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Emotion recognition is essential for computers to understand human emotions. Traditional EEG emotion recognition methods
have significant limitations. To improve the accuracy of EEG emotion recognition, we propose a multiview feature fusion
attention convolutional recurrent neural network (multi-aCRNN) model. Multi-aCRNN combines CNN, GRU, and attention
mechanisms to fuse features from multiple perspectives deeply. Specifically, multiscale CNN can unite elements in the frequency
and spatial domains through the convolution of different scales. The role of the attention mechanism is to weigh the frequency
domain and spatial domain information of different periods to find more valuable temporal perspectives. Finally, the implicit
feature representation is learned from the time domain through the bidirectional GRU to achieve the profound fusion of
features from multiple perspectives in the time domain, frequency domain, and spatial domain. At the same time, for the noise
problem, we use label smoothing to reduce the influence of label noise to achieve a better emotion recognition classification
effect. Finally, the model is validated on the EEG data of 32 subjects on a public dataset (DEAP) by fivefold cross-validation.
Multi-aCRNN achieves an average classification accuracy of 96.43% and 96.30% in arousal and valence classification tasks,
respectively. In conclusion, multi-aCRNN can better integrate EEG features from different angles and provide better
classification results for emotion recognition.

1. Introduction

Emotion plays a significant role in our life, affecting human
cognition and decision-making [1]. At the same time, it is
also a relatively complex psychological state [2]. How to rec-
ognize emotions has become one of the issues in the industry
[3]. At present, the mainstream methods of emotion recog-
nition include two-dimensional valence and arousal coordi-
nate system [4] and discrete assessment method [5]. In the
two-dimensional valence and arousal coordinate system
method, valence represents the positive or negative direction
of the emotion, and arousal represents the intensity of emo-
tion [6]. In discrete assessment, emotions are divided into

multiple discrete categories. For example, Zheng and Lu
classify emotions into positive, neutral, and negative catego-
ries [7], and Shanmugam and Padmanaban classify emo-
tions into eight types: joy, trust, fear, surprise, sadness,
disgust, anger, and expectation [8]. Emotion recognition is
of great significance. It can help humans understand their
own emotions, and it can also help computers better under-
stand human emotions [9] so that computers can better
serve humans.

With the development of computer science and informa-
tion technology, human-machine interaction technology has
attracted more attention [10]. As the cornerstone of human-
machine interaction technology, emotion recognition has
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inevitably attracted the attention of the academic commu-
nity [11]. Generally speaking, emotion recognition methods
can be divided into two categories: one is based on external
signals of the human body [12], such as expression, posture,
and voice; the other is based on the internal motions of the
body [13], such as EEG, ECG, and EMG. Compared with
external signals such as facial expression, posture, and voice,
emotion recognition results based on internal cues such as
EEG are more reliable because humans cannot control them
intentionally [14].

In the traditional EEG emotion recognition method,
first, screen out the hand-made features that are more rele-
vant to the emotion recognition task [15], and then, input
these emotional features into the machine learning model
for classification. However, because deep learning does not
require manual feature making and has better learning effect
[16], researchers of EEG emotion recognition mostly use
deep learning methods for research in recent years [17,
18]. Based on the characteristics of EEG signals, it can be
extracted from the time domain, frequency domain, time-
frequency domain, and nonlinear dynamical system [19].
Differential entropy (DE) is a representative nonlinear
dynamic feature commonly used in EEG emotion recogni-
tion tasks [20]. The research of Garcia-Martinez et al. con-
firmed the effectiveness and robustness of the DE feature
in EEG emotion recognition tasks [21]. Zhu and Zhong
[22] classified DE features by using the 2DCNN-BiGRU net-
work and achieved 87.89% and 88.69%, respectively, in the
arousal and valence classification results of the DEAP data-
set. However, a single convolution scale makes this method
limited in spatial feature extraction, resulting in feature loss.
In Yin et al.’s study [23], by using the ERDL model and com-
bining the characteristics of the frequency domain and time
domain, the classification accuracy on the DEAP dataset
reached 90.45% and 90.6%, respectively. Shen et al. [24] pro-
posed a four-dimensional convolutional recurrent neural
network (4D-CRNN) to integrate the frequency domain,
spatial domain, and time domain information of multichan-
nel EEG signals to improve the accuracy of emotion recogni-
tion based on EEG. The accuracy of arousal and valence
classification in the DEAP dataset reached 94.22% and
94.58%, respectively. However, these two methods ignore
the differences between features and the impact of different
features on classification results. In the process of feature
fusion, it is easy to cause feature redundancy by not distin-
guishing different features. Cui et al. [25] proposed a DE-
CNN-bi-LSTM network to remove DE features on different
time slices in different frequency bands. After that, CNN and
bi-LSTM were used to learn spatial and temporal informa-
tion, so the classification accuracy on the DEAP dataset
reached 94.86% and 94.02%, respectively. However, this
method could not effectively deal with tag noise, which
affected the classification results.

