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This paper proposes a novel approach called cross-scale with attention normalizing flow (CSA-Flow) enhanced with channel-
attention (CA) and self-attention (SA) modules for high-speed railway anomaly detection in complex industrial backgrounds to
reduce the manual workload of the primary maintenance of high-speed electric multiple units. Detecting defects in industrial
environments, characterized by intricate backgrounds and unclear subjects, poses significant challenges. To address this, CSA-Flow
introduces a channel feature extraction module that combining the pretrained convolutional neural network models with a CA
module for feature extraction, capturing information at different scales, and uses the SA module to capture more contextual
information by its larger receptive field. The performance evaluation of CSA-Flow on the MVTec-AD dataset demonstrates an
impressive area under the receiver operating characteristic curve (AUROC) score of 98.7%, with an equally remarkable score of
98.4% across all object classes. To further assess the effectiveness of CSA-Flow in complex background scenarios, we introduce a
dedicated dataset, specifically designed for high-speed rail braking devices (HSRBDs). The experimental results establish the
superiority of CSA-Flow over current state-of-the-art approaches in terms of both AUROC score and recall score, validating its
exceptional capability for detecting anomalies in industrial complex backgrounds.

1. Introduction

Anomaly detection is a critical aspect within the field of
railway detection. Safety is the foundation and primary con-
cern of railway detection, directly impacting the lives of
individuals and public property. Train accidents can be
attributed to three primary factors: rail defects [1, 2], visual
anomalies on the railway [3, 4], and misestimating or incor-
rect operation by the locomotive driver [4]. Any deviation
from normal conditions is deemed an anomaly. In recent
years, rapid advancements in image processing technology
have drawn increasing attention to the detection of anoma-
lies in the railway system. By prioritizing anomaly detection,
we can ensure passenger well-being and safeguard critical
public infrastructure.

In industrial applications, manual anomaly detection
remains predominant in handling detection tasks. These
approaches involve comparing visual texture features [5]
between defective and normal samples to determine the pres-
ence of anomalies. However, manual detection methods

often suffer from inefficiencies. As a result, deep-learning-
based anomaly detection methods have gained traction in
railway detection due to their inherent characteristics of
speed, nondestructiveness, and high precision [6, 7]. Within
the domain of high-speed railway, abnormal detection can be
categorized into three main approaches: unsupervised meth-
ods [8], object detection methods [9–11], and defect segmen-
tation methods [12, 13].

In real-world industrial detection, the scarcity of abnor-
mal samples and the limited availability of labeled data pres-
ent significant challenges for industrial anomaly detection.
Additionally, in industrial applications, the backgrounds of
detection objects are often complex, further compounded by
the influence of moving parts, significantly raising the diffi-
culty level of anomaly detection in these settings. To address
these challenges, the MVTec-AD dataset [14] serves as a
benchmark for anomaly detection, providing clear object
boundaries where the previous methods have struggled to
effectively incorporate contextual information. Consequently,
our attention is directed toward exploring the self-attention
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mechanism as a potential solution to enhance anomaly detec-
tion in industrial scenarios.

Given the complexities associated with complex back-
grounds and unclear subjects in industrial anomaly detec-
tion, this paper aims to address practical challenges in this
domain. During the training process, our focus lies in
enabling the network to learn the distribution of normal
samples only while differentiating between normal and
abnormal samples during testing.

This approach is commonly referred to as semisuper-
vised learning [15].

To tackle the aforementioned challenges, we compare
related methods in Section 2, and normalizing flow (NF)
methods demonstrate excellent anomaly location and indus-
trial defect detection capabilities [16, 17], among others. We
propose a semi-supervised anomaly detection method named
cross-scale with attention normalizing flow (CSA-Flow),
which utilizes NF [18, 19]. CSA-Flow specifically targets the
problem of complex backgrounds and unclear subjects, allow-
ing for the recognition and visualization of the defect regions
within the image. It employs a full convolutional architecture
and attention modules to establish global dependencies and
expand the receptive field of the image. We evaluate the per-
formance of CSA-Flow using the MVTec-AD dataset [14],
designed to mimic real-world industrial inspection scenarios,
as well as the BeanTech Anomaly Detection (BTAD) dataset
[20]. Our proposedmethod achieves state-of-the-art accuracy
in abnormality detection. Additionally, we apply CSA-Flow to
a real high-speed rail braking device (HSRBD) dataset, which
is one of the key components on the train, demonstrating its
effectiveness in achieving high performance in real-world
industrial applications.

