
Retraction
Retracted: Enhance-Net: An Approach to Boost the
Performance of Deep Learning Model Based on Real-Time
Medical Images

Journal of Sensors

Received 23 January 2024; Accepted 23 January 2024; Published 24 January 2024

Copyright © 2024 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] V. Narayan, P. K. Mall, A. Alkhayyat, K. Abhishek, S. Kumar, and
P. Pandey, “Enhance-Net: AnApproach to Boost the Performance
of Deep Learning Model Based on Real-Time Medical Images,”
Journal of Sensors, vol. 2023, Article ID 8276738, 15 pages, 2023.

Hindawi
Journal of Sensors
Volume 2024, Article ID 9832826, 1 page
https://doi.org/10.1155/2024/9832826

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9832826


RE
TR
AC
TE
DResearch Article

Enhance-Net: An Approach to Boost the Performance of Deep
Learning Model Based on Real-Time Medical Images

Vipul Narayan ,1 Pawan Kumar Mall ,2 Ahmed Alkhayyat ,3 Kumar Abhishek ,4

Sanjay Kumar ,5 and Prakash Pandey 6

1Galgotias University, Greater Noida, India
2Lovely Professional University, India
3College of Technical Engineering, The Islamic University, Najaf, Iraq
4National Institute of Technology Patna, India
5Rajkiya Engineering College, Azamgarh, India
6Graduate School of Engineering, Mid-West University, Nepal

Correspondence should be addressed to Prakash Pandey; prakash.pandey@mu.edu.np

Received 17 August 2022; Revised 28 September 2022; Accepted 12 October 2022; Published 2 May 2023

Academic Editor: Sweta Bhattacharya

Copyright © 2023 Vipul Narayan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Real-time medical image classification is a complex problem in the world. Using IoT technology in medical applications assures
that the healthcare sectors improve the quality of treatment while lowering costs via automation and resource optimization. Deep
learning is critical in categorizing medical images, which is accomplished by artificial intelligence. Deep learning algorithms allow
radiologists and orthopaedic surgeons to make their life easier by providing them with quicker and more accurate findings in real
time. Despite this, the classic deep learning technique has hit its performance limits. For these reasons, in this research, we
examine alternative enhancement strategies to raise the performance of deep neural networks to provide an optimal solution
known as Enhance-Net. It is possible to classify the experiment into six distinct stages. Champion-Net was chosen as a deep
learning model from a pool of benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet-18, and VGG-19). This
stage helps choose the optimal model. In the second step, Champion-Net was tested with various resolutions. This stage helps
conclude dataset resolution and improves Champion-Net performance. The next stage extracts green channel data. In the
fourth step, Champion-Net combines with image enhancement algorithms CLAHE, HEF, and UM. This phase serves to
improve Enhance-performance. The next stage compares the Enhance-Net findings to the lightness order error (LoE). In
Enhance-Net models, the current study combines image enhancement and green channel with Champion-Net. In the final
step, radiologists and orthopaedic surgeons use the trained model for real-time medical image prediction. The study effort uses
the musculoskeletal radiograph-bone classification (MURA-BC) dataset. Classification accuracy of Enhance-Net was
determined for the train and test datasets. These models obtained 98.02 percent, 94.79 percent, and 94.61 percent accuracy,
respectively. The 96.74% accuracy was achieved during real-time testing with the unseen dataset.

1. Introduction

The IoT in medical imaging allows detection and remedial
steps to be conducted in real time with the convenience of
autoanalyzing imaging equipment characteristics. Numer-
ous research has been conducted in medical imaging to
investigate the use of various deep neural network- (DNN-
) based models to categorize or diagnose illnesses. DNNs
have been used to classify and diagnose diseases in the past.

Deep neural networks have been successfully applied to the
classification and diagnosis of illnesses in various types of
medical conditions [1–6]. In recent years, image classifica-
tion, segmentation, and detection techniques have been
coupled with an era in which diagnostic medical imaging is
becoming increasingly popular and essential for medical
diagnosis [7, 8]. A fundamental challenge with medical
imaging, on the other hand, is the availability of big datasets
with trustworthy ground truth analysis, which is difficult to
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come by. Deep learning models (DLMs) have aided in the
development of a number of advancements in the field of
image classification [9–13].

According to a recent study [14], the depth of a network-
oriented model is crucial for critical datasets. This demon-
strates that a network-based model’s depth is crucial for
challenging datasets. The debate about shallow vs. deep nets
has raged in DLMs for a long time. The issue of decreased
feature reuse arises while training extremely deep learning
models [15–17]. This makes the training procedure for these
models difficult. In [18], to obtain higher accuracy and min-
imal error in training loss, create a deep learning model with
the ideal resolution, depth, and breadth combination. Sev-
eral approaches have been proposed throughout the litera-
ture to deal with raindrop detection problems. However,
most of these do not consider the following system require-
ments: high detection rate, real-time constraint, and robust-
ness under dynamic environments.