Aiming at the limitations of these methods, we propose a
recursive network model based on multiview feature fusion.
According to different spatial features extracted from convo-
lutions of different scales, different spatial features of differ-
ent periods are weighted and fused through the multihead
attention mechanism to magnify the actual features and

reduce the impact of invalid features, and label smoothing
is used to reduce the impact of label noise. In conclusion,
the main contributions of this study are as follows:

(1) To solve the noise in prediction labels of a single
subject in EEG sentiment analysis, the method of
label smoothing has dramatically reduced the influ-
ence of label noise on the classification accuracy of
models to achieve a better effect of sentiment
classification

(2) Multiscale convolution makes the extracted spatial
features more comprehensive, and convolution is
closely combined with bidirectional GRU (bi-GRU)
so that the model can learn more comprehensive
time-frequency features

(3) This paper proposes a multiview feature fusion
attention convolutional recurrent neural network,
which integrates the weight of frequency, space,
and time-domain features. It effectively improves
the classification accuracy of emotion recognition

In this paper, Section 1 is the introduction part, which
introduces some basic concepts in the field of EEG emotion
recognition, and briefly summarizes the previous research
work. This paper made some breakthroughs based on prior
studies. Section 2 is the method part, which mainly intro-
duces key concepts in the data set and model. Section 3 is
the experimental results and analysis, and the experimental
process and results are introduced and analyzed in detail.
Section 4 discusses, compares, and analyzes the existing
paper results, reflecting the research significance and value
of this paper. Section 5 is the conclusion, reviewing and
summarizing this paper.

2. Methods

2.1. Dataset and Preprocessing. DEAP dataset [26] is a mul-
tichannel dataset collected by Koelstra et al., as shown in
Table 1, who invited 32 subjects (including 16 males and
16 females) to watch 40 music videos used to study human
emotion. The subjects invited for the experiment are in good
physical condition and mental health and can generally
respond to the stimulation of the video material. Each music
video lasts for 1 minute, regarded as an experiment. For each
experiment, the first 3 seconds (3 s) is the video conversion
time, and the last 60 s is the music video play time, so the
duration of each sample is 63 s, and the video conversion
time of the first 3 s is the baseline time of the experiment.
After playing the video, each subject had to score the video
in valence, arousal, and other dimensions, ranging from 1
to 9. We selected five as the threshold and regarded the

Table 1: DEAP dataset.

Array name Array shape Array contents

Data 40∗40∗8064 63∗128ð Þ Video/trial∗channel∗data
Labels 40∗4 Video/trial∗label
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emotion recognition task of the DEAP dataset as two binary
classification problems. EEG signals were sampled using a
32-channel electrode. The sampling frequency is 512Hz,
and electrodes were placed by the international standard
lead 10-20. In addition, the experiment collected not only
32-channel EEG signals but also 8-channel ECG and EOG,
a total of 40 physiological signal channels. Only the first 32
EEG signals were used in this paper. The website provides
the preprocessed data by downsampling the frequency
from 512Hz to 128Hz and removing noise such as ocular
artifacts.

The 63 s EEG signal was collected for each trial. First,
we cut the 63 s signal to 0.5 s. Then, each segmented EEG
signal block was filtered to obtain four frequency bands of
θ, α, β, and γ, and then, DE features were extracted from
each frequency band. Since Yang et al. [27, 28] have proved
that considering baseline signals can improve the classifica-
tion effect of the model, we will carry out baseline correc-
tion according to the method in the paper. The DE
features of each frequency band of the baseline signal were
averaged. Then, the DE features of the stimulus signal were
differentiated from the average of the corresponding fre-
quency band to obtain the baseline-corrected DE features.
The processed DE features were mapped into a two-
dimensional map for each frequency band according to
the electrode distribution. For each block, the 2D maps of
the four frequency bands are concatenated to form a new
feature matrix. Finally, the feature matrix of the block is
combined according to the segment (1segment = 6 blocks)
and sent into the model as a sample. The data preprocess-
ing process is shown in Figure 1.