The contributions of this paper are outlined as follows:

(1) Proposal of CSA-Flow incorporating the channel-
attention (CA) module and the self-attention (SA)
module to enhance anomaly detection accuracy by
effectively capturing key features from input images.

(2) Achievement of state-of-the-art accuracy demon-
strated by CSA-Flow on the MVTec-AD dataset
and the BTAD dataset.

(3) Establishment of a real HSRBD dataset with complex
backgrounds for anomaly detection and achieves a
state-of-the-art accuracy.

2. Related Work

2.1. Reconstruction-Based Methods. Reconstructed image
anomaly detection is a widely employed unsupervised
approach for anomaly detection. The fundamental principle
underlying this method is to model normal data in order to
identify abnormal data that deviates from the learned model
[21]. The core framework of this approach involves training a
generative model using normal datasets and subsequently
employing themodel to reconstruct unseen data. By establish-
ing a threshold for reconstruction error, any reconstructed
data surpassing this threshold is considered anomalous.

This methodology allows for the identification of anomalies
based on deviations from the expected reconstruction
patterns.

Autoencoder (AE) [22] is a widely utilized technique for
anomaly detection, relying on the principle of reconstruc-
tion. AE is a type of neural network that compresses input
data into lower-dimensional latent space and subsequently
reconstructs it back to its original form by a decoder. In AEs
architecture, the encoder processes the input data, extracting
meaningful features and encoding them into a compressed
representation. The decoder then decodes it back, recon-
structing the data to resemble the original input. During
the training phase, the AE aims to minimize reconstruction
errors, ensuring that the output data closely matches the
input data.

Similar to the decoding part of AE, the generator in
generative adversarial networks (GANs) can be used for
anomaly detection. Rudolph et al. [23] proposed to learn
an inverse generator after training GAN and use both for
reconstruction and error consideration.

Schlegl et al. [21] introduced AnoGAN, which aims to
learn the manifolds of normal images from potential spaces,
enabling the identification of anomalies in new images.
Zenati et al. [24] trained a BiGANmodel that simultaneously
maps the image space to the latent space, showcasing
improved statistics and computational outcomes. Akcay
et al. [25] proposed GANomaly, building upon the concept
of training GANs to learn the distribution of normal data and
subsequently reconstructing input data using GANs. These
innovative approaches leverage the power of deep learning
and generative models to detect anomalies by learning normal
data patterns and effectively reconstructing input data.

2.2. Embedding Similarity-Based Methods. These methods
employ deep neural networks to extract meaningful vectors
[26] or image blocks [27] to effectively describe the entire image
for anomaly detection. Cho et al. [17] introduced a method
known as semantic pyramid anomaly detection (SPADE).
SPADE utilizes k-nearest neighbor (kNN) methods and
leverages deep pretrained features. The proposed method
focuses on aligning abnormal images with a series of similar
normal images. SPADE introduces a novel approach that
utilizes a multiresolution feature pyramid, allowing for a
comprehensive analysis of image features across different scales.

Defard et al. [28] introduced PaDiM, a method that
leverages pretrained convolutional neural networks (CNNs)
for patch embedding. PaDiM uses multiple Gaussian distri-
butions to generate a probability representation of normal
data and employs the correlation among different semantic
layers of the CNN to accurately identify the location of
defects.

These methods employ the extraction of nominal fea-
tures from the pretrained backbone networks, which are
then utilized to construct a memory bank. During testing,
the features extracted from the test images are compared
against the entries in the memory bank. One significant
advantage of this approach is its rapid speed, as the memory
bank is preserved during training, requiring only feature
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comparisons during testing. However, some notable draw-
backs are that the images stored in the memory bank must
exhibit a high level of alignment and might not perform as
well as other methods on large datasets.