A DLM technique called Enhance-Net is proposed to
enhance the overall performance of musculoskeletal radio-
graphs and X-ray pictures in a clinical setting. The most
interesting aspect of this study is the evaluation of the influ-
ence of three distinct image enhancement algorithms
(CLAHE, UM, and HEF) on green channel grayscale medi-
cal musculoskeletal radiography X-ray images for DLMs.
The following sections of the paper are divided into seven
phases: in Section 3, we discussed the materials and pro-
cesses that were utilized to create the proposed model, which
was interesting. In Section 4, we have gone into further detail
about the suggested model. In Section 5, we went through
the simulation, the results, and the validation process in
great depth. In Section 6, we have discussed about real-
time verification and result outcome. The final segment of
Section 7 was dedicated to the conclusion and future work.

2. Related Work

In [19], the study tested the model’s efficiency by extending
the depth (16-20 layers) on ImageNet Challenge held in
2014 on different datasets. The deep learning model’s error
rate reaches saturation at the 19th layer. The authors created
a residual learning model to make training deeper networks
easier [20]. On the ImageNet test dataset, the model has a
3.57 percent error rate [20]. The model designer may create
the optimal size model constraint in the design [5, 21–23]. In
[18], the study offers a scaling technique that uses a com-
pound coefficient to scale evenly using three key parameters
(width, depth, and resolution) simultaneously.

When IoT technology is used in healthcare applications,
it helps improve the quality of care and lower costs through
automation and better use of resources. IoT in medical
imaging makes it easy to find out what is wrong and take
steps to fix it in real time. This is made possible by the auto-
analysis of the imaging equipment’s parameters [24]. The
Internet of things (IoT) lets people develop systems that
use sensors, connected devices, and the Internet. In the
ICU, monitoring patients is an essential thing to do. Even
a slight delay in making decisions about how to treat a
patient could cause permanent disability or even death. Most

ICU devices have sensors that can measure different health
parameters, but it is still hard to keep an eye on them all
the time. We are proposing a system based on the Internet
of things (IoT), which can help speed up communication,
find emergencies, and get in touch with medical staff. It
can also help start quick, proactive treatment. This
healthcare system makes it less likely that people will make
mistakes or take too long to communicate, and it gives doc-
tors more time to make decisions based on accurate observa-
tions [25]. Academic institutions and the commercial
healthcare sector are devoting a significant amount of atten-
tion to the development of intelligent medical sensors, gad-
gets, cloud computing, and other technology related to
healthcare. As a result of this, the Internet of things (IoT)
has been identified as one of the most promising research
subjects in the field of healthcare, namely, in the field of
medical image processing. When conducting their analysis
of medical photographs, researchers used a wide variety of
machine learning and semisupervised learning, deep learn-
ing strategies, and artificial intelligence. These newly discov-
ered methods are used in the process of illness detection,
with the goal of assisting medical professionals in the early
phases of disease diagnosis, as well as delivering findings that
are accurate, consistent, efficient, and quick, and so lowering
the mortality rate. In today’s world, the coronavirus
(COVID-19) has emerged as one of the most challenging
and serious illnesses, and it is rapidly spreading around the
globe [26]. The authors conducted an exhaustive study of
the applications of WMSs as well as their advancements,
and they compared the performance of WMSs to that of
other platforms. The authors went through the benefits that
these applications of these devices bring to the table when it
comes to monitoring the health of people with illnesses such
as cardiac arrest and Alzheimer’s disease [27]. The Internet
of things offers potential solutions that might reduce the
load that is placed on healthcare institutions. For instance,
RFID systems are used in medical institutions in order to
both lower overall medical costs and improve the quality
of treatment that is provided. Patients’ cardiac impulses
may be conveniently monitored by physicians thanks to
healthcare monitoring schemes, which help physicians
deliver an accurate diagnosis and improve patient care
[28]. The authors [29] have shown a semisupervised learn-
ing model for the purpose of collecting the best possible col-
lection of picture attributes. The primary focus of the
ensemble learning model that has been provided is on the
fact that the framework is taught to acquire various degrees
of semantic representation of pictures in order to extract fea-
tures of a better quality. In this way, the new set of features
may be learnt with a bigger dataset via the process of con-
structing a more refined model. The expected fine-tuning
CNN design makes use of a standard amount of medical pic-
ture attributes taken from a variety of modalities. Cloud
computing (CC) is a model of distributed computing that
makes it possible for companies and individual users to
access virtualized computing, storage, and networking
resources via the use of the Internet. At the moment, it is
more economical, less difficult to manage, and more elastic
to use these resources rather than a collection of local,

2 Journal of Sensors



RE
TR
AC
TE
D

physical ones. Cloud services are often kept in data centres,
which typically consist of thousands upon thousands of indi-
vidual computers [30]. In order to enhance the effectiveness
of monitoring in IoT-based healthcare systems, a significant
amount of research has been conducted. In this paper [31],
the architecture that is employed in the Internet of things,
particularly the cloud-integrated systems, is studied. In the
Internet of things, accuracy and power consumption are
two of the most essential concerns; as a result, this article
discusses the research activities that are now underway to
improve the functionality of healthcare systems that are
based on the Internet of things. An expert application sys-
tem has been developed [32] using the Internet of medical
things (IoM). Collecting and analysing patients’ physiologi-
cal data are one of its primary functions to conduct a
hands-on analysis of the medical sensor nodes that have
been implanted into the body of the patient. In turn, it
would detect the medical information of the patient utilising
sophisticated portable gadgets. The security, protection, and
privacy of medical data are becoming more complex issues
for the Isle of Man as a result of the fact that patient infor-
mation is very sensitive and should not be disclosed to any-
body other than a medical expert. For this reason, a user
authentication mechanism that is based on anonymity is
recommended as the best solution to the problems with pri-
vacy preservation in the IoM.

