
Research Article
Soil Organic Matter Inversion Based on Imaging Spectral Data in
Straw-Covered Noncultivated Land

WeiYi Lu, Huishi Du , and YuHan Chen

College of Tourism and Geographical Science, Jilin Normal University, Siping 136000, China

Correspondence should be addressed to Huishi Du; duhs@jlnu.edu.cn

Received 18 October 2022; Revised 24 February 2023; Accepted 9 April 2023; Published 20 April 2023

Academic Editor: Sushank Chaudhary

Copyright © 2023 WeiYi Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid inversion of soil organic matter is of great significance for agricultural soil testing and fertilization in order to protect
and utilize land resources effectively. This study selected the developmental base in Lishu County with typical characteristics of
China’s black soil as its research area. This study established a 600 nm “bow curvature difference” spectral index and the
partial least squares regression model, and the accuracy of their results was compared. The correlation between the 600 nm
“bow curvature” spectral index and the soil organic matter of straw cover no-tillage is analyzed. The average soil organic
matter content in the study area was 16.67 g·kg-1, and the organic matter increased significantly from NT-0 to NT-100 by
16.26 g·kg-1. The study provided a deep insight to improve the quantitative inversion methods to estimate soil organic matter.

1. Introduction

China holds enormous crop straw resources, and its annual
crop straw output was about 9 × 108 t in 2021. Crop straw
is nutrient-rich and serves as an essential material base in
the ecological agricultural cycles [1]. The conventional
approach to utilize straw bales is incineration, which pollutes
the atmosphere and wastes a huge amount of organic matter
and nutrient resources. In contrast, straw returning to the
field can improve organic matter content and straw decom-
position rate. The amount of soil organic matter (SOM),
which is carbon-containing organic matter in the soil, is a
key indicator of both soil fertility and soil degradation status
[2]. Therefore, rapid and accurate monitoring of SOM is of
great importance to maintain soil fertility and sustainable
agricultural development [3, 4].

In recent years, hyperspectral technology has achieved
remarkable results to estimate soil organic matter content.
Few other methods, including multiple stepwise regression,
principal component regression, and partial least squares
analysis are also widely used by domestic and international
researchers to establish near-infrared (NIR) correction
models to predict soil organic matter content. Nowkandeh
et al. (2018) used the stepwise regression method, least

regression method, partial least squares regression method,
and principal component regression method to establish
the SOM prediction model [5]. The logarithm of the inverse
of the spectral reflectance was used in the stepwise multiple
regression model [6]. Scholars have achieved important
results in different regions and soil types by using hyperspec-
tral curves and soil organic matter content. It is concluded
that the absolute value of the SOM correlation coefficient
in the 400-800 nm band range is above 0.6 [7, 8]. Various
factors, such as the variation of soil organic matter content
due to geological differences and the single form of spectral
features selected in the experiment, lead to the difference
in the accuracy of soil spectral prediction. Moreover, there
is a lack of comparative studies among various forecasting
models [9]. Therefore, in this study, the “deviation of the
arch” (DOA) and the soil organic matter spectral index were
used to establish the “deviation of the arch regression”
(DOAR) method and the partial least square regression
model based on the collection of soil samples. Two linear
modeling methods were analyzed and studied.

Lishu County, Jilin Province, an important commodity
grain base, is located in the middle of the Northeast Plain,
China. The Lishu core model established in Lishu County
has been widely promoted in China for its black soil
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protection measures and its advanced practical application
[10]. This study selected a development base in Lishu
County with typical characteristics of China’s black soil area
as its research area. A prediction model of 600nm “bow cur-
vature difference” spectrum index and soil organic matter
was established using the collected soil sample imaging spec-
tral data. The results were compared with the partial least
squares regression models to explore the feasibility of estab-
lished spectral index for SOM mapping. The findings of this
study provide novel ideas and methods for mapping soil
organic matter using satellite remote sensing, which is criti-
cal to develop precision agriculture in the future.

2. Experimental Design

2.1. Test Design. Our experiment started in April 2007 and
ended in October 2019. The sample plot had experienced
traditional tillage for many years, mainly with maize crop
before our experiment began. In the sample area, four exper-
iments were set up with five different amounts of straw
mulch; no-till straw without mulch (NT-0), no-tillage
+33% straw mulch (NT-33), no-tillage +67% straw mulch.
(NT-67), and no-tillage +100% straw mulch (NT-100).
Using a random group design, each experiment (except for
NT-0 experiment) was repeated 4 times, with a total of 20
experimental blocks, each with an area of 8:7 × 30m2. The
sample area was mainly towards the northwest, with a
30m protection row on the north side and a 15.5m protec-
tion row on the west side. The conventional cultivated land
around the sample site was selected as a control reference
(CK). The measurement time and methods were the same
as those of the sample sites.