2.3. NFs. NF is a distinctive generative model that sets itself
apart from other models by its capability to generate distri-
butions that are easily manageable. This feature enables effi-
cient and accurate sampling as well as density evaluation. NF
achieves this by employing reversible and differentiable map-
pings to transform a simple probability distribution, such as
a normal distribution, into a more complex one [29]. In the
NF framework, the density of a sample is converted back to
the original sample distribution. The density evaluation of
the sample involves calculating the product of the trans-
formed sample’s density and the volume change induced
by the transformation. According to the change of variable
formula, the volume change is determined by the absolute
value of the Jacobian determinant at each transformation.
NICE [18] and Real-NVP [30] are two notable examples of
classic NFs that possess high speed in both forward and
reverse processes. There are still some limitations in NF,
especially when the distribution of abnormal data is very
similar to the distribution of normal data, which can produce
false positives.

In the field of anomaly detection, DifferNet [19] employs
the NF estimation method to perform accurate likelihood
tests, resulting in effective anomaly detection at the image
level. However, due to the flattening of the output in Differ-
Net, it fails to locate the specific anomaly regions within the
detected defects. To address this limitation, Gudovskiy et al.
[31] introduced CFlow, which utilizes a discriminant pre-
training encoder followed by a multiscale-generating
decoder. This architecture allows for explicit judgment of

the probability of encoding features. However, its effective-
ness may vary when applied to more complex datasets.

3. Method

The proposed method, called CSA-Flow, is built upon the
foundation of CS-Flow [32], a cross-scale normalized flow
approach. CSA-Flow integrates the CA module and SA mod-
ule to enhance the accuracy on common and realistic datasets
while maintaining the high performance achieved by CS-
Flow. Figure 1 provides an overview of the proposed method,
illustrating its key components and workflow.

Similar to DifferNet [19], our approach initially involves
training a model to learn features y2Y from defect-free
images x2X, enabling the detection of anomalies. During
the evaluation process, we utilize density estimation of the
extracted feature y to assign a similarity measure to each
image x. A lower similarity score indicates a higher likeli-
hood of an anomaly being present. Density estimation is
achieved through bijective mapping, which involves learning
from the unknown distribution pY in the feature space Y to
the Gaussian distribution pZ in the potential space Z. By
leveraging the bidirectional mapping capability of NF, we
utilize density estimation to map from the unknown distri-
bution pY in the feature space Y to the Gaussian distribution
pZ in the latent space Z. Figure 1 illustrates the pipeline of
CSA-Flow, depicting the various stages and transformations
involved in the process.

For each category, we begin by computing the receiver
operating characteristic (ROC) curve and identifying the
optimal threshold θ, which maximizes the ratio of true posi-
tive rate (TPR) to false positive rate (FPR). Utilizing this
selected threshold θ, we can determine whether a test image
is abnormal or not:

s = 3
Layers = 36

Concat

Feature extractor Cross-scale normalizing flowCA SA

Channel-attention module

Self-attention module

n = 3

Channel feature extraction module

FIGURE 1: The pipeline of CSA-Flow.
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A xð Þ ¼ 1 pz zð Þ>0

0 else

(
: ð1Þ

3.1. Channel Feature Extraction Module. Bergman and
Hoshen [26] have demonstrated the exceptional perfor-
mance of the ImageNet training feature extraction model
for anomaly detection. Hence, we adopt feature extraction
utilizing EfficientNets. The pretrained CNN possesses the
capability to provide relevant features for anomaly detection
[33]. Consequently, we employ a CNN that has been pre-
trained on ImageNet to extract the features y from the input
image x. To enhance the descriptive capacity of the feature
maps, we conduct a feature extraction on s images with
varying resolutions. Subsequently, the images are segmented
into multiple scales, leveraging techniques such as upsam-
pling and stride convolutions to adjust the input image scale.
The NF architecture excels in performing intensive data esti-
mation, enabling it to effectively preserve detailed location
and context information.

The first subnetwork is the channel feature extraction
module combining the CA module [34] with CNNs feature
extraction. It leverages scalar values to represent and evaluate
the significance of each channel in an image. Let’s assume
X 2RH×W×C is the image feature tensor in the network,
where C is the number of channels, H is the feature height,
and W is the feature width [35]. Figure 2 illustrates the
architecture of CA. The prediction is generated using the
following formula:

F 0 ¼Mc Fð Þ⊗ F; ð2Þ

where F represents the input of CA andMc ⋅ð Þ corresponds to
the CA module.

By leveraging the channel feature extraction module, we
believe that the model becomes more adept at focusing on
valuable information.

