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IoT-based smart agriculture plays a significant role in building a high-yield, sustainable, and intelligent modern agriculture.
However, limited battery capacity and low-power processors of sensors cannot accommodate the exponential expansion of
data from smart agriculture sensing terminals. To overcome the challenges, we introduced solar harvesting and multiaccess
edge computing (MEC) to investigate sustainable monitoring of smart agriculture in solar-powered MEC-enabled WSNs.
Considering the cyclical and day-night fluctuations of solar energy, we formulate a joint optimization problem for resource
scheduling and computation offloading strategy to maximize the minimum weighted computation capacity across the time
slots under solar energy constraints. To solve the mixed-integer nonlinear program (MINLP), we propose a multiply-iterated
decoupling optimization algorithm by jointly optimizing a computation offloading strategy, energy provision of the solar-
powered hybrid access point (HAP), and local CPU frequency as well as time scheduling. Simulation results show that the
proposed algorithm can efficiently use solar energy to balance network calculations, improve network energy efficiency, and
realize unmanned and sustainable agricultural WSN.

1. Introduction

1.1. Background. The flourishing development of IoT has
brought new opportunities and challenges to modern agri-
culture, especially in precision agriculture and smart irriga-
tion applications [1]. Wireless sensor networks (WSNs), as
the sensing layer of IoT, can achieve comprehensive sensing
and timely response to environmental status with their
highly scalable and ubiquitous architecture, which can effec-
tively assist the smart agriculture systems in maximizing
yields and minimizing wastage [2]. However, the character-
istics of sensors, including the low-power processor and
energy-constrained battery, make it difficult to process com-
plex tasks sustainably. It seriously affects the upgrade appli-
cation of agriculture WSNs, especially in precision
agriculture, where WSN not only needs to consume more
energy to continuously monitor feature parameters, such as
soil moisture, soil nutrients, crop growth, and pests, but also
requires to pay more computation to process data and trans-
mit commands with low latency [3]. Therefore, how to

tackle the energy constraints and computation limitations
of sensors simultaneously is a critical problem in the devel-
opment of sustainable agriculture WSN.

Conventional sensors are powered by limited capacity
batteries. Networks that prolong the network lifetime by reg-
ularly replacing batteries can result in significant mainte-
nance costs and serious environmental pollution. To satisfy
the energy requirements for comprehensive monitoring,
existing research focuses on either open-source or cost-
saving approaches [4]. Specific energy-efficient approaches
for battery-constrained WSNs cover clustering-based
schemes [5], node deployment strategies [6], node schedul-
ing algorithms [7], energy-efficient routing schemes [8],
and energy-efficient joint designs [9], all of which prolong
the network lifetime at the expense of network performance
and fail to inherently provide a sustainable energy supply to
the network. Moreover, the deployment of batteries in soil
and water quality monitoring applications is not allowed
since it is necessary to prevent environmental damage
caused by battery leakage or damage. Based on RF, wireless
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power transfer (WPT) technology can provide a continuous
and controlled energy supply for sensors and effectively
solve the energy constraint problem [10]. However, the
existing wireless energy mainly derives from high-capacity
batteries or the nearby power grid, which is problematic in
agricultural applications due to the difficulty of introduction
and high maintenance costs. Renewable environmental
energy sources, such as solar energy, wind energy, thermal
energy, and vibration, can provide a continuous, convenient,
and clean energy supply for remote agriculture by virtue of
their wide distribution and accessibility [11]. Solar energy,
as the most popular ambient microenergy source, enjoys a
higher power density (15mW/cm2), greater geographic flex-
ibility, easier installation, and periodicity available, making it
particularly appropriate for the perpetual energy supply of
nodes in agricultural WSNs [12].

To make up for the limited computing capacity of sen-
sors, the majority of agricultural systems use cloud comput-
ing to process, analyse, and store large amounts of
heterogeneous data through multiple network layers, which
imposes a significant burden on the information and com-
munication infrastructure, causing enormous energy costs
and more significant information return latency [13]. It
obviously fails to match the low latency requirements of pre-
cision agriculture with exponentially increasing monitoring
tasks. The multiaccess edge computing (MEC) allows the
sensors to offload intensive computations to nearby servers
located at the edge of the radio access network, thus facilitat-
ing better performance than the cloud computing paradigm
in terms of latency, effective bandwidth, energy consump-
tion, and load balancing, which is considered to be a prom-
ising solution to enhance the computing capability of WSN
[14]. Existing MEC research has mainly focused on net-
works that rely on limited batteries [15] or stable and con-
trollable RF signals [16] for energy supply, achieving
maximum computation rate [17], minimum energy con-
sumption [18], and maximum energy efficiency [19] by
jointly optimizing offloading decisions and resource alloca-
tion, which makes it difficult to apply in remote agricultural
IoT with the requirement of unmanned, low-latency, com-
prehensive state monitoring. It is significant to build a
solar-powered MEC green agricultural IoT to satisfy the
requirements of smart agriculture for comprehensive sens-
ing and real-time processing. However, due to the random-
ness and volatility of solar energy, research on energy-
efficient offloading decisions and resource scheduling of
MEC based on solar energy supply faces significant
challenges.

1.2. Related Works. In MEC systems, it is essential to design
efficient offloading decision and resource scheduling for
improving network performance in terms of energy effi-
ciency, spectral efficiency, latency, and lifetime [14]. Com-
pared to single-user offloading [20], the multiuser
offloading decision is more suitable for the smart agricul-
tural IoT as it requires a combination of communication
resources and collaboration between multiple users [18].

From the perspective of task features, there are two basic
computation offloading decisions for MEC, such as binary

and partial offloading [14]. Partial offloading allows a task
to be partitioned into two parts, with one executed locally
and the other offloaded for edge computing, which is mostly
used for high-volume and complex tasks such as environ-
mental monitoring and healthcare applications. Binary off-
loading requires a task to be executed as a whole packet
either locally or offloaded to a remote MEC server, which
is more suitable for applications with high relevance, such
as anomaly detection. Research on binary and partial off-
loading is also abundant [16, 21, 22]. In [21], Zhou et al.
investigated the optimal resource allocation for maximizing
the network computation efficiency under the partial and
binary offloading mode. Mao et al. [22] designed the online
partial offloading and resource allocation algorithm to trade-
off between energy efficiency and delay. In [16], Bi et al. pro-
posed two efficient solution algorithms (such as the coordi-
nate descent method and the ADMM-based method) to
tackle the binary combinatorial computing mode selection.
Partial offloading is a relaxed form of binary offloading from
a mathematical point of view, which is simpler to compute
since it eliminates the discrete random variables. However,
in many practical scenarios, especially those suffering from
timing characteristics, computing tasks may not be arbi-
trarily divisible; thus, the binary offloading will be consid-
ered in this work.