The no-till straw of about 30 cm that is left after the
autumn harvest each year was treated with different mulch-
ing experiments. The straw was treated with different
mulching amounts; 100% straw mulching is about
7500 kg·hm-2, and NT-67 and NT-33 are 67% and 33% of
the total straw, respectively. There was no mulching treat-
ment that removed all the straw. The remaining straw was
removed and directly sown in spring without any prior land
preparation. All experiments were compared with conven-
tional tillage samples (CK). The sample plot was left with a
stubble of about 30 cm after harvest in the autumn, and all
the remaining straw was removed. The stubble was roto-
tilled, normal tillage, and soil was not further disturbed
except for seeding and fertilizer. The height of the cultivated
ridge was about 15 cm, and the spacing between the monop-
olies was about 60 cm. The same amount of maize seeds and
fertilizer was used in each experiment. The maize cultivar
used in the experiment was Xianyu 335, and the fertilizer
amount was 252kgN·hm-2, 135kg P·hm-2, and 90kgK·hm-2.
The machine used for sowing was Jilin Kangda 2BMZF-4
no-till sowing machine, which can complete accurate sowing,
fertilization, and repression operations at one time under the
condition that the surface is covered by the straws (Figure 1).

2.2. Test Site. A series of experiments on black soil were con-
ducted at the experimental field located in Gaojia Village,
Lishu County, Jilin Province. This area is a development

base of the Chinese Academy of Sciences (43 ° 18′ 51″ −
43 ° 19′ 12″N, 124 ° 14′ 26″ − 124 ° 14′ 31″ E) (Figure 2)
and protective farming research area (Figure 2). The climate
of the region falls in the temperate semihumid monsoon cli-
mate zone with an annual mean temperature of 5.8°C, an
annual mean precipitation of 577.2mm, annual sunshine
hours of 2,698.5 h, and a frost-free period of 152 d. The pre-
cipitation resources are mainly concentrated between June
and August. The soil parent material of the study area was
loamy clay, and the soil type was medium-layer black soil.

2.3. Organic Matter Determination. The measurement date
for the corn seedling period was May 22, 2016. The 0-5 cm
of the soil tillage layer was collected, bagged, labeled, and
brought back to the laboratory to remove organic residues
and stones from the sample. The sample was dried indoors,
hand-rolled, ground, and sieved with over 100 mesh. Refer-
ring to the organic matter determination method of Zhao
et al. [11], the potassium dichromate oxidation capacity
method-external heating method was used in this study.
The experimental data were processed and plotted using
Microsoft Excel 2020 [11].

2.4. Imaging Spectral Data Acquisition and Preprocessing.
The soil sample was packed in the aluminum box covered
with a lid and scraped flat with a straight ruler and placed
on a mobile platform. The sample imaging spectral data was
collected in the dark room, and the reflectivity spectral data
was obtained via black-and-white correction processing.
Ben-Dor et al. applied SOC710VP terrestrial spectrometer to
determine the spectrum of soil organic matter and study the
inversion of soil organic matter by imaging spectroscopy

Te instantaneous source function and
newman product solution are used to
obtain the pressure distribution as the

initial condition of the numerical solution

Characterization of well and fracture
boundaries by using PEBI grids

Discretization of shale gas water two-
phase equation by fnite volume method

Calculation of gas saturation and pressure
distribution during production

Draw the saturation and pressure
distribution curves. fnd the double

pressure funnels and gas-liquid two-way
mass transfer phenomenon

Figure 1: Research method flow chart.
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[12–14]. In this study, SOC710VP ground spectrometer was
also used to determine the spectral characteristics of soil.
The SOC710VP imaging spectrometer was fixed on the
sweeping platform, which was installed on the ground. The
lens focus was debugged based on the sampling environment
at the time. In order to ensure the authenticity and effective-
ness of the image, a reference plate was used for calibration
before the image acquisition. The acquisition and transmis-
sion of hyperspectral image featured information was com-
pleted using Hyperspec [15]. The image acquisition process
was carried out in a laboratory simulation environment. The
field view of SOC710VP was 15°, and the aperture of 17mm
Lens_F5.6_9-23-15_LHB0010-02 was selected. The lens was
perpendicular to the standard gray board. The gray board dig-
ital number (DN) value was measured synchronously as the
reference for each image spectrum. The object lens height
was 130 cm from the sample, and exposure time was manually
adjusted to 14.988ms. The setting of parameters was adjusted
to ensure the high definition of the image. The serial number
of the sample were marked, placed on the horizontal standard
gray board, and the Cube button was clicked to collect the
imaging spectral data. The radiation brightness curve was
observed during the collection process to prevent data loss
caused by overexposure of the image. The collected imaging
spectral reflectivity data extracted the average reflection spec-
tral curve of each soil sample through Region of Interest
(ROI) Tool in the ENVI5.3 software, which removed the large
error bands at both ends and retained a total of 230 band data
of 425-1015nm for subsequent calculation and analysis
(Figure 3).