3.2. Cross-Scale Flow. The cross-scale NF method proves to
be highly effective in image anomaly detection. It processes
feature maps at different scales to capture diverse informa-
tion, leveraging the interplay between these scales to share
relevant insights. Furthermore, the module’s fully convolu-
tional nature ensures the spatial dimensions are preserved,
enabling accurate localization of anomalies. The cross-scale
flow consists of a series of affine transformations implemen-
ted through coupling blocks. Based on the reference to the
coupling blocks described in the study of Dinh et al. [30], we
adopt the basis architecture of Real-NVP, as illustrated in
Figure 3. The network estimates each scale and offset coeffi-
cient estimated by the subnetworks, denoted as r1 and r2, so
that each input tensor yiin is randomly divided into yiin;1 and
yiin;2. The obtained parameters are then employed as shown:

yout;2 ¼ yin;2 ⨀ exp γ1s1 yin;1
À ÁÀ Áþ γ1t1 yin;1

À Á
; ð3Þ

yout;1 ¼ yin;1 ⨀ exp γ1s2 yin;2
À ÁÀ Áþ γ2t2 yin;2

À Á
; ð4Þ

where the symbol ⨀ denotes the element-product
operation.

3.3. SA Module. The neural network processes a vast amount
of vectors with varying sizes and connects them. However,
this approach may not effectively uncover the intrinsic rela-
tionships among the inputs during training, resulting in
suboptimal learning outcomes. To address this limitation,
CSA-Flow incorporates an SAmodule, as depicted in Figure 4,
to emphasize the correlations between features at different
scales. The self-attention mechanism enables the model to
establish global dependencies and expand the receptive field
of an image. Compared to CNN, the SA module has a larger
receptive field, allowing it to capture more contextual
information.

The attention module can be represented by a set of
queries and key-value pairs. The output is computed as a

Conv2D + ReLU

Element-wise product

304 × 304 × 1 304 × 304 × 1 304 × 1 × 1

FIGURE 2: Channel attention (CA). Here, the symbol ⊗ denotes the element-wise product.
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weighted sum of values, where each weight is determined by
the correlation between the query and the key [36]. The YSA

representation, which captures the relationship between pix-
els by using the dot-product of the query and the key as the
weight, is formulated as follows:

YSA ¼ softmax
XXTffiffiffiffiffi
dk

p
 !

X; ð5Þ

where X represents the extracted feature, YSA represents the
feature map that contains the information necessary for
detecting co-occurrence relationship anomalies, and dk
represents the depth of X [36].

3.4. Negative Log-Likelihood Loss. The objective of the train-
ing process is to maximize the likelihood of the mapping
from the latent space Z to the feature space X. We adopt
the likelihood formulation proposed in the study of Rudolph
et al. [32] as follows:

pY yð Þ ¼ pZ zð Þ det ∂z
∂y

����
����; ð6Þ

which aims to maximize the log-likelihood. Similar to the
study of Rudolph et al. [32], we utilize the negative log-
likelihood loss L yð Þ to train the proposed model as follows:

logpY yð Þ ¼ log pZ zð Þ þ log det
∂z
∂y

����
����; ð7Þ

Split Cross-scale
convolution 

Cross-scale
convolution 

Concat

Concat

Concat

+

+

+

+

+

+

yin, 1ii

yin, 3i

yin, 2i

yin, 2ii

yin, 3ii

yin, 1i

yin, 1

yin, 2

yin, 3

yout, 1

yout, 2

yout, 3

FIGURE 3: The structure of the cross-scale convolution is based on Real-NVP.

Scale

X

XT

YSA

SoftMax

Matrix product

FIGURE 4: The structure of the self-attention module.
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L yð Þ ¼ zk k22
2

− log det
∂z
∂y

����
����; ð8Þ

where zk k22 represents the squared l2-norm of a vector x in
n-dimensional Euclidean space, which is defined as the sum
of the squares of its components. The term det ∂z∂y represents
the absolute determinant of the Jacobian. To ensure stability,
we constrain the gradients of the l2-norm to be equal to one.

4. Experiments

4.1. Datasets and Metrics. We evaluate the proposed method
in various defect detection scenarios using the MVTec
anomaly detection (MVTec-AD) dataset [6]. The MVTec-
AD dataset, introduced by Bergmann et al. [14, 27], is
designed to simulate anomaly detection in industrial appli-
cations. It offers high-resolution images with variations in
multiple scales and lighting conditions. The dataset consists
of 15 classes, including 10 object classes and 5 texture classes,
each containing both normal and abnormal samples. The
training set exclusively comprises defects-free images, while
the test set consists of normal and abnormal images.

