added additional variables such as
topographic parameters and SIs to the model. Moreover, we
utilized a postprocessing technique to remove the salt-and-

(a)

(b)

(c)

(d)

Water
High vegetation

Crops

Low vegetation
Built-up

FIGURE 7: Visualization results of the land cover classification achieved by the CART model: (a) original multitemporal Landsat-8 image, (b)
results of CART+ SB, (c) results of CART+ SB+ SI, and (d) results of CART+ SB+ SI+TF.
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pepper noise caused by misclassified pixels in supervised clas-
sification results and to improve the model’s performance.
The accuracy of the land cover classificationmap was assessed
visually and numerically. The SVM method could achieve an
OA and kappa accuracy of 88.47% and 85.34%, respectively,
with all the factors. The OA and kappa also improved to
92.90% and 90.99%, respectively, after the postprocessing
technique was implemented. The visualization results showed
that the suggested model was capable of producing high-
quality land cover maps. The findings showed that multitem-
poral Landsat-8 data, SBs, SIs, topographic parameters, and
postprocessing method were all important in differentiating
classes and were helpful in land cover mapping. Furthermore,
the SVM model demonstrated satisfactory performance

overall, indicating its ability to generalize and transfer suc-
cessfully to diverse geographic areas. The findings underscore
the potential of our method to achieve satisfactory land cover
mapping in a wide range of terrestrial settings. Furthermore,
GEE, multitemporal data, ML, and modern computer tech-
nologies have paved the way for developing a real-time land
cover mapping platform.
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