The authors used transfer learning to train both
DenseNet-161 and ResNet-50, deprived of using a fully

linked layer to get the desired results [33]. Their study used
the Kimia Path24 dataset, which was available in grayscale
and colour. A grayscale dataset was utilized using the
DenseNet-161 algorithm, while the ResNet-50 algorithm
used a colour dataset to obtain a classification accuracy of
98.87 percent. An updated ResNet model was presented
[34]. Instead of global average pooling, authors added adap-
tive dropout. It achieved 87.71 percent classification accu-
racy in Montgomery County, 62.9 percent in NIH, and
81.8 percent in Shenzhen.

The STARE dataset was used in the research by the
authors [35]. The dataset has been resized into three differ-
ent datasets with resolutions of 31 × 35 pixels, 46 × 53 pixels,
and 61 × 70 pixels and has been classified into 15 dissimilar
eye diseases. The investigations found that the used datasets
with sizes of 32 × 36 and 62 × 72 pixels had the maximum
accuracy during training. In contrast, the input test dataset
with sizes of 32 × 36 had the highest accuracy of 80.93 per-
cent (for the input test dataset). Mahbod et al. [36] looked
at dermoscopic picture collections with dimensions ranging
from 64 × 64 pixels to 768 × 768 pixels. The author con-
cludes that the classification performance of the small-sized
dataset 64 × 64 pixels has been significantly reduced. In con-
trast, the classification performance of the large-sized dataset
128 × 128 pixels has shown significant improvement.

The X-ray picture has improved clarity and contrast as a
result of the enhancement. Using the Gaussian high-pass fil-
ter as a starting point, this filter has been optimized to have

Table 1: Comparative analysis of recent work.

References Study Enhancement method Modality DNNs

[42] Diabetic retinopathy Green channel+CLAHE Fundus images U-Net

[43]
Retinal blood vessel

segmentation
CLAHE Fundus images Encoder-decoder CNN

[44] Tuberculosis detection CLAHE, HEF, and UM X-ray
EfficientNet-B4, ResNet-18, and

ResNet-50

[45] COVID-19
Pipeline for advanced contrast

enhancement
Computed

tomography (CT)
—

[46] Medical images UM X-ray and CT —

[47] Pneumonia infection CLAHE X-ray MobileNetV2 and EfficientNet: B0

[48] COVID-19 AMF, NLMF, and CLAHE X-ray KL-MOB

Table 2: MURA-bone classification X-ray dataset.

Study of various parts Training set Testing set Verification set

Elbow 2920 80 10

Finger 3130 79 13

Forearm 1160 62 8

Hand 4060 75 25

Humerus 670 61 9

Shoulder 4210 61 7

Wrist 5760 120 20

Total 21910 538 92

Complete dataset size: 22540.
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offset = 0:5 and cutoff frequency = 0:05, respectively. In [37],
the authors discussed a novel nonlinear UM enhancement
model (NLUM) developed to increase the fine details in
mammograms, aiding in diagnosing and treating breast
cancer.

A new approach for determining CLAHE algorithm
hyperparameters has been developed to generate images
with improved contrast [38]. It prevents the intensity values
of each tile histogram from exceeding the desired clip limit
by setting a clip limit. According to [39], their research aims
at examining and evaluating the accuracy of various picture
quality improvement strategies. Another way of putting it is
that the approaches of histogram equalization (HE), gamma
correction (GC), and CLAHE preprocessing are being com-
pared. According to the findings of this study, GC has the

highest sensitivity, whereas CLAHE has the highest accuracy
in detecting GC. According to [40] research, the CLAHE
and adaptive histogram equalization (AHE) methods are
used to identify COVID-19 using the VGG19 model, with
the goal of identifying COVID-19 [41] using the VGG19
model. Table 1 presents a comparative analysis of recent
research findings.

3. Materials and Methods

In the musculoskeletal-based radiograph (MURA) (Rajpur-
kar et al., 2017), around 40500 X-ray images are gathered
in one collection and used to diagnose musculoskeletal dis-
orders. The dataset contains X-ray images that are 55.63 per-
cent normal and 44.36 percent abnormal, respectively. The
train and test datasets are organized into three sets (train,
test, and verification). Every set includes seven subsets, one
for each of the seven study joints: the shoulder (shoulder
joint), elbow (elbow joint), humerus (humerus joint), finger
(finger joint), wrist (wrist joint), and hand (hand joint). The
MURA dataset was used to extract only normal X-rays,
which were then used to create this dataset. Table 2 contains
a detailed description of the X-ray dataset.