The BTAD dataset [20] includes 2,540 images of three
industrial product categories. The training sets exclusively
include normal samples, while testing sets contain both nor-
mal and abnormal samples. To assess the performance of the
proposed method in real industrial applications, we curated a
real-world dataset called the HSRBD dataset. This dataset
comprises four scenarios that represent real-world HSRBDs.
Each scenario includes four different industrial components
with unknown size and foreign matters. Within each sce-
nario, there are a varying number of high-resolution images,
ranging from 160 to 220, with dimensions of 2;064× 1;544
pixels. The presence of dynamic lighting and moving parts in
each scenario adds complexity to the anomaly detection task,
making it more closely aligned with actual application sce-
narios, as illustrated in Figure 5.

To evaluate the performance of the proposed method, we
compute the area under the receiver operating characteristic
curve (AUROC) on the publicly available datasets MVTec-
AD and BTAD. In industrial applications, a more intuitive
metric is needed. Therefore, we also compute the recall,

which represents the detection rate of anomalies on the
real-world HSRBD datasets. The TPR and FPR are defined
as follows:

TPR ¼ TP
TPþ FN

; FPR ¼ FP
FPþ TN

; ð9Þ

Recall¼ TP
TPþ FN

: ð10Þ

AUROC reflects the classifier performance by measuring
the AUROC [37]. The classifier with a larger AUROC value
indicates a better accuracy of the classifier. On the other
hand, the recall rate, also known as the detection rate, mea-
sures the proportion of positive cases correctly identified by
the classifier. The recall rate is a measure of coverage and is
equivalent to sensitivity.

4.2. Implementation Details. To achieve a balanced combina-
tion of feature semantic level and spatial resolution, we uti-
lize the output of the 36th layer of the pretrained
EfficientNet-B5 model from ImageNet as the feature extrac-
tor in all our experiments. For the CA module, we set the
input channel and the output channel sizes to 304 to match
the dimensionality of the extracted features. To standardize
the input image size, we resize the images to 1,024 × 1,024
for the real-world HSRBD datasets. We extract features at
three different scales: (1;024× 1;024), (512× 512), and (256×
256). For the MVTec-AD dataset, we resize the input
images to 768 × 768. In our implementation, we employ
four coupling blocks ðnblocks ¼ 4). The internal networks of
the first three blocks use 3× 3 convolutional kernels, while a
5× 5 convolutional kernel is applied in the last block. We
set the negative slope of leaky ReLU to 0:1 and set the clamp
parameter to α¼ 3. For optimization, we utilize the Adam
algorithm [38] with a learning rate of 2× 10−4, weight
attenuation of 10−5, momentum value β1 ¼ 0:5, and β2 ¼
0:9. We train the CSA-Flow model for 240 epochs on
MVTec-AD and BTAD datasets. For the real-world
HSRBD datasets, we train the model for 480 epochs. The
training process was performed using an NVIDIA RTX
3060 12G GPU.

Raw image

ðaÞ

Ground truth

ðbÞ

Predictive position

ðcÞ
FIGURE 5: Demonstration of defects in industrial datasets (HSRBD). The one on the left (a) is the anomaly picture, the one in the middle, (b) is
the ground truth, and the one on the right, and (c) is the predictive positioning.
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4.3. Anomaly Detection. We conducted experiments on the
MVTec-AD datasets, which consist of 10 classes of objects
and 5 classes of textures, to evaluate the performance of
CSA-Flow. The training set exclusively contains defect-free
images, while the test set includes both normal and abnormal
images. We compared the performance of CSA-Flow with
other anomaly detection models, including STFPM [39],
GANomaly [25], SPADE [40], PaDiM [28], DifferNet [19],
CS-Flow [32], using the AUROC metric.

The results, as shown in Table 1, demonstrate that the
CSA-Flow model outperformed or achieved comparable per-
formance to previous models in nearly half of the classes.
Particularly, in terms of AUROC scores, CSA-Flow exhibited
excellent performance compared to other reconstruction-
based methods. In the research target of this paper, we
should pay more attention to object classes, because it is
more consistent with the goal of high-speed rail inspection.