2.5. Modeling Method

2.5.1. Construction of Bow Curvature Model. The nonlinear
parametric regression and partial least squares regression

methods were used; nonlinear parameter regression is a
regression method that uses an independent variable based
on the spectral index of 600 nm “bow curvature difference”
calculated by spectral data, which can be called DOAR
(DOA regression model). The 600nm “bow curvature differ-
ence” is the difference between the 600 nm reflectance of
each soil spectral curve and its average of 550 and 650nm
spectral reflectance [16, 17]. The partial least squares regres-
sion (PLS) is a method that uses 230 bands of spectral data
as independent variables [18]. The integration of correlation
analysis, principal component analysis, and multivariate lin-
ear regression analysis of partial least squares regression
model can address the multicolinear problems of indepen-
dent variables. It also allows regression modeling when the
number of samples is less than the number of variables
[19–23].

The accuracy of the regression model was evaluated
based on the root mean square error (RMSE, modeling set
RM − SEC, and prediction set RMSEP), decision factor R2

(modeling set R2c, prediction set R2p), and residual predic-
tion deviation (RPD).

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
〠
n

i=1
ŷi − yið Þ2

s

,

R2 = 1 − ∑n
i=1 yi − ŷið Þ2

∑n
i=1 yi − yð Þ2 ,

RPD = SD
RMSEP :

ð1Þ

In the equation, the estimated soil organic and measured
values for sample i are ŷ and yi, respectively; �y is the mean of
organic matter content in the sample set; and SD is the
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Figure 2: Location of study area.
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standard deviation to predict the measured value of organic
matter in the sample set.

For RMSE, the value closer to zero indicates a better fit
of the model. For R2, the value closer to 1 indicates higher
fitting of the models. For RPD, the larger the value, the
higher the accuracy of the model. The calculation process
of modeling and predictive verification was processed in
Matlab R2013a.

2.5.2. Sample Set Division and Modeling Prediction. The
accuracy of the model will change with the result of the sam-
ple set division. In order to avoid the impact of sample set
division on the model results and better analyze the stability
of the model, random sampling of the sample set is carried
out. Each time, 1/2 sample is taken as the modeling sample
set, and the remaining 1/2 is the prediction verification set;
modeling and predictive verification are carried out, and
each RMSE, R2, and RPD are calculated in statistical
analysis.

The accuracy of the model is expected to change with the
sample set division. In order to minimize the impact of sam-
ple set division on the model results, random sampling of
the sample set was carried out. Each time, 1/2 sample was
taken as the modeling sample set, and the remaining 1/2
was used as the prediction verification set. In addition,
modeling and predictive verification was carried out, and
RMSE, R2, and RPD values were calculated for each set.

3. Results and Analysis

3.1. Statistical Analysis of Soil Organic Matter Content. The
average soil organic matter content in the study area was
16.67 g·kg-1, while the values for NT-0 and NT-100 were
9.18 g·kg-1 and 25.44 g·kg-1, respectively (Table 1). The qual-
ity content of the organic matter increased significantly from
NT-0 to NT-100. The organic matter content of CK, NT-33,
and NT-67 was 16.67 g·kg-1, 15.38 g·kg-1, and 16.48 g·kg-1,
respectively. When the degree of dispersion of soil organic
matter content in the cultivated layer of the study area was
calculated, it was found that the degree of spatial variation

was relatively high, and the variation coefficient of soil
organic matter was 80.68%.

3.2. Analysis of Nonlinear Regression Results of “Bow
Difference.” The correlation coefficient between soil organic
matter content and “bow curvature difference” was -0.68,
indicating the inverse relationship between them. When R2

was adjusted to 0.8247, polynomial functions were better
able to fit the functional relationship between soil organic
matter content and “ bow curvature difference” than the lin-
ear function (Figure 4).