3.1. Various Image Enhancement Models. The representation
of computation for various image enhancement approaches
is discussed as follows:

X-ray images

Elbow
Finger
Forearm
Hand
Humerus
Shoulder

MURA-BC
dataset

Preprocessing

Step 1

Training data
21035 X-ray

images

Training
accuracy

Evaluation

Champion-Net

Green channel

Extract green
channel

information

Enhance-Net

Step 5

Winner

Champion-net performance

Diferent
resolution

dataset

Efcient-Net B0

Step 3 Step 4

Deep learning
Models (Benchmark)

Efcient-Net: B0
Mobile-Net
ResNet-18
VGG19

Step 2

Diferent
resolution

dataset

Lightness order error

Verify
Enhance-Net

Step 7

(CLAHE)
High-frequency
fltering (HEF)
Unsharp masking
(UM)

(CLAHE)
High-frequency
fltering (HEF)
Unsharp masking
(UM)

Verifcation
set

X-ray images

Test data
538 X-ray

ImagesImage
sensor

Verifed model

Step 8

Efcient-Net:B0 with image
enhancement technique

Classifcation
accuracy

Step 6

(CLAHE)
High-frequency
fltering (HEF)
Unsharp masking
(UM)

Dataset with image
enhancement technique

Dataset with image
enhancement technique

Classifcation
Accuracy

Figure 1: Block design of the proposed model.

Table 3: Parameters used for the enhancement techniques.

Enhancement model Parameters

CLAHE
Clip limit: 40

Window size (Ws): 8 × 8
HEF D0: 72

UM
Amount: 2

Radius: 5
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3.1.1. CLAHE. It is an image enhancement model [49] that
has two important parameters: (1) Clip limit (Climit), and
(2) nonoverlapping regions ðYcontextualÞ. The two parameters
used in this model are responsible for controlling the
enhanced quality of the image. Xav is the average amount
of pixels in the grayscale computed as depicted in

Xav =
XcrX × XcrY

Xg
, ð1Þ

where Xg is the gray level count in the Ycontextual, XcrY is the
pixel count in the y dimensions Ycontextual, and XcrX is the

pixel count in the x dimensions of Ycontextual.

Xacis =
X∑c
Xg

: ð2Þ

The distributed pixel is calculated and shown in

Pd =
Xg

X lp
, ð3Þ

where Xlp is the remaining amount of clipped image pixels.

3.1.2. HEF. HEF is an image enhancement methodology
based on a Gaussian filter to improve the sharpness of the
edges in an image (Bundy and Wallen. 1984). The radius
of the algorithm represents the sharpness intensity of the
original image, which has been transformed and filtered
using the filter function and Fourier transformation. A fil-
tered image will be produced as a result of the inverse trans-
formation. Second, the image’s contrast is in sync with the
histogram equalization setting on the computer. The
Gaussian-based high-pass filter is computed in the manner

ELBOW

Original

StudyEnhancement
techniques

CLAHE

HEF

UM

FINGER FOREARM HAND HUMERUS SHOULDER WRIST

Figure 2: Outcomes of the enhancement techniques.
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Figure 3: Histogram of MURA-BC-based random elbow image.

Table 4: Accuracy rate of various DLMs in the training phase.

Top five training accuracy
Epoch EfficientNet: B0 Epoch ResNet-18 Epoch VGG-19

20 92.12355 19 92.05999 20 91.96678

19 92.01339 20 92.05999 19 91.96578

17 91.84815 18 92.02763 18 90.844

16 91.67443 17 92.01863 17 90.53046

18 91.65749 16 92.01763 16 90.19998

Max % 92.12355 Max % 92.05999 Max % 91.96679

5Journal of Sensors
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shown in the diagram:

Gau filter x,yð Þ = 1 − e−D
2 x,yð Þ/2D0

2 , ð4Þ

where D0 is the cutoff distance. Fði, jÞ is the Fourier trans-
form computes as shown in

F i, jð Þ = 〠
h−1

x=0
〠
w−1

y=0
f x, yð Þe−j2π ix/hð Þ+ jy/wð Þð Þ, ð5Þ

where i and x = 0, 1, 2,⋯⋯ h − 1 and j and y = 0, 1, 2,⋯w
− 1:Fðx, yÞ is the inverse Fourier transformation computed
as shown in

F x, yð Þ = 1
hw

〠
h−1

x=0
〠
w−1

y=0
f i, jð Þe−j2π ix/hð Þ+ jy/wð Þð Þ: ð6Þ

3.1.3. UM. UM is a kind of image enhancement method used
to sharpen an image that has been captured (Polesel,

Table 5: Accuracy rate of testing of various deep learning-based models.