In Table 2, we present a comparison between the basic
convolutional AE using MSE and MSE+ SSIM losses. The
results demonstrate that CSA-Flow performs on par with
MVTec-AD in terms of anomaly detection performance on
the BTAD dataset.

In the HSRBD datasets, we conducted tests on four dif-
ferent scenarios of real-world HSRBD to evaluate the perfor-
mance of the CSA-Flow model. Remarkably, the CSA-Flow

model achieved the highest AUROC score compared to other
models. To provide a more comprehensive evaluation, we
proposed the use of Recall_Ano as a metric to assess the
models’ ability to detect abnormal samples. In industrial
applications, detecting anomalies holds greater significance,
considering the challenges posed by complex backgrounds
and unclear subjects. Consequently, we believe it is essential
to employ Recall as an evaluation metric.

We tested the AUROC and Recall_Ano on HSRBD data-
sets, and the results are shown in Tables 3 and 4. Notably, the
CSA-Flow model outperforms previous models in the con-
text of industrial applications. Figure 6 shows the accuracy
comparison between CS-Flow and CSA-Flow in the HSRBD
dataset. Our CSA-Flow model is significantly better than the
original network.

These results suggest that existing methods struggle to
effectively detect anomalies in scenarios with complex back-
grounds and unclear subjects. In contrast, the proposed
CSA-Flow model demonstrates outstanding performance
in such industrial settings.

The primary goal of anomaly detection is not only to
classify anomalies but also to segment abnormal parts. While
the CSA-Flow model does not perform pixel-level evalua-
tion, it uses anomaly scores to identify and locate defect
regions. By analyzing these scores, we can effectively identify

TABLE 1: Comparison of area under ROC in % (AUROC) of different methods on MVTec-AD.

Method STFPM GANomaly SPADE PaDiM (R18-Rd100) DifferNet CS-Flow CSA-Flow (ours)

Carpet 98.8 69.9 97.5 98.9 92.9 100.0 100.0
Grid 99.0 70.8 93.7 94.9 84.0 99.0 98.7
Leather 99.3 84.2 97.6 99.1 97.1 100.0 100.0
Tile 97.4 79.4 87.4 91.2 99.4 100.0 99.1
Wood 97.2 83.4 88.5 93.6 99.8 100.0 99.2
Texture classes 98.3 77.5 92.9 95.5 94.6 99.8 99.4
Bottle 98.8 89.2 98.4 98.1 99.0 99.8 99.8
Cable 95.5 75.7 97.2 95.8 95.9 99.1 98.7
Capsule 98.3 73.2 99.0 98.3 86.9 97.1 99.4
Hazelnut 98.5 78.5 99.1 97.7 99.3 99.6 100.0
Metal nut 97.6 70.0 98.1 96.7 96.1 99.1 98.1
Pill 97.8 74.3 96.5 94.7 88.8 98.6 97.5
Screw 98.3 74.6 98.9 97.4 96.3 97.6 96.9
Toothbrush 98.9 65.3 97.9 98.7 98.6 91.9 94.2
Transistor 82.5 79.2 94.1 97.2 91.1 99.3 99.5
Zipper 98.5 74.5 96.5 98.2 95.1 99.7 99.7
Object classes 96.5 75.5 97.6 97.3 94.7 98.2 98.4
Average 97.1 76.1 96.0 96.7 94.7 98.7 98.7

Bold values denote the best result in the category.

TABLE 2: Anomaly detection performance of AUROC (%) on the BTAD dataset.

Categories AE MSE AE MSE+ SSIM VT-ADL [20] CSA-Flow (ours)

0 49 53 99 99.61 (0.62%)
1 92 96 94 87.20 (−9.17%)
2 95 89 77 99.93 (5.19%)
Average 78.67 79.33 90.00 95.58 (6.20%)
Note: We compared CSA-Flow with convolutional autoencoders trained with MSE-loss and MSE+ SSIM loss. Bold values denote the best result in the category.
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TABLE 4: The Recall_Ano score (%) on the HSRBD datasets reflects the anomaly detection rate when compared to previous methods.