From the energy supply perspective, traditional MEC
are powered by limited capacity batteries. Researchers have
focused on proposing excellent offload decisions and
resource allocation strategies that can reduce node energy
consumption and prolong network lifetime, but this is
limited. In [15], Xu et al. investigated the energy minimi-
zation task offloading and resource allocation for MEC in
NOMA-HetNets under the constraints of QoS require-
ments. Literature [23] proposes a cooperative offloading
technique based on the Lagrangian Suboptimal Convergent
Computation Offloading Algorithm (LSCCOA) to mini-
mize weighted sum of transmit power consumption. Con-
sidering the limitations and complexity of the integrated
batteries in nodes, more and more scholars are focusing
on introducing WPT to provide continuous and controlled
energy supply for sensors sensing, forwarding, etc., thus
improving network energy efficiency and prolonging net-
work lifetime [24]. In a wireless powered multiuser MEC
system, Literature [16] jointly optimized the binary off-
loading mode and the transmission time allocation to
maximize the sum computation rate of all the devices. Lit-
erature [18] proposed a power minimized resource sched-
uling strategy by jointly optimizing downlink energy
beamforming, uplink computation offloading, and local
task execution at users. To enhance computation efficiency
and prolong the network lifetime, Literature [17] jointly
optimizes the allocation of the communication, computing,
and energy resources with the aid of WPT in Full-Duplex
(FD) mode. In [25], Li et al. proposed a joint user associ-
ation and dynamic offloading scheme to enhance the com-
puting capability and achieve sustainable device operation.
Different from the works in [18] where channel state
information (CSI) is assumed to be fixed, the authors in
[26] consider a practical scenario with casual task state
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information (TSI) and CSI and propose a real-time
resource allocation strategy to minimize the total system
energy consumption. However, these studies are based on
the continuous and stable energy transmitting power pro-
vided by high-capacity batteries or the nearby power grid,
which is not suitable for the agricultural environment far
from cities and complex terrain, so we need to find a
more suitable energy source for agricultural WSNs. Given
the stochastic and volatile nature of environmental energy,
few existing studies on renewable energy-powered MEC
are available. In [27], the multiuser energy consumption
and computing resource minimization problem for hybrid
renewable energy and grid supply is studied under energy
harvesting and QoS constraints. Literature [28] investi-
gated the decentralized partially observable offloading
problem in the multiuser EH-enabled system, in which
multiple IoT devices cooperate to maximize the network
performance while meeting QoE requirements. Although
MEC-based optimal offloading decisions and resource
scheduling problems have been studied under conven-
tional battery supply, WPT supply, and renewable energy
access supply, all of these have failed to fully exploit both
the periodic cleanliness of solar energy and the continuous
controllability advantages of WPT through technological
complementarity in MEC networks to meet the opera-
tional requirements of precision agricultural IoT.

1.3. Contributions. In this paper, we consider a solar-
powered multinode MEC-enabled WSN system, as shown
in Figure 1, where a solar-powered hybrid access point
(HAP) integrated with a MEC server jointly recharges all
sensors and computes the offloading task. Each sensor uses
up the charged energy to make the optimal offloading
decision given the system objective. In particular, we are
interested in maximizing the minimum weighted system
computation capacity as indicated by throughput across
the time slots subject to the periodicity and day-night var-
iability of solar energy. To our knowledge, this is the first
paper that studies the optimal design in a multinode
solar-WPT-powered MEC network using binary offloading
strategy for agricultural WSN. Our contributions are
detailed below.

(1) We constructed a solar-powered multinode MEC-
enabled agricultural WSN framework to achieve bal-
anced system computation capacity, which is neces-
sary for building efficient, clean, unmanned
sustainable smart agriculture

(2) We formulate a maximize the minimum weighted
system throughput problem for Solar-Powered
MEC-enabled WSN to determine the computation
offloading strategy of each node in each time slot

Sensor node
Solar-powered
HAP with MEC 

Information
beamforming

Energy beamforming

Internet

Figure 1: The overview of solar-powered MEC-enabled agriculture WSN. The HAP (embedded MEC) consistently harvests and stores solar
energy for charging a set of battery-free sensor nodes and processing tasks offloaded by sensor nodes that makes offloading decisions.
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and the time trade-off between energy broadcast and
transmission, which jointly optimize the energy pro-
vision of solar-powered HAP, multinode computa-
tion offloading strategy, and local CPU frequency
as well as computing offloading time schedule

(3) To solve the mixed-integer nonlinear program
(MINLP), we propose a multiply-iterated decoupling
optimization method. First, we initialize a computa-
tion offloading strategy to obtain a semiclosed-form
solution for the optimal local CPU frequency and
the optimal edge computation communication time
allocation subject to a specific HAP energy provi-
sion. We then propose a low-complexity algorithm
to compute the optimal solution for HAP energy
provision and time allocation by using the dual and
successive convex approximation (SCA) methods.
Subsequently, we propose a coordinate descent
(CD) method to update the previous computation
offloading strategy and finally get the optimal solu-
tion of the model by several iterations of the loop

The rest of the paper is organized as follows. Section 2
introduces the system model and assumption. Section 3 for-
mulates the maximize the minimum weighted system
throughput problem for solar-powered MEC-enabled
battery-free WSN. Section 4 presents the details of the
multiply-iterated decoupling optimization method for the
nonconvex problem mentioned above. Section 5 evaluates
the simulation results, and Section 6 concludes the paper.

2. System Model and Assumption

We consider a solar-powered multinode MEC-enabled WSN
system with perfect CSI as shown in Figure 2, where a solar-
powered HAP integrated with a MEC server consistently
harvests and stores solar energy with battery capacity Bmax

j ,
then employs WPT to charge a set N ≜ f1, 2,⋯, ng of
battery-free sensor nodes and compute offloading tasks. It
is assumed that all channels are reciprocity and follow a qua-
sistatic block fading model [29], in which the channel gain of
a channel remains constant over a slot but varies between
slots. Each node makes full use of recharged energy to per-
form environmental monitoring and task computing, which

follows a binary offloading strategy, i.e., operating in either
local computing or computation offloading at each slot.
Local computing is where the sensor node performs the gen-
erated computing tasks by the on-chip microprocessor,
which has low computing capability due to energy and size
constraints. Computation offloading means that the sensor
node offloads the entire task to the MEC server embedded
in HAP with much more processing power, which provides
cloud-like computation capability for WSN to realize the
requirements of computationally intensive applications in
precision agriculture. To achieve real-time state monitoring
for smart agriculture, we need to guarantee that the network
sensor nodes are in a full-time sensing state, which imposes
greater requirements for better management of the HAP’s
energy provision and offloading decisions of the network.
This is illustrated in Figure 2.