Top five test accuracy
Epoch EfficientNet: B0 Epoch ResNet-18 Epoch VGG-19

19 91.30174 20 90.50178 20 88.1824

17 90.94181 19 90.40192 19 87.7625

16 90.16197 18 90.16197 18 89.802

9 89.0222 13 90.10198 17 88.0624

11 89.0222 12 89.86203 16 88.3623

Max % 91.30174 Max % 90.50178 Max % 89.802

Table 6: Error rate during the training phase of DLMs.

Top five training error rate
Epoch EfficientNet-B0 Epoch MobileNet Epoch ResNet18 Epoch VGG19

19 0.241755 19 0.269972 19 0.242157 19 0.26715

20 0.244397 20 0.275724 20 0.242157 20 0.26815

18 0.259444 18 0.295539 18 0.249675 18 0.30285

17 0.260169 17 0.306982 17 0.249775 17 0.30717

16 0.262874 16 0.333399 16 0.249875 16 0.319

Min % 0.241755 Min % 0.269972 Min % 0.242157 Min % 0.26715

Table 7: Error rate during the testing phase of DLMs.

Top five test error rate
Epoch EfficientNet: B0 Epoch Mobile-net Epoch ResNet-18 Epoch VGG-19

19 0.276527 12 0.291593 20 0.293466 18 0.32459

16 0.300061 16 0.296771 13 0.296771 16 0.37789

17 0.327415 19 0.298766 19 0.298766 20 0.38395

9 0.338509 10 0.303375 17 0.306369 17 0.40352

11 0.345888 15 0.317347 18 0.312 19 0.41603

Min % 0.276527 Min % 0.291593 Min % 0.293466 Min % 0.32459

Performance benchmarks of deep learning models

Ac
cu

ra
cy

 (%
)

92.50
92.00
91.50
91.00
90.50
90.00
89.50
89.00
88.50

EfcientNet
B0

92.12

Max train accuracy
Max test accuracy

91.64 92.06 91.97
91.30 91.78 90.50 89.80

MobileNet ResNet18 VGG19

Figure 4: Training and testing accuracy of various DLMs.
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Ramponi and Mathews, 2000). The sharp details of the
image are computed as a difference between the original
image and the image with Gaussian blur applied to the orig-
inal image. The input image is blurred using a Gaussian blur
filter at the beginning of this technique. The radius of the
blur and the amount of blur are the two key parameters
for Gaussian blurry images (Ramponi, 1998). The radius
has an effect on the size of the edge that needs to be enlarged.
According to equation (7), the amount of darkness, light-
ness, and contrast is included in the edges of the images.

G x, yð Þ = 1
2πσ2

e− x2+y2ð Þ/ 2σ2ð Þð Þ, ð7Þ

where x, y is the horizontal and vertical distances from the
source and σ is the Gaussian distribution. Ienhanced is the
obtained image after enhancement as shown in

Ienhanced = Ioriginal + contrastvalue ∗ Iblurð ÞÀ Á
, ð8Þ

where Ioriginal is the original image and Iblur is the unsharp
image.

4. Proposed Work

The proposed model is divided into four major phases:
image preprocessing, a benchmark-based DLM training
and validation from scratch, Champion-Net used with vari-
ous resolution datasets, and the application of image
enhancement models. The main features of the proposed
model are the selection of the Champion-Net from the deep
learning technique and the implementation of image
enhancement models to improve the overall performance
of the Champion-Net. The performance of Enhance-Net
techniques is validated using the lightness order error
(LoE). The block design of our proposed paradigm is
depicted in Figure 1.

4.1. Research Environment. The virtual environment was
used to conduct the research. The Ubuntu operating system
has 12GB of RAM, with six virtual CPU (Intel Xeon
2.2GHz) processors in the server that are installed on the
host virtual machine. The proposed experiment takes place
in a CPU-based setting, and Python 3.0 is used for the sim-
ulation process.

4.1.1. Image Preprocessing Stage. In This stage, the prepro-
cessing of X-ray images improves the raw image’s important
information. The dataset creation and transformation are
two steps in the image preprocessing process.

4.1.2. Image Dataset Formation. In this stage, the MURA-
BC-based X-ray data is used in different pixel computations
for dataset formation such as 32 × 32, 40 × 40, 48 × 48, 56
× 56, 64 × 64, 72 × 72, 80 × 80, and 88 × 88 pixels. The data-
set is arranged in two packages: train and test. In the training
package, around 21935 images are placed, and the test pack-
age contains 650 X-ray image samples from seven different
groups.

4.1.3. Data Transformation. This step involves randomly
cropping both the training and testing datasets with the four
padding and flipping X-ray images in horizontal and flip-
ping the training dataset. This strategy gives you an advan-
tage over the rest of the dataset. The normalizing
procedure is used to minimize signals that include undesired
noise or distortion. Because of uneven staining and insuffi-
cient contrast, the X-ray picture acquired by the imaging
modality system may be partial and lacking in important
features, such as the patient’s position.

4.2. Benchmark of Deep Learning-Based Model Training and
Validation. This study started with a clean slate and trained
the benchmark of deep learning-based models (EfficientNet:
B0; MobileNet; ResNet18; and VGG19) from the ground up.
This dataset of 3232 X-ray images from the MURA-BC
experiment was used for train, validation, and testing.