Classes GANomaly SPADE PaDiM DifferNet CS-Flow CSA-Flow (ours)

Scenario 1 65.40 3.85 80.77 80.77 61.54 84.62 (4.76%)
Scenario 2 60.00 60.00 90.00 90.00 90.00 90.00 (0.00%)
Scenario 3 87.50 75.00 87.50 75.00 87.50 87.50 (0.00%)
Scenario 4 73.30 90.91 72.73 18.18 63.64 81.82 (−10.00%)
Average 71.55 57.44 82.75 65.99 75.67 85.98 (3.91%)
Bold values denote the best result in the class.
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20.00
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80.00
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A
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y 
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)
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CSA-Flow

FIGURE 6: Accuracy comparison of CS-Flow and CSA-Flow in the HSRBD datasets.

TABLE 3: The AUROC score (%) on HSRBD datasets compared with the previous method.

Classes GANomaly SPADE PaDiM DifferNet CS-Flow CSA-Flow (ours)

Scenario 1 64.70 36.10 89.20 40.11 57.23 82.23 (−7.81%)
Scenario 2 68.70 86.00 96.00 69.56 98.67 100.00 (1.35%)
Scenario 3 76.00 77.40 96.60 73.56 94.23 100.00 (3.52%)
Scenario 4 57.00 94.50 67.30 60.61 83.03 89.09 (−5.72%)
Average 66.60 73.50 87.28 60.96 83.29 92.83 (6.37%)
Bold values denote the best result in the class.

FIGURE 7: Examples of test results for various classes in the MVTec-AD dataset. The first row displays the original abnormal images, while the
second row showcases the heatmaps of the defects. The bottom row provides visualizations of the predicted results for the defects.
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abnormal areas. In the HSRBD datasets, where moving parts
are considered normal, CSA-Flow demonstrates robustness
and aligns with real-world scenarios. Although CSA-Flow is
not explicitly designed for pixel segmentation, we assign
anomaly scores to local positions i;ð jÞ of the feature graph
ys by aggregating values along the channel dimension using

zsi; j

 2
2
. By leveraging the high norms in the output tensorszs,

we can accurately locate defects and assess them quickly.
Figure 7 showcases localization in MVTec-AD, Figure 8
demonstrates localization in BTAD, and Figure 9 exhibits
localization in HSRBD, highlighting CSA-Flow’s accurate
localization performance, particularly in industrial settings.

4.4. Ablation Study. To assess the effectiveness of the atten-
tional module in our model, we conducted ablation

experiments involving different subnetworks combinations.
Specifically, we compared the AUROC metric, recall, and
accuracy scores by including both the CA and SA modules
and added only one of the modules for the HSRBD datasets.
The results of these experiments are presented in Table 5. Since
the HSRBD datasets are collected based on real train operation,
foreign bodies with a diameter of less than 10mm might cause
5.57% redundancy in the accuracy. Via comparison, it is worth
noting that the inclusion of both CA and SA modules
significantly enhances the accuracy of defect recognition in
real-world industrial defect scenarios to improve the detection
efficiency of high-speed electric multiple unit (EMU).

In industrial detection, anomaly detection is widely
applied to the primary maintenance of high-speed EMU.
The time of this primary maintenance is urgent, and the
current process regulations are constantly reducing the

FIGURE 8: Examples of test results for various classes in the BTAD dataset.
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maintenance time; therefore, the workload of manual review
can be greatly reduced due to the improvement of accuracy,
especially if the base is large.

5. Conclusion

In this paper, we presented CSA-Flow, which combines
cross-scale NF with attention modules and applied to a prac-
tical application of high-speed EMU. We aim to improve
anomaly detection accuracy and reduce the workload of
manual review. We also introduced the channel feature
extraction module for different scales of feature extraction,
and our experiments demonstrate the promising potential of
CSA-Flow. We believe that evaluating the performance of a
network in industrial applications is crucial. Existing net-
works often face challenges in industrial settings due to fac-
tors such as lighting, background information, and texture,
which can impact detection results. As shown in Table 2, our
proposed method excels at detecting foreign bodies in com-
plex backgrounds. We also introduced more intuitive metrics
that are highly relevant in industrial applications, such as the
detection rate. Consequently, we evaluated the recall of CSA-
Flow on the HSRBD datasets, and the results demonstrated
that our method achieved the highest anomaly detection rate.
Although CSA-Flow does not perform precise pixel-level
segmentation, we can utilize the anomaly scores to locate
abnormal parts. Future research will focus on improving
speed and advancing pixel-level segmentation capabilities.
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