2.1. Time Scheduling Model. Considering the periodicity and
day-night variability of solar harvesting, we propose a time
division computing offloading scheduling (TDCOS) to
improve the system computation capacity and solar energy
utilisation of each time slot. To avoid interference, we
assume that HAP and its member nodes run on different fre-
quencies. Each node adopts a half-duplex time mode to
communication with a HAP and uses time division multiple
access (TDMA) to achieve computation offloading to avoid
cochannel interference. Consider a finite time horizon T
with a whole day as shown in Figure 3, which is divided into
K slots with duration τ = T/K . Let T ≜ f1,⋯, k,⋯, Kg
denote the set of the time slots k. Each time slot kis divided
into the following two intervals: (1) energy broadcast time,
where HAP charges all devices for a time τbro simulta-
neously; (2) computing offloading time, where each node
chooses to operate at either local computing or computing
offloading based on the system throughput within a time
slot; then, each offload node takes turns uploading tasks in
their allocated time slots τi. In this case, task offloading
can occupy the rest of the time slot after energy broadcasting
of HAP, as shown in the following equation.

〠
N

i=1
τi + τbro ≤ τ: ð1Þ
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Figure 2: A block diagram of the energy broadcasting and task computing. The HAP harvest-store-broadcast energy for member nodes to
perform local computing or computation offloading.
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2.2. Energy Harvest Model. We consider a solar-powered
HAP equipped with a solar panel of size Wp and has a
rechargeable battery with capacity Bmax

j , as shown in
Figure 2. We assume that solar energy arriving at HAP fol-
lows the m-state Markov chain model [30],where each state
m ∈ f1,⋯,Mg represents an EH profile expressed as a prob-
ability distribution with a given mean μm and variance ρm.
Specifically, letting ψk

j represent the solar intensity on the
HAP at time slot k, the solar-harvested energy of HAP at slot
k can be expression by the following equation.

Ek
j,har = ηjψ

k
jWpτ, ∀k ∈ T , ð2Þ

where ηj ∈ ð0, 1Þ denotes the solar energy conversion rate of
HAP. Within each time slot k of period T , the HAP converts
the available energy Ek−1

j at the start of time slot k to charge
all member nodes with wireless power transfer (WPT) and
process tasks offloaded by some nodes on the MEC server,
followed by storing the residual solar energy in the battery
for the next slot. Let Pk

j denote the transmitting power of
HAP, which characterizes the antenna performance of
HAP and is satisfied with 0 ≤ Pk

j ≤ Pmax
j . Here, Ek

MEC denotes
the energy consumption of HAP processing the tasks off-
loaded by nodes. Consequently, the available energy of
HAP at the end of slot k can be defined as the following
equation.

Ek
j = Ek−1

j + Ek
j,har − Pk

j τbro − Ek
MEC , ∀k ∈ T , ð3Þ

where the broadcast energy Pk
j τbro of HAP is constrained by

Pk
j τbro ≤ Ek−1

j as a result of the causal energy limitations.
Also, to ensure proper monitoring at night within the con-
straints of day-night variability of solar-harvesting, we need
to further constrain the lower limit of available energy for
the HAP at any time slot as shown in the following equation.

Pk
j τbro + Ek

MEC ≤ Ek−1
j , ∀k ∈ T: ð4Þ

For avoiding energy overflow, Ek
j is limited by the capac-

ity of the HAP battery Bmax
j , as shown in the following equa-

tion.

0 ≤ Ek
j ≤ Bmax

j , ∀k ∈ T: ð5Þ

During the energy broadcasting phase, each member
node harvests the wireless energy for task monitoring and
offloading during the time slot. Let hkij denote the channel
gain from the HAP to node i based on the Rayleigh fading
model [31]. Ignoring interference from noise, we can get
the charged energy of each node at slot k, which can be
expressed as the following equation.

Ek
i = Pk

j h
k
ijηiτbro, ∀k ∈ T , i ∈N , ð6Þ

where ηi ∈ ð0, 1Þ denotes the energy-harvesting efficiency,
which can be considered as a fixed value since the transmit-
ting power is usually small in WSNs. In order to establish a
sustainable agricultural WSN, we need the network to
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Figure 3: Time slot allocation during a solar-harvesting period. A period (a day) is divided equally with time interval 1 h, and each slot is
composed of the broadcast time and task offloading time. The harvested energy of HAP is scheduled to reduce the impact from day-night
variability of solar energy.
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achieve energy neutral operation (ENO), which means the
energy harvesting and consumption of HAP is balanced in
one period. The mathematical expression is as in the follow-
ing equation.

EN
j − E0

j

��� ��� ≤ ε, ð7Þ

where ε denotes the acceptable error range.

2.3. Computing Model. For each node, task computing can
be performed locally or alternatively by offloading to the
MEC server embedded in HAP. Here, we introduce the set
of binary offloading variable Sk ≜ fsk1,⋯, ski ,⋯, skNg, where
si = 0 denotes that the node i decides to offload its computa-
tion task to the MEC server. Otherwise, si = 1. Based on the
given computing offloading strategy, the detailed operation
of each node is illustrated as follows.

2.3.1. Local Computing. When node i makes the decision of
local computing, it would perform the task computation
independently of the others with the charged energy. Let δi
indicate the number of CPU cycles required to complete a
task with unit data size and f loci denote the CPU frequency,
which characterizes the computational power of the node
and satisfies with 0 ≤ f ki,loc ≤ f locmax. It is assumed that Φk

i,loc is
the total throughout on local computing at the slot k; the
corresponding energy consumption and computation
latency can be calculated as shown in the Equations (8)
and (9), respectively.

Ek
i,loc = κmob,i f ki,loc

� �3
δiΦ

k
i,loc, ∀k ∈ T , i ∈N , ð8Þ

tki,loc =
Φk

i,locδi

f ki,loc
, ∀k ∈ T , i ∈N , ð9Þ

where κmob,i denotes energy consumption parameters, which
depend on the chip architecture [32]. Notice that local com-
puting can last for the entire time slot τ, since the energy
charging and local computing can be done simultaneously
based on the circuit as shown in Figure 2. Accordingly, the
total local computing throughput Φk

i,loc are constrained by
computation latency and energy consumption in the Equa-
tions (10) and (11), respectively.