Polynomial functions were used to establish predictive
models of randomly divided modeling sets, and indepen-
dent samples of predictive sets were used to model and ver-
ify the results (Table 2). The change range of modeling R2

was 0.76~0.87 with an average of 0.82. The prediction ver-
ification R2 change range was 0.78~0.89, with the average
value of 0.71. The average RPD value was 1.76. The predic-
tion verification R2 was greater than the modeling R2, with
the minimum value of 0.78, which indicates that the predic-
tion results of data set division were good, and most of the
prediction and modeling R2 were greater than 0.5. The
results showed that the organic matter content of the soil
samples could be predicted more accurately using spectral
index “bow curvature difference” calculated from imaging
spectral data.

3.3. Analysis of Spectral Characteristics of Soil Organic
Matter. Soil organic matter plays a vital role in enhancing
soil fertility. The soil spectral reflectance of each test field
and CK under no-till (NT-33, NT-67, NT-100) experiment

Figure 3: Collection and preprocessing of imaging spectroscopy.

Table 1: Statistics of soil organic matter content description.

Number
Min/
(g·kg-1)

Max/
(g·kg-1)

Mean/
(g·kg-1)

Std/
(g·kg-1) Cv/%

All
samples

86 0.5 85.3 16.67 13.45 80.68

CK 18 3.4 33.5 16.67 9.63 57.76

NT-0 18 1.6 42.2 9.18 9.28 101.08

NT-33 16 0.5 37.1 15.38 9.74 63.32

NT-67 16 3.4 63.1 16.48 15.17 92.05

NT-100 18 6.4 85.3 25.44 17.21 67.64

y = 102.47x2 – 159.87x + 60.131
R² = 0.8247
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Figure 4: Scatter plot SOM and DOA.
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was significantly lower than that of no-till (NT-0) test field.
The spectral reflectivity tends to decrease with the increase
of straw cover (Figure 5). The overall trend of spectral reflec-
tivity was weakest for NT-100 followed by NT-67, NT-33,
and NT-0, which is consistent with the nonlinear analysis
results of “bow curvature difference.” Among all the treat-
ments, the spectral reflectivity of NT-0 is the largest numer-
ical difference from that of other test fields; the experimental
field was not covered with straw during the experiment.
Therefore, the return of straw to the field has a certain
impact on the formation of soil organic matter of NT-0.
The soil organic matter and the spectral index are inversely
correlated. The content of soil organic matter increases with
the increase of straw cover, and the spectral reflectivity
decreases.

3.4. Analysis of Partial Least Squares Regression Results. The
statistics of partial least squares regression results of 230
band spectral data were compared with the “bow curvature
difference” fitting results (Table 2) in which SOM was kept
as a dependent variable (Table 3). The maximum value of
R2 for PLSR was greater than DOAR; the mean value was

less than DOA. The maximum and mean values of R2 and
RPD for PLSR were smaller than DOAR. Overall, the non-
linear fitting result of DOA was slightly better than that of
PLSR. The spectral exponential DOA calculated from the
extraction of spectral data uses only three bands which are
located in the most affected bands of SOM and effectively
contain the information about the organic matter. The
230-band spectral data used by PLSR have also been consid-
ered informative, but they contained noise that affected the
accuracy of organic matter estimation, resulting in a
decrease in the PLSR estimation accuracy.

4. Discussions

The predictive accuracy of the soil organic matter estimation
model was measured by taking into account the mean square
root error (RMSE) and relative analysis error (RPD) of the
prediction value and modeling set. The smaller the RMSE,
the higher the accuracy of the model. When RPD > 2 indi-
cates that the model has excellent predictive ability when
1:4 < RPD < 2 indicates that the model can roughly estimate
the sample, and RPD < 1:4 indicates that the model cannot

Table 2: Statistics of DOA regression.

RMSEC/(g·kg-1) R2
c Stdc/(k·kg-1) Cvc/% RMSEP/(k·kg-1) R2

P Stdp/(k·kg-1) Cvp/% RPD
Min 2.26 0.76 9.55 58.21 2.41 0.78 8.93 53.52 2.45

Max 3.11 0.87 10.64 59.05 3.24 0.89 10.58 60.56 3.86

Mean 2.35 0.82 9.62 63.24 3.10 0.84 9.13 56.29 3.56
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Figure 5: Soil spectral reflectance curves with different SOM contents.

Table 3: Statistics of partial least square regression.