Electrodes can be converted into two kinds of 2D maps:
one type is 8 × 9, as shown in Figure 2(a), and the other is a
9 × 9, as shown in Figure 2(b). Likewise, 2D maps of the four
frequency bands can be jointed in two ways. One is stacked
splicing, that is, to form a three-dimensional matrix. In this

paper, 8 × 9 maps are spliced stacked, as shown in
Figure 2(c). Or it can be assembled into a large picture.
The picture jointed in this way is still a two-dimensional
matrix. In this paper, 9 × 9 graphs are jointed in a large pic-
ture, as shown in Figure 2(d).

For a single subject, 60 seconds of stimulus signal data
collected from 40 music videos watched is 40∗60∗2, divided
into 800 samples for 4800 stimulus signals; each sample con-
tains 6 time period information, and each period informa-
tion contains 4 frequency bands. Taking the superposition
result as an example, the characteristic of each frequency
band is an 8∗9 mapping matrix. There are a total of 32 sub-
jects, and in the arousal classification, there are a total of
25600 samples, including 10860 low arousal samples and
14740 high arousal samples. Each sample contains 6 time
period information. Each period information is a 4∗8∗9 fea-
ture matrix. In the valence classification, there are a total of
25600 samples, including 11,40 low-valence samples and
14160 high-valence samples, and each sample contains 6
time period information. Each period information is a 4∗
8∗9 feature matrix. Because subjects respond differently to
emotional stimuli, the number of positive and negative sam-
ples for (low/high) arousal and (low/high) valence will not
be the same.

2.2. Spatial Feature Extraction Based on 2D-CNN. Convolu-
tional neural networks are often used to process 2D data and
usually consist of three parts: convolutional layers, pooling
layers, and activation function layers [29]. The convolution
layer performs the inner product operation on the input data
through the convolution kernel. By setting the size and num-
ber of the convolution kernel, the model can extract different
types of data features. At the same time, in the convolutional
layer, the number of parameters that the model needs to be
trained is reduced through “sparse connection” [30] and
“weight sharing,” thereby reducing the difficulty of training.

Segment

Model

Segment

Extract DE feature
Filter

Baseline

t = 0

𝛾𝜃 𝛼 𝛽 𝛾𝜃 𝛼 𝛽

Figure 1: Data preprocessing flow chart.
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In addition, the pooling layer can further reduce the data
provided by the model to the next layer of the network,
reducing the difficulty of model training [31]. The activation
function layer transforms the data to reduce the training dif-
ficulty and enhance the correlation between data. Part of the
convolutional neural network model used in this paper is
shown in Figure 3.

2.3. Time Series Feature Extraction Based on GRU. RNN
(recurrent neural network) has certain advantages when

dealing with time series data. When RNN processes the
information at each moment, it can effectively preserve the
original timing of the data, and the training parameters will
not increase due to the increase in the sequence length. This
paper uses an improved cyclic structure GRU (gated recur-
rent unit) model, as shown in Figure 4.

The GRU has a reset gate and an update gate. The
reset gate determines the degree to which the input infor-
mation will be combined with the previously memorized
information. The update gate determines how much of
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(a) 8 × 9 Maps
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Figure 2: Electrodes conversion.
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Figure 3: Part of the convolutional neural network model.
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the previously memorized information can be retained to
the current time step. The specific formula is as follows:

zt = σ Wz ⋅ ht − 1, xt½ �ð Þ,
rt = σ Wr ⋅ ht − 1, xt½ �ð Þ,
~ht = tan h W ⋅ rt ∗ ht − 1, xt½ �ð Þ,
ht = 1 − ztð Þ ∗ ht − 1 + zt ∗ ~ht ,

ð1Þ

where ht is the hidden state at time t, xt is the input at
time t, rt and zt are the reset gate and update gate, respec-
tively, ~ht is the candidate hidden state, σ is the sigmoid
function, and ∗ is the Hadamard product.

In this paper, GRU is used to obtain the time series char-
acteristics of data, and a comparative test is carried out for
GRU and bi-GRU in Section 3.4.