0 ≤ tki,loc ≤ τ, ∀k ∈ T , i ∈N , ð10Þ

0 ≤ Ek
i,loc ≤ Ek

i , ∀k ∈ T , i ∈N: ð11Þ
2.3.2. Computing Offloading. Apart from local computing,
each node needs to take turns using up the charged energy
for offloading the entire task to the MEC server embedded
in HAP, and downloading the computation results after
MEC server has completed the task calculation when off-
loading decision si = 0. According to the Shannon theory
[33], the available offload computing rate of node i, denoted
by rki,of f , can be calculated by the following equation.

rki,of f =W log2 1 +
pki,of f h

k
ij

N0

 !
, ∀k ∈ T , i ∈N , ð12Þ

where W denotes the communication bandwidth and N0
denotes the receiver noise power. Let pki,of f = Εk

i /τki denote
the offloading transmitting power of node i at time slot k.
The total throughput Φk

i,of f of each offload node in its allo-
cated time τi can be calculated by the following equation.

Φk
i,of f = τki r

k
i,of f =Wτki log2 1 +

pki,of f h
k
ij

N0

 !
, ∀k ∈ T , i ∈N:

ð13Þ

After receiving the raw data of all the member nodes, the
HAP computes and sends back the output result back to the
corresponding node. Given that the calculation results at
MEC are smaller and the downlink transmission rate is
higher, the downlink energy consumption and latency can
be ignored [34]. Thus, the energy consumption of computa-
tion offloading at the MEC server, denoted byEk

MEC , can be
expressed as the following equation.

Ek
MEC = κmob,j f MECð Þ3δjΦk

ij,of f , ∀k ∈ T , i ∈N , ð14Þ

where κmob,j is the capacitance coefficient specified by the
MEC server’s CPU architecture and f MEC is the CPU fre-
quency of the HAP during each slot, which is fixed during
the calculation cycle of the task by the DVFS technique [35].

3. Problem Formulation

In this subsection, we formulate a maximize the minimum
weighted system computation problem for the solar-
powered MEC-enabled battery-free WSN to determine the
computation offloading strategy of each node in each time
slot and the time trade-off between energy broadcast and
transmission, which jointly optimize the multinode compu-
tation offloading strategy fSkg, the amount of energy provi-
sion by solar-powered HAP fPk

j , τbrog, and local CPU

frequency f f loci g, as well as computing offloading time
scheduling fτg. Here, we qualify the volume of network
computation in terms of throughput. Accordingly, the
weighted total throughput maximization problem is formu-
lated as the following equation.

P0 max
P,τ,s,ff g

min
k

〠
N

i=1
wi siΦ

k
i,loc + 1 − sið ÞΦk

i,of f

h i
,

Subject to
ð15Þ

C1 : 0 ≤ Pk
j ≤ Pmax

j , ∀k ∈ T , ð16Þ

C2 : 0 ≤ Ek
j ≤ Bmax

j , ∀k ∈ T , ð17Þ

C3 : Pk
jτ

k
bro + Ek

MEC ≤ Ek−1
j , ∀k ∈ T , ð18Þ
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C4 : EN
j − E0

j

��� ��� ≤ ε, ð19Þ

C5 : 〠
N

i=1
τki + τkbro ≤ τ, ∀i ∈N , k ∈ T , ð20Þ

C6 : ski ∈ 0, 1f g, ∀i ∈N , k ∈ T , ð21Þ

C7 : fmin ≤ f ki,loc ≤ fmax, ∀i ∈N , k ∈ T , ð22Þ

C8 : 0 ≤ tki,loc ≤ τ, ∀i ∈N , ð23Þ

where wi ∈ ½0, 1� is a weight factor that accounts for the pri-
orities of different nodes and is specified by the application
layer. C1 is the transmission power constraint which ensures
that the transmission power of the HAP is nonnegative and
bounded by the maximum transmission power Pmax

j

depending on the system architecture. Battery capacity con-
straint C2 ensures that the battery energy level of HAP is
upper bounded by the battery capacity Bmax

j . Energy con-
sumption constraint C3 specifies that the energy consump-
tion for broadcasting and computation offloading does not
exceed the available energy of HAP at the start of the time
slot, which can effectively guarantee the energy requirements
for night-time network monitoring. C4 is an energy neutral
operation (ENO) constraint wherein the energy harvesting
and consumption of HAP is balanced in one period. Time
slot constraint C5 specifies that all nodes need to accomplish
energy charging and computational offloading within one
time slot. C6 indicates that the variables of offloading deci-
sion variables are 0-1 binary decision variables. The fre-
quency constraint C7 denotes that the local CPU frequency
should be limited within a range of ½ f min, fmax�. C8 indicates
that the local computing time of the node cannot exceed the
duration of a time slot. Due to the combinatorial nature of
the multinode computing offloading strategy and its strong
coupling with resource scheduling, problem (P0) is hard to
tackle.

4. Joint Optimization Method

In this section, we introduce a joint optimization between
resource scheduling and computation offloading strategy to
maximize the minimum weighted system throughput for
solar-powered MEC-enabled battery-free WSN. In response
to this mixed-integer nonlinear program (MINLP), we pro-
pose a multiply-iterated decoupling optimization method,
where we first initialize a computation offloading strategy
Skð0Þ to obtain a semiclosed-form solution for the optimal
local CPU frequency f k∗i,loc and the optimal edge computation
communication time allocation subject to a certain HAP
energy provision. We then propose a low-complexity algo-
rithm to compute the optimal solution Γk∗ for HAP energy
provision and time allocation. Subsequently, we propose a
coordinate descent (CD) method to update the previous
computation offloading strategy and finally get the optimal
solution of the model. Next, we propose a corresponding
solution for each iteration.