RMSEC/(g·kg-1) R2
c Stdc/(g·kg-1) Cvc/% RMSEP/(g·kg-1) R2

P Stdp/(g·kg-1) Cvp/% RPD
Min 2.87 0.48 7.55 68.21 4.18 0.27 7.65 67.48 1.54

Max 7.01 0.88 15.64 83.85 7.38 0.72 16.55 84.25 1.68

Mean 5.14 0.74 11.62 79.24 5.45 0.45 9.54 76.21 1.55
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predict the sample [23, 24]. Zhao et al. [11] found that with
the increase of SOM content, the original spectral curve
gradually flattened in the range of 550~650nm. The bow
curvature difference gradually decreases. The SOM is nega-
tively correlated with the bow curvature of the original spec-
trum. Compared with the SOM content of the two bow
curvature prediction study areas in the 600nm and 800nm
bands, the model accuracy of the 600nm bow curvature is
higher. In this study, the maximum value of RPD in the
DOAR model was 3.86, with an average value of 3.56. The
maximum value of RPD in the PLSR model was 1.68, with
an average value of 1.55, which was less than the DOAR
model. Therefore, it is concluded that based on the bow curva-
ture, the DOARmodel can predict the content of SOM, so that
the accuracy of the DOAR model to predict the soil organic
matter content was better than the PLSR model [25, 26].

The polynomial function method can accurately model
and predict the soil organic matter with higher fitting results.
In comparison, the partial least squares method affected the
accuracy of the model because the spectral data contained
some information that was unrelated to organic matter.
The results of this study show that the accuracy of polyno-
mial function was better than partial least squares regres-
sion, which is consistent with the previous studies [27, 28].
The results also show that there is a strong correlation
between the spectral reflectivity of the soil and the soil
organic matter content [29, 30]. The study also determined
a significant linear correlation between the “bow curvature
difference” and the organic matter content. The decision
coefficient R2 of the inversion effect of modeling and predic-
tion set reached 0.8747 and 0.89, respectively. This supports
the feasibility of estimating soil organic matter content using
the hyperspectral characteristics of the soil [9]. Therefore,
the spectral index “bowtie difference” built using three bands
of spectral information is better suited for organic matter
mapping of hyperspectral data, as compared to the partial
least squares model. The DOAR model used in this study
shows great potential to improve the SOM model estimation
accuracy by providing higher correlation sensitivity indexes.

The accuracy of the model is affected by too much band
information as input into PLSR that also contains some
spectral information independent of organic matter, which
affects statistical trends. The results of the study are the same
as that of Shen et al. [18], but Zheng shows that the linear
function fitting results are optimal. When the results of Shen
et al. (2020) and Zhao et al. (2020) were compared, it was
found that the change of organic matter content in the sam-
ple has the greatest impact on the “bow curvature difference”
[10]. The relationship between the two is considered to be
linear. Zhao et al. (2020) and other studies have shown that
the PLSR model results have higher prediction accuracy than
the DOAR model. This may be due to factors such as the
type of spectral data, band range, and the range of SOM var-
iation used in these two studies.

5. Conclusion

In this study, the soil organic matter estimation model was
established using the nonlinear regression of “bow curvature

difference” and the partial least squares regression model.
The study followed the random sampling method, and the
calculation process for modeling and predictive verification
was carried out. The effectiveness and stability of SOM esti-
mation methods were also carried out through accuracy
comparison. The results of our study showed that the
organic matter content and the “bow curvature difference”
of 600 nm are inversely correlated, which is a mechanism
of the spectral index application for SOM estimation. It
has been concluded that the “bow curvature difference”
spectral index created using three bands of spectral informa-
tion can be used for SOM mapping of indoor soil imaging
spectral data. The spectra selected for the model were all
around the 600 nm band. The SOM content is also highly
correlated with spectral indices calculated in other spectral
ranges. The spectral feature form selected in this study is
too single. Therefore, in later studies, it is necessary to try
to further construct or calculate a variety of spectral charac-
teristic indices. Compare the modeling effects of different
types of spectral characteristic indices.

The results show that straw cover with no-tillage has an
impact on the organic matter content in the tillage layer. The
average organic matter content in the study area was
16.67 g·kg-1. The soil organic matter content between NT-0
and NT-100 has increased by 16.26 g·kg-1, and the organic
matter content increased with the increase in straw cover.
Therefore, straw returning to the field is considered to
increase the soil organic matter content by promoting the
accumulation of soil surface organic matter. The organic
matter content in the soil layers can quickly and effectively
be predicted using the remote sensing inversion technique.
The results of remote sensing inversion of soil organic mat-
ter in black soil areas can be used for monitoring soil degra-
dation, arable land quality, and soil organic carbon pool
estimation. The study provides technical and data support
and improvement in research methods for soil resource con-
servation and sustainable land use in the study area.
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