4.3. Champion-Net Processed with Different Resolution
Dataset. The performance of a DLM trained on datasets with
different resolutions (4040, 4848, 5656, 6464, 7272, 8080,
and 8888 pixels) was determined in this phase using differ-
ent resolution datasets. This step will assist us in determin-
ing the best deep learning model from the deep learning
models available.

4.4. Green Channel Extraction. The suggested model is
designed to extract the green channel details and convert
the image into a grayscale. In [50, 51], the authors have used
only the green channel of the RGB colour image for conver-
sion to a grayscale image. The green channel image keeps the
most information. The green channel of fundus pictures is
often utilized since several authors’ findings have shown that

Error rate of deep learning models
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%
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Figure 5: Training and testing error rate of various DLMs.

7Journal of Sensors



RE
TR
AC
TE
D

T
a
bl
e
8:
C
ha
m
pi
on

-N
et

pe
rf
or
m
an
ce

ba
se
d
on

va
ri
ou

s
tr
ai
ni
ng

da
ta
se
ts
.

T
ra
in
in
g
re
po

rt

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
32

×
32

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
40

×
40

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
48

×
48

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
56

×
56

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
64

×
64

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
72

×
72

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
80

×
80

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
88

×
88

20
92
.1
2

16
93
.0
7

19
92
.5
4

20
92
.5
5

20
93
.1

12
93
.8
9

19
94
.6
4

18
94
.8
6

19
92
.0
1

19
92
.9
4

17
92
.3
3

18
92
.3

16
93
.0
3

15
93
.8
6

18
94
.5
5

19
94
.5

17
91
.8
4

20
92
.7
4

20
92
.3
3

19
92
.3

12
93

14
93
.7
7

17
94
.5
3

16
94
.4
7

16
91
.6
7

18
92
.6
5

14
92
.2
9

16
92
.1
8

19
92
.9
4

18
93
.7
1

12
94
.3
9

13
94
.4
5

18
91
.6
5

13
92
.6
3

18
91
.9
9

17
92
.1
4

18
92
.8
9

20
93
.7

13
94
.3
9

11
94
.4
4

M
ax

%
92
.1
2

M
ax %

93
.0
7

M
ax %

92
.5
4

M
ax %

92
.5
5

M
ax %

93
.1

M
ax %

93
.8
9

M
ax %

94
.6
4

M
ax %

94
.8
6

8 Journal of Sensors



RE
TR
AC
TE
D

T
a
bl
e
9:
C
ha
m
pi
on

-N
et

ac
cu
ra
cy

of
va
ri
ou

s
re
so
lu
ti
on

te
st
da
ta
se
ts
.

T
es
ti
ng

re
po

rt

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
32

×
32

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
40

×
40

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
48

×
48

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
56

×
56

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
64

×
64

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
72

×
72

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
80

×
80

E
po

ch
E
ffi
ci
en
tN

et
:

B
0
88

×
88

19
91
.3

16
93
.0
7

10
89
.7
4

16
90
.7
6

18
91
.9
6

10
92
.0
2

16
94
.2
4

8
92
.8
6

17
90
.9
4

19
92
.9
4

7
89
.6
8

14
90
.4
6

17
91
.3

14
91
.9

20
93
.4
6

4
92
.3
8

16
90
.1
6

20
92
.7
4

6
89
.2

18
89
.9
2

15
90
.9
4

8
91
.8
4

19
92
.8

13
92
.3
2

9
89
.0
2

18
92
.6
5

14
89
.0
8

20
89
.9
2

11
90
.5
8

13
91
.7
8

17
92
.6
8

19
92
.1
4

11
89
.0
2

13
92
.6
3

8
88
.6
6

19
89
.3
8

9
89
.8

17
91
.4
2

14
91
.9
6

14
91
.8
4

M
ax

%
91
.3

M
ax %

93
.0
7

M
ax %

89
.7
4

M
ax %

90
.7
6

M
ax %

91
.9
6

M
ax %

92
.0
2

M
ax %

94
.2
4

M
ax %

92
.8
6

9Journal of Sensors



RE
TR
AC
TE
D

the green channel of the RGB representation of retinal fun-
dus images provides the most significant contrast. This is
why the green channel of fundus images is so commonly
used [52].

4.5. Image Enhancement Techniques. In total, three well-
known enhancement techniques, (1) CLAHE, (2) HEF, and
(3) UM, are developed in this paper. The parameters of
enhancement techniques are listed in detail in Table 3 of this
document. Figure 2 shows the results of enhancement tech-
niques applied to a few of the input X-ray samples. In
Figure 3, we showed a histogram chart representing the
elbow bone images using MURA-BC data that were ran-
domly selected.

5. Results and Its Validation

The proposed model’s simulation is divided into three pri-
mary parts: (1) benchmark deep learning, (2) model train-
ing, and (3) validation. Champion-Net processing was
done with various resolution datasets and application of
image enhancing algorithms on Champion-Net. All three
phases were simulated using Python 3.0.