4.1. Optimal Local Computing. In this subsection, we inves-
tigate the optimization of the local CPU computation fre-
quency given the computation offload strategy. From
problem (P0), it can be seen that independently optimizing
the local CPU frequency f loci does not affect the performance
of other nodes when the Γk = Pk

j τ
k
bro is fixed. Combining

Equations (8)–(11) and constraint C7, we can conclude
f ki,loc by the following equation.

f ki,loc ∈
Ek
i

κmob,iτ

 !1/4

, fmax

" #
, ∀i ∈N , k ∈ T: ð24Þ

Note that the function Φloc
i ð f loci Þ is monotonically

decreasing on the domain. Hence, we can obtain the optimal
semiclosed solution for the local CPU frequency for each
node, which is shown in the following equation.

f k∗i,loc =min Ek
i

κmob,iτ

 !1/4

, fmin

" #
, ∀i ∈N , k ∈ T: ð25Þ

To ensure that the network works properly, Ek
i,loc ≥

κmob,i f
4
minτ needs to be satisfied. By substituting f i

loc∗ into
Equation (8), we can obtain the maximum local computing
data volume by the following equation.

Φk∗
i,loc =

Ek
i

κmob,i f ki,loc
� �3

δi

= η1 Γkhkij
� �1/4

, ∀i ∈N , k ∈ T ,

ð26Þ

where η1 ≜ ðητ3/κmob,iδ
4
i Þ

1/4
is a fixed parameter.

4.2. Joint Iterative Optimization of Broadcast Power and
Transmission Time. In this subsection, we continue to study
the optimal computation offloading resource scheduling
with the assumption that Sk is known and Γk is fixed. Here,
we first transform problem (P0) into problem (P1) by
removing the variables f k∗i,loc and making formal transforma-
tions to the objective function, which can be formulated as
the following equation.

P1 max
P,τ,sf g

min
k

〠
N

i=1
wisiη1 Γkhkij

� �1/4
+ 〠

N

i=1
wi 1 − ski
� �

Wpτ
k
i log2 1 +

Γk hkij
� �2
τki N0

0B@
1CA,

s:t: C1 ~ C6:
ð27Þ

To solve the problem (P1) for nodes with offloading
decision, we need to adopt the iteration optimization algo-
rithm for offloading time allocation and energy broadcast
scheduling. Let τkðlÞ and ΓkðlÞ denote the set of variables
related to offloading time and energy charging allocation
for nodes in the l-th iteration, respectively. Specifically, each
iteration can be divided into two steps. Firstly, the optimal
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offloading time allocation of iteration l is derived from the
given value of Γkðl − 1Þ. Then, with the fixed value of τkðlÞ,
the optimal energy broadcast scheduling ΓkðlÞ is obtained.
The iterative algorithm is repeated until it converges to stop-
ping criterion ξl ≤ σ; then, we can obtain a closed-form solu-
tion for optimal offloading time allocation and energy
broadcast scheduling for problem (P1). The criterion is
specified by the total throughput variation value ξl, which
can be expressed by the following equation.

ξl =
〠
N

i=1
wi s

k
iΦ

k
i,loc lð Þ + 1 − ski

� �
Φk

i,of f lð Þ
h i

−〠
N

i=1
wi s

k
iΦ

k
i,loc l − 1ð Þ + 1 − ski

� �
Φk

i,of f l − 1ð Þ
h i
























, ∀i ∈N , k ∈ T:

ð28Þ

As shown in Algorithm 1, we need to solve problem (P2)
and problem (P3) to obtain an optimal solution for offload-
ing time allocation and energy broadcast scheduling, respec-
tively. The problem P2 is shown as the following equation.

P2 max
τk

〠
i∈ ski =1f g

wiWpτ
k
i log2 1 +

Γk l − 1ð Þ hkij
� �2

τki N0

0B@
1CA,s:t: C2 ~ C6:

ð29Þ

Obviously, problem (P2) is a convex problem, so we can
introduce Lagrangian multipliers λ = fλijλi ≥ 0g with con-
straints C1~C5 to form a partial Lagrangian and achieve
the optimal objective value fτ∗g by the strong duality, as is
shown in the following equation.

L τ, λð Þ = 〠
i∈ si=1f g

wiWpτ
k
i log2 1 +

Γk l − 1ð Þ hkij
� �2

τki N0

0B@
1CA

− λ1 Ek
j − Bmax

j

� �
− λ2 Γk − Ek−1

j

� �
− λ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN
j − E0

j

� �2r
− ε

 !

− λ4 〠
N

i=1
τki + τkbro − τ

 !
:

ð30Þ

The corresponding dual function can be calculated by
the following equation.

d λð Þ =maximize
τ

L τ, λð Þ, τi ≥ 0f g: ð31Þ

According to KKT condition ∂L/∂τki ðlÞ = 0,we can obtain
the optimal fτ∗g which satisfies the following equation.

Input: given a computation offloading strategySk = fsk1, sk2,⋯, skng.
Output: the optimal fPk

j
∗, τk∗bro, τk∗g to Problem (P2) given Sk∗.

1Initialize Γkð0Þ and l = 1, αð0Þ, βð0Þ
2Repeat
3Calculate local CPU frequency according to Equation (25);
4Repeat
5Calculate edge offloading time allocation according to Equation (32);
6Update λ1, λ3, λ4 according to Equations (33)–(35);
7Until λ1, λ3, λ4 converges;
8Let τk∗ðlÞ⟵ max

i=1,⋯,n
Φk

i ðlÞ ;
9Repeat
10Repeat
11Calculate energy provision according to Equation (43);
12Update μ3, μ4, μ5, according to Equations (44)–(46);
13Until μ3, μ4, μ5, converges;
14Repeat
15Calculate αki ðlpÞ, βk

i ðlpÞ according to Equations (39) and (40);
16Update number of iterations l = l + 1;
17Until Γk converges;
18Update outer loop iterations l = l + 1 and toleranceξl

19Until ξl ≤ σ
20Let Γk∗ðlÞ⟵ max

i=1,⋯,n
Φk

i ðlÞ
21Calculate the optimal energy broadcast power Pk

j
∗
and corresponding time τ∗bro according to Equations (48) and (49)

22Return the optimal solution by f ∗, P, τ

Algorithm 1: Iterative algorithm with combination of SCA and Lagrangian dual theory for optimal resource scheduling.
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τk∗i lð Þ
Γk l − 1ð Þ =

η2 hkij
� �2

−W xð Þð Þ−1 − 1
, ∀k ∈ T , i ∈ ijsi = 0f g, ð32Þ

where WðxÞ denotes the Lambert-W function and is satis-
fied withx = −ð1/exp ð1 + λ4/ðwiWp + ðλ1 + λ3Þη3ÞÞÞ.

Then, the solution of the dual problem min
λ

dðλÞ can be

determined by a subgradient method as shown in Equations
(33) and (34).

λl+11 = λl1 + σλ1
Ek
j − Bmax

j

� �h i+
, ð33Þ

λl+13 = λl3 + σλ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN
j − E0

j

� �2r
− ε

 !" #+
, ð34Þ

λl+14 = λl4 + σλ4
〠
N

i=1
τi + τbro − τ

 !" #+
: ð35Þ

Here, ½x�+ = max ðx, 0Þ. With the fixed value τk∗i found
above, Problem (P1) can be transformed into Problem
(P3), which can be shown as Equation (35).

P3 max
Pτ0f g

〠
N

i=1
wisiη1 Γk lð Þhkij

� �1/4
+ 〠

N

i=1
wi 1 − sið ÞWτk∗i lð Þ log2 1 +

Γk lð Þ hkij
� �2

τk∗i lð ÞN0

0B@
1CA,

s:t: C2 ~ C6:

ð36Þ

Obviously, Problem (P3) is a nonconvex problem
because the second term of the objective function is a convex
function. In order to solve this problem, we use the SCA
approach [36] to propose the energy broadcast scheduling
algorithm with logarithmic approximation. Instead of
directly dealing with the highly nonconcave rate function,
we apply the logarithmic approximation method to convert

the throughput function into bΦof f
i ðPk

j τbroðlpÞÞ, which is
shown in Equation (36).

bΦk
i,of f Γk lp

À Á� �
=Wpτ

k∗
i αki lp

À Á
+Wpτ

k∗
i βk

i lp
À Á

log2
Γk lp
À Á

hkij
� �2

τk∗i N0

0B@
1CA,

ð37Þ

where αðlpÞ and βðlpÞ are the parameter variable in the SCA
process, which can be calculated as seen in Equations (37)
and (38), respectively. lp is the iteration number in the

SCA process. bΦk
i,of f ðΓkðlpÞÞ denotes the low bound of the

original throughput function bΦk
i,of f ðΓkðlÞÞ, which is satisfied

with Φk
i,of f ðΓkðlÞÞ ≥ bΦk

i,of f ðΓkðlpÞÞ.

αki lp
À Á

=Wpτ
k∗
i lð Þ log2 1 +

Γk lp − 1
À Á

hkij
� �2

τk∗i lð ÞN0

0B@
1CA

−Wpτ
k∗
i β lp
À Á

log2
Γk lp − 1
À Á

hkij
� �2

τk∗i lð ÞN0

0B@
1CA,

ð38Þ

βk
i lp
À Á

=
Γk lp − 1
À Á

hkij
� �2

/τk∗i lð ÞN0

1 + Γk lp − 1
À Á

hkij
� �2

/τk∗i lð ÞN0

: ð39Þ

Unfortunately, bΦk
i,of f ðΓkðlpÞÞ is still a nonconcave func-

tion owing to the existence of logarithmic function log2ðΓk

ðlpÞðhkijÞ
2/τk∗i N0Þ. Let bΓk = log2ðΓkÞ; then, the logarithmic

function can be converted into a log-sum-exp function and
the problem (P3) can be reformulated into a convex problem
(P4), which is shown as Equation (39).

P4 max
Pτ0f g

〠
N

i=1
wis

k
i η1 eΓ

k lpð Þhkij
� �1/4

+ 〠
N

i=1
wi 1 − ski
� �

Wpτ
k
i lð Þ

Â α lp
À Á

+ β lp
À Á

log2
eΓ

k lpð Þ hkij
� �2

τk∗i lð ÞN0

0B@
1CA

264
375,

s:t: C1, C4, C5, C6,

C2 : 0 ≤ Ek
j lp
À Á

≤ Bmax
j ,

C3 : eΓ
k lpð Þ ≤ Ek−1

j , ∀k ∈ T , ð40Þ

where αðlpÞ = fαki ðlpÞji ∈Νg and βðlpÞ = fβk
i ðlpÞji ∈Νg. Uti-

lizing Lagrangian duality, we propose the SCA-based power
allocation algorithm based on the logarithmic approxima-
tion method. The Lagrangian duality of the problem is
defined as Equation (40).

L bΓk
lp
À Á

, μ
� �

= 〠
N

i=1
wisiη1 e

bΓ k
lpð Þhkij

� �1/4

− 〠
N

i=1
wi 1 − sið ÞWτki lð Þ α lp

À Á
+ β lp
À Á

log2
e
bΓ k

lpð Þ hkij
� �2

τk∗i lð ÞN0

0BB@
1CCA

2664
3775

− μ1 Pk
j − Pmax

j

� �
− μ2 Ek

j − Bmax
j

� �
− μ3 e

bΓ k
lpð Þ − Ek−1

j

� �
− μ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN
j − E0

j

� �2r
− ε

 !
− μ5 〠

N

i=1
τi + τbro − τ

 !
:

ð41Þ
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The corresponding dual function can be shown as Equa-
tion (41).

D μð Þ =maximizebΓ k
lpð Þ

n o L bΓk
lp
À Á

, μ
� �n o

: ð42Þ

According to KKT condition ∂L/∂ΓkðlpÞ = 0, we can

obtain the optimal fΓkðlpÞ∗g which satisfies Equation (42).

Γk lp
À Á∗ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 − μ3 − μ5ð Þ hkij

� �4
wis

k
i η

wi 1 − sið ÞWp + μ3 + μ5ð Þη3
Â Ã

τk∗i lð Þβ lp
À Á

vuuut , ∀i ∈N , k ∈ T:

ð43Þ

The solution of the dual problem min
μ

DðμÞ can be deter-

mined by a subgradient method as shown in Equations
(42) and (43).

μ
lp+1
3 = μ

lp
3 + εμ3 Ek

j − Bmax
j

� �h i+
, ð44Þ

μ
lp+1
4 = μ

lp
4 + εμ4 e

bΓ k
lpð Þ − Ek−1

j

� �� �+
, ð45Þ

μ
lp+1
5 = μ

lp
5 + εμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN
j − E0

j

� �2r
− ε

 !" #+
: ð46Þ

By substituting energy broadcast scheduling ΓkðlÞ∗ = Γk

ðlpÞ∗ and computation offloading time scheduling fτk∗g into
C5, we can get the optimal solution of broadcast power Pk

j
∗

and time τ∗bro by Equations (44) and (45), respectively.

τk∗bro = τ − 〠
N

i=1
τk∗i , ∀i ∈N , k ∈ T , ð47Þ

Pk
j
∗ = Γk∗

τk∗bro
, ∀k ∈ T: ð48Þ

Algorithm 1 shows the pseudocode of iterative optimisa-
tion with combination of SCA and Lagrangian dual theory
for optimal resource scheduling.