The accuracy (Acc) and error rate (Er) of our model are
used to assess its performance. Validation is carried out by
using LoE.

5.1. Accuracy. The accuracy is the percentage of successfully
categorized photos in the dataset (Mall, Singh, and Yadav,
2019) [53]. The parameter “accuracy” is computed as shown
in (9) as follows:

Acc =
TP + TN

total number
: ð9Þ

The total amount of the dataset for the images is com-
puted as shown in (10) as follows:

Total number = TN + TP + FP + FNð Þ, ð10Þ

where TN is the true negative, TP is the true positive, FP is
the false positive, and FN is the false negative.

5.2. Order of Error. The naturalness of an image is critical for
image enhancement approaches, yet the majority of these
techniques are unable to adequately retain the naturalness
of the image. Among the approaches (HEF, UM, and
CLAHE) that have been examined, this IQA methodology
delivers the most comprehensive answer. The difference
between the original sample input picture Iinput and the
improved image Ienhanced is used to calculate the level of
entropy. Having a low LoE score suggests that you have
found the greatest approach to keep the naturalness of your
photographs. The LoE is calculated in the manner shown in

LoE =
1

h ∗w
〠
h

i=1
〠
w

j=1
RD i, jð Þ: ð11Þ

RD(x,yrelative)’s order difference may be expressed as
h/w (height/width). The relative order difference between
the original and enhanced images is determined in

RD I, Jð Þ = 〠
h

i=1
〠
w

j=1
U L x, yð Þ, L i, jð Þð Þð ⨁ U Lenhance x, yð Þ, Lenhance i, jð Þð Þð Þ:

ð12Þ

For example, in (13) and (14), the unit step approach
computes Lðx, yÞ lightness and Uðx, yÞ and the unit step

Table 10: Champion-Net training time for different resolution datasets.

Champion-Net with different image resolutions Training time for 20 epochs

EfficientNet: B0 resolution 32 × 32 30 minutes

EfficientNet: B0 resolution 40 × 40 55 minutes

EfficientNet: B0 resolution 48 × 48 1 hour 50 minutes

EfficientNet: B0 resolution 56 × 56 2 hours 45 minutes

EfficientNet: B0 resolution 64 × 64 3 hours 20 minutes

EfficientNet: B0 resolution 72 × 72 5 hours

EfficientNet: B0 resolution 80 × 80 7 hours 50 minutes

EfficientNet: B0 resolution 88 × 88 Ours

Train & test accuracy

ChampionNet + Gr
eenchannel +

clahe
97.66

Training dataset
Enhance test data
Normal test data

98.02
95.78

95.57
94.79
40.13

95.69
94.61
84.58

ChampionNet +
UM

ChampionNet +
HEF

%

120
100

80
60
40
20

0

Figure 6: Dataset of training and testing accuracy (with and
without enhancement).
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technique is depicted:

L x, yð Þ = max
c∈ r,g,b½ �

Ic x, yð Þ, ð13Þ

U x, yð Þ =
1, x ≥ y,

0, else:

(
ð14Þ

5.3. Experiment Result for Champion-Net Selection as
Winner. In order to conduct this experiment, we started
with a clean slate and trained the deep benchmark learning
algorithm from scratch on the MURA-BC 32 × 32 X-ray pic-
ture dataset. The model training was carried out for a total of
20 epochs. A detailed report on the training accuracy of
DLMs is provided in Table 4 (EfficientNet: B0, MobileNet,
ResNet-18, and VGG-19). In terms of maximum training
accuracy, we achieved 92.12 percent, 91.64 percent, 92.05
percent, and 91.96 percent in the experiments.

The test accuracy of EfficientNet: B0, MobileNet,
ResNet-18, and VGG-19 benchmark models is depicted in
Table 5. The maximum test accuracy is calculated at
92.120%, 91.640%, 92.5%, and 91.960%.

A comparison of training error rates for the benchmark
deep learning models EfficientNet: B0, MobileNet, ResNet-
18, and VGG-19 is presented in Table 6. We acquire mini-
mum training errors of 0.281, 0.4026, 0.2760, and 0.35249,
for four different training scenarios.

The test accuracy of EfficientNet: B0, MobileNet,
ResNet-18, and VGG-19 benchmark models is shown in
Table 7. The minimum test error rate was obtained at
0.2765270, 0.2915930, 0.2934660, and 0.3245850.

As illustrated in Figures 4 and 5, the EfficientNet: B0 is
selected as the Champion-Net based on the accuracy and
error of training and testing. For training and testing, the
highest accuracy (EfficientNet: B0) is 92.15 and 91.3, and
the minimum training and testing of error rates are obtained
at 0.24 and 0.27.