4.3. Coordinate Descent for Computing Mode Optimization.
In this subsection, we introduce the coordinate descent
(CD) method [37] to jointly optimize the N binary deci-
sion variable Sk = fsk1, sk2,⋯, skng , which can significantly
lower the computational complexity and faster conver-
gence by along the direction of only one variable si at a
time; see the pseudocode of Algorithm 2 for details. First,
we initialize a binary decision variable Skð0Þ in slot k and
denote Skðl − 1Þ as the computation offloading strategy at
ðl − 1Þth iteration, where the optimal system throughput

VSkðl−1Þ can be solved by Algorithm 1. In order to find
the optimal decision in each iteration, we switch the deci-
sion variables for each node i in turn and calculate its sys-
tem throughput gain Rk

i ðlÞ in the ðlÞth iteration, which can
be calculated by Equation (50).

Rk
i lð Þ =Vk Ski l − 1ð Þ

� �
−Vk Sk l − 1ð Þ

� �
, ð49Þ

where Ski ðl − 1Þ denotes the switched computation
offloading strategy with node i and can be calculated by
Equation (51).

Ski l − 1ð Þ = Sk1 l − 1ð Þ, Sk2 l − 1ð Þ,⋯, Ski l − 1ð Þ ⊕ 1,⋯, Skn l − 1ð Þ
h i

,

ð50Þ

where ⊕ denotes the modulo-2 summation operator.
Obviously, Rk

i ðlÞ ≻ 0 denotes a better decision for node i
in ðl − 1Þth iterations, and we need SkðlÞ = Ski ðl − 1Þ and
vice versa. Therefore, the optimal decision under this iter-
ation is obtained by comparing the selection of the best

Input: initial computation offloading strategySkð0Þ.
Output: an approximate solution fPk

j
∗, τ∗bro, f ∗local, τ∗, S∗g.

1Initialization:l⟵ 0
2Repeat
3l⟵ l + 1
4For each node i do
5Calculate Rk

i ðlÞ in Equation (20) using Algorithm 1
6End
7Let Vk∗ðlÞ⟵ max

i=1,⋯,n
Rk
i ðlÞ andik∗ðlÞ⟵ arg max

i=1,⋯,n
Rk
i ðlÞ;

8Update SkðlÞ⟵ Ski∗l ðl − 1Þ using Equation (51);

9Until V∗
l ≤ 0 :

10Let S∗ = SkðlÞ and calculate the optimal resource scheduling fPk
j
∗, τ∗bro, f ∗local, τ∗g

11Return the optimal computation offloading strategy fPk
j
∗, τ∗bro, f ∗local, τ∗, S∗g to P1

Algorithm 2: Coordinate descent algorithm for computation offloading strategy optimization.
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i∗l = arg max
i=1,⋯,n

Rk
i ðlÞ. Meanwhile, Rk increases monotonically

with the number of iterations and the optimal value is
bounded, so the method can converge to the optimal
value.

Next, we consider the complexity of the proposed algo-
rithm. Here, the complexity of the proposed algorithm is cal-
culated based on the two stages. During the computation
offloading strategy definition phase, the number of iterative
updates for each strategy increases linearly with n, and the
complexity is OðnÞ, where n is the number of nodes. In iter-
ation optimization phases of ΓkðlÞ and τk, the number of
messages exchanged in each iteration which is equal to the
total number of nodes with computational complexity is O
ðn2Þ. Therefore, the overall complexity of the proposed algo-
rithm is Oðn3Þ.

5. Results and Discussion

In this section, we evaluate the proposed algorithm for solar-
powered agriculture WSN in terms of the system average
throughput, energy efficiency, and relevant parameters
against the existing All Local Computing, All Offloading,
Algorithm [16], and Optimal. All Local Computing means
the sensor uses the charged energy to process their tasks
locally. All Offloading denotes that the sensor offloads all
computing tasks to the MEC for processing. Algorithm
[16] is presented to address maximizing the computation
rate of all users for WPT-powered WSN by jointly optimiz-
ing the individual computing mode selection and the system
transmission time allocation where it is assumed that HAP is
well powered and the transmitting power is fixed. Optimal
refers to finding the optimal mode and allocating energy
employing exhaustive enumeration. All except Algorithm
[16] use the same energy provision constraint as the pro-
posed. The following firstly illustrates the simulation envi-
ronment and then presents the simulation results.

5.1. Simulation Setup. We consider a coverage area of 100
m × 100m with total node number [5, 10, 15, 21, 25] for
solar-powered multinode MEC-enabled agriculture WSN,
which includes a HAP-integrated MEC and several sensor
nodes randomly distributed. HAP are equipped with a 1m
× 1m solar panel, which has an energy-harvesting efficiency
of 20%. Solar energy arrivals are calculated in a similar way
to [30], which follows the hidden Markov model with four
states, including excellent, good, fair, and poor. The distribu-
tion of each state has a mean of 94.6, 76.0, 45.6, and 17.9,
and variance of 0.31, 1.55, 1.48, and 0.71, respectively. The
HAP has a battery with a capacity of 10 kJ, and the maxi-
mum transmitting power is set to 5W. All nodes recharge
themselves with energy efficiency 0.51, and the parameter
of computing efficiency is set 109. The local CPU frequency
of each node is set ranging from 0.2GHz to 2GHz, and the
CPU frequency of each MEC server is set as 4GHz. The
channel gain from the sensor node to HAP follows the Ray-
leigh fading channel model, where the path loss factor is set
varying from 2.0Hz to 3.5Hz. The system bandwidth is set
to 200 kHz, and the noise spectral density is set to -95 dB/

Hz. The numerical experiments are performed by the Monte
Carlo method as follows. All nodes are randomly distributed
in the sensing area for 100 times, and the corresponding
maximum throughput is calculated, which are probabilisti-
cally distributed by interval, and the number with the high-
est throughput value from the highest probability interval is
selected as the optimal throughput of this network, and the
corresponding offloading calculation decision and resource
scheduling scheme is the best. All the simulations are per-
formed on a desktop computer with an Intel Core i7-
8700U 3.2GHz CPU and 24GB memory.