5.4. Experimental Result for Champion-Net Computed with
Different Resolution Datasets. First and foremost, this exper-
iment used the understanding of the link between DLM and
various dataset resolutions. Second, estimate the amount of
time it will take to train on various resolutions. The findings
in Table 7 and Table 8 demonstrate the impact of various
resolutions of X-ray image datasets on the organization
using different resolution X-ray image datasets. Various res-
olution datasets are represented in Table 9 to help you esti-
mate the training time. The performance of DLMs, on the
other hand, improves as the resolution of the dataset
increases. As the resolution of the dataset is increased, so is
the amount of time spent training. As a result, it is clear
from Tables 8–10 that the 64-64 pixel resolution dataset per-
forms better in terms of accuracy and training time, while
the 32-32 pixel resolution dataset performs the worst. As a
result, we have chosen an image of a 64-64 pixel X-ray
dataset.

5.5. Experimental Result for Champion-Net with Different
Image Enhancement Techniques. The primary goal of this
phase of research is to improve the overall performance of
DLMs, which is now underway. We have processed the data-
set that was finalized in the previous phase using several
image enhancement algorithms, including HEF, CLAHE,
and UM, to get the desired results. The findings in
Table 10 and in Figure 6 demonstrate the organization and
performance of Champion-Net along with the enhancement
approaches on the datasets, in the presence and absence of

88.62

403.68

Average LoE score of diferent x-ray

115.68

500

400

300

200

100

0
Clahe HEF UM

Lo
E 

sc
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Figure 7: LoE score achieved in different image enhancement
techniques.

Table 12: Different X-ray study datasets and their corresponding
LoE score.

LoE_Score CLAHE+green channel HEF UM

LoE_HUMERUS 85.29 585.7 104.1

LoE_SHOULDER 150.87 1.5 95.3

LoE_WRIST 53.35 403.6 83.8

Average_LoE_SCORE 88.62 402.6 115.6

LoE_ELBOW 106.87 407.9 138.8

LoE_FINGER 75.92 613.3 203.2

LoE_FOREARM 115.21 324.6 54.1

LoE_HAND 32.87 487.8 131.1
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Figure 8: Confusion matrix.
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enhancement strategies, respectively. On the training data-
set, the performance of all three image-enhancing algo-
rithms is about the same in the range of 97.66 to 95.69
percent. The difference between the test datasets with and
without enhancing methods was examined during the test-
ing phase. It is evident that the green channel+CLAHE strat-
egy surpasses both of the other two procedures, according to
the results in Table 11. The green channel+CLAHE method-
ology obtained a 95.78 percent accuracy using enhancement
techniques. HEF obtained an accuracy of 94.79 percent,
while UM obtained an accuracy of 94.61 percent on the test
dataset. Without the use of enhancement techniques, HEF
obtained just 40.15 percent, and UM scored 84.5 percent
on the test data, respectively.

5.6. Result Validation Using LoE. The low level of evidence
(LoE) technique is used for result validation of the preceding
phase of the experiment in the final step, as represented in
Figure 7. Table 12 displays the LoE-based score of several
bone X-ray scans. The lowest LoE score shows the optimal
option [54], which keeps the naturalness of the photos even
after they have been altered. It has a LoE of 88.62, which is
the lowest of the three techniques tested. It is calculated that
the HEF-based LoE score is around 403.6, whereas the UM
LoE score value is around 115.6. The LoE of CLAHE verifies
the outcome of the preceding phase.

6. Real-Time Verification

In this section, radiologists and orthopaedic surgeons per-
form real-time testing of the verified model using the trained
model for real-time medical image prediction. They tested a
total of 92 X-ray images. Figure 8 provides the details
regarding the confusion matrix. The 96.74% accuracy is
achieved during real-time testing, as shown in Figure 9.
The suggested model produced the best result and improved
classification performance during the experiments.

7. Conclusion

This paper has proposed a methodology for improving dig-
ital learning environments in the medical imaging field. The
importance of the Internet of things in medical imaging
technology is shown by how it is used in healthcare applica-
tions. We have also carried out a number of tests to enhance
the overall accuracy of the proposed model and validate the
findings through LoE techniques. The Champion-Net evalu-
ation system was chosen from among the benchmark DLMs
based on the accuracy and error rate of the data. Various res-
olutions are evaluated by the Champion-Net dataset in order
to achieve the maximum possible Champion-Net perfor-
mance. As part of the improvement phase, the green channel
details are retrieved and retrained, and the best model is
tested using image-enhancing techniques such as CLAHE,
HEF, and UM.

This phase contributes to the production of Enhance-
Net with improved performance. At the conclusion of the
trial, we compare the findings of the Enhance-Net with the
lightness order error (LoE). Using the suggested architecture

of Enhance-Net, the performance of the DLMs on the
MURA-BC dataset is improved significantly. The Enhance-
Net makes a significant contribution to IoT-based real-
time prediction models on X-ray datasets in a dynamic man-
ner. Results of the research include X-ray pictures that have
been processed with green channel+CLAHE enhancement
techniques in order to increase the performance of the
DLM. In the future, The Enhance-Net can also be imple-
mented for various other medical imaging problems. This
approach offers medical practitioners an instant, compre-
hensive tool to help them through the treatment process in
a variety of medical disciplines. Despite the fact that this
study is confined to X-ray image modality, the same work
may be expanded to include other medical acquisition
methods in the future.
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