5.2. Performance for Network. To achieve sustainable moni-
toring for solar-powered agriculture WSNs, we propose a
joint optimization method for resource scheduling and com-
putation offloading strategy to maximize the minimum sys-
tem throughput of each time slot during one period under
the solar energy periodicity and volatility constraints.
Figure 4 shows in detail the variation of system throughput
over time and the system period energy efficiency under
two different algorithms. Here, the period energy efficiency
is defined as the ratio of network throughput to network
energy consumption during one period, where the energy
consumption mainly comes from the energy broadcast and
the energy consumption of the MEC in HAP and can be
measured as the solar-harvested of HAP, which can be
expressed as Equation (50).

EE =
∑T

k=1∑
N
i=1wi s

k
iΦ

k
i,loc + 1 − ski

À Á
Φk

i,of f

h i
∑T

k=1E
k
j,har

, ∀i ∈N , k ∈ T:

ð51Þ

Figure 4 illustrates the variation of the system through-
put over time under different weather conditions. It is obvi-
ous to observe that the system throughput of Algorithm [16]
fluctuates significantly at different time slots within one
period compared to the proposed, which can reach the max-
imum during the day but zero at night. This is because Algo-
rithm [16] is designed to maximize the system computation
rate with the assumption that the HAP is always energetic
and that the transmit power is constant. This is clearly not
applicable to highly volatile solar energy. Conversely, the
proposed has a balanced throughput across time slots by
maximizing the minimum one slot throughput to balance
the energy broadcast by the HAP across time slots, which
can achieve a rational energy allocation and storage during
the day to ensure normal monitoring at night. Also, it is evi-
dent from Figure 4 that the proposed can achieve a higher
system period energy efficiency than the Algorithm [16] by
managing the broadcast power of harvested solar energy.
Compared to rainy days, the system has higher throughput
and energy efficiency on sunny days because it has more
solar energy and its value varies less over time. More nota-
bly, the algorithm proposed in this paper has better stability
in terms of throughput either over diurnal or climate change
processes, which shows that it is more adaptable to real-time
energy changes in the network.
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Figure 5 shows the effect of different algorithms on the
system average throughput during one period versus total
node number for path loss factor α = 2:4. It is obvious that
the proposed can achieve near-optimal performance and is
superior to the other algorithms as the number of nodes
increases. As more nodes are added gradually, the system
average throughput of all the above algorithms increases,
especially in the offload mode. But when the number of
nodes is particularly large, the throughput in the offload
mode drops abruptly. The reason for this is that when the
number of nodes exceeds a threshold, wireless channel inter-
ference will increase, and this will lead to a reduction in off-
load link capacity. However, the local computing mode
grows smoothly with the number of nodes due to the high
independence of each node.

Figures 6(a) and 6(b) compare the effects of the path loss
factor α and the average distance �d between HAP and nodes
on the system average throughput under different algo-
rithms, respectively, where both α and �d are important fac-
tors that affect the channel state. It can be seen from

Figure 6(a) that, for a given �d, the average throughput of
the above algorithms all suffer varying degrees of decline as
the channel state deteriorates with α increasing from 2 to
3.5. All Offloading is close to optimal performance when α
is small and drops significantly as α increases, which is
because task offloading suffers from both the energy broad-
cast downlink state and the data transmission uplink state.
In contrast, local computation has a more moderate degra-
dation due to its dependence on the downlink state only.
Note that the Proposed is perfectly aligned with the optimal
algorithm because it jointly optimizes energy scheduling and
offloading strategy, which drives the network to choose more
local computing to reduce losses as the channel state pro-
gressively deteriorates. In Figure 6(b), we compare the aver-
age throughput variation of systems with different
algorithms when the average distance �d of HAP-to-nodes
varies from 10m to 50m when α = 2:4. We observe that
the throughput of the above methods decreases as the aver-
age distance increases, because the distance between HAP
and nodes affects the channel gain hij, which affects the
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Figure 4: Plot of the weighted sum throughput of each slot and weighted energy efficiency versus the time with respect to (a) sunny and (b)
rainy.
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harvested energy Ei of node i and subsequently affects local
throughput Φi,loc and computation offloading throughput
Φi,of f , as in α. Comparing Figures 6(a) and 6(b), we can

observe that α and �d have a similar effect on system through-
put, as both α and �d influence network throughput by regu-
lating the channel state.
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Figure 6: Plot of weighted average throughput with respect to (a) path loss exponent α when �d = 20 and (b) average distance �d of HAP-to-
nodes when α = 2:4.

14 Journal of Sensors



Finally, we investigated the effect of the local minimum
local CPU frequency on the network average throughput
under different algorithms in Figure 7, from which we can
observe that as the minimum local CPU frequency gradually
increases, the average throughput under all local computing
is affected the most with a significant downward trend, with
some impact under the proposed, but almost no impact
under all offloading. This is because the increase of the min-
imum local CPU frequency can drive more nodes to choose
offloading. It is interesting to note that when the minimum
local CPU frequency gradually increases to a certain value,
the throughput under proposed tends to under offloading.
This is because all nodes of the network would choose the
computation offloading when the minimum local CPU fre-
quency is greater than a certain threshold.

6. Conclusions

This paper studied a real-time environmental monitoring
system for solar-powered MEC-enabled smart agriculture.
To alleviate the cyclical and day-night fluctuation influence
of solar energy on network performance, we formulated a
joint resource scheduling and computation offloading strat-
egy optimization problem, which maximizes the minimum
weighted computation capacity across the time slots by

jointly optimizing the computation offloading strategy,
energy provision of the solar-powered hybrid access point
(HAP), local CPU frequency as well as time scheduling.
Based on the coordinate descent method and successive con-
vex approximation theory, we developed a multiply-iterated
decoupling optimization algorithm to solve the strong cou-
pling between binary offloading strategy, broadcast power,
and time allocation. The simulation results demonstrate that
the proposed algorithm outperforms in terms of energy effi-
ciency and computational volume time slot balance and can
better adapt to solar energy variations to meet the real-time
status monitoring requirements of the smart agriculture IoT.

In order to further improve green energy utilization,
future research can be extended as follows. First, the
assumption of the solar harvesting rate in this paper is linear.
In practice, it varies nonlinearly with the transmitting
power, so it will be more relevant to examine the optimal off-
loading decision under the nonlinear harvesting conditions.
Next, HAP broadcast power can be extended by using
MIMO technology to reduce interference and improve
energy utilization. In addition, NOMA-based protocols can
be used instead of TDMA-based multinode task offloading
to improve the network’s spectral efficiency. Finally, the
long-term optimization model of network energy can be
constructed by considering the time-varying nature of
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Figure 7: Plot of weighted average throughput versus minimum local CPU frequency.
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network energy state information, channel state informa-
tion, and task state information.
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