2.4. Feature Fusion Based on Multihead Attention. Usually,
scaled dot-product attention consists of three parts: Q
(query), K (key), and V (value). The structure is shown in
Figure 5(a). Assume that the dimensions of the input Q
and K are dk, and the dimension of V is dv. Then, calculate
the transposed multiplication of Q and K , divide by

ffiffiffiffiffi

dk
p

,
pass the result through the Softmax function to get the
weight, and multiply the weight by V to get the output
matrix. The specific formula is as follows:

Attention Q, K , Vð Þ = softmax QKT

ffiffiffiffiffi

dk
p

 !

V : ð2Þ

This paper uses multihead attention [32], and its struc-
ture is shown in Figure 5(b). Multihead attention can com-
bine the information learned by different heads, which can
be regarded as parallel processing of multiple scaled dot-
product attention. Q, K , and V are first subjected to a linear
transformation and then input to the scaled dot-product
attention. Here is the scaled dot-product attention for head
times and stacking the obtained results. The spliced result
is then subjected to a linear transformation to obtain the
value as the output of multihead attention.

2.5. AdamW and Label Smoothing

2.5.1. AdamW Optimization Algorithm. Adam optimization
algorithm has been widely used in various deep learning

models since its appearance, but experiments found that
Adam has specific problems. Such as slow model conver-
gence, nonconvergence, and other problems, various
improved versions of Adam appeared. Different parameters
in the Adam optimization algorithm adaptively learn at dif-
ferent learning rates. The formula is as follows:

mt = β1mt−1 + 1 − β1ð Þgt ,
vt = β2vt−1 + 1 − β2ð Þgt2,

ð3Þ

where gt represents the gradient, the subscript t represents
time, mt is the first-order moment variable of the gradient,
vt is the second-order moment variable of the gradient, and
β1 and β2 are the exponential decay rates (decay factors) of
the moment estimation. When the values of mt and vt
approach the 0 vectors, the result will be biased. This prob-
lem is solved by performing bias correction on mt and vt .
The formulas for the bias correction value mt and vt of
mt′ and vt′ are as follows:

mt′=
mt

1 − βt
1
,

vt′=
vt

1 − βt
2
:

ð4Þ

AdamW [33] adds a regular term to Adam’s loss func-
tion and adds the result of the gradient of the regular term
when calculating the gradient so that the gradient of the
overall loss function is calculated when updating the model
parameters, thereby updating the parameters. AdamW’s
loss function is

L = loss + 1
2 θk k2: ð5Þ

Then, the formula for AdamW parameter update is

θt = θt−1 − η
αmt′
ffiffiffiffi

vt′
q

+ ξ
+ ωθt−1

0

B

@

1

C

A

, ð6Þ

where θ is a parameter in the model, η is the learning rate,
α is 0.001, ξ is 10−8, and ω is an actual number.

2.5.2. Label Smoothing. There are usually some noisy labels
in machine learning samples, and these labels will have a
certain impact on the prediction results. Label smoothing
prevents the model from believing too much in the labels
of the training samples by assuming that the labels may be
wrong during training [34]. The formula looks like this:

yi =
1 − ε, if i = true,
ε

K − 1 , otherwise:

8

<

:

ð7Þ

Among them, ε is a defined hyperparameter, which gen-
erally takes a value of 0.1, K is the number of categories of

1−

tanh𝜎 𝜎
ztrt

xt

ht

ht − 1

h~t

Figure 4: GRU (gated recurrent unit) model.
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the classification problem, and yi is the sample label. When
training samples, it is usually not guaranteed that all sample
labels do not contain noise interference. For example, if the
label of a sample is wrong, then the sample may harm the

training results during training. By letting the model know
that the label of the sample is not necessarily correct, the
trained model can better identify a small number of wrong
samples.

MatMul

Scale

Mask (opt.)

Softmax

MatMul

VQ K

(a)

Linear

V QK

Concat

Scaled dot-product
attention

Linear Linear Linear

h

(b)

Figure 5: (a) Scaled dot-product attention. (b) Multihead attention.
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Figure 6: Model flow chart.
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2.6. Multiview Feature Fusion Attention Convolutional
Recurrent Neural Network Model. In this paper, after prepro-
cessing the EEG time series data, the original sequence is
divided into six data segments according to the period, thus
effectively preserving the time series of the data. At the same
time, to make the extracted features more comprehensive,
multiscale convolution is used to extract spatial-domain fea-
tures, and the extracted features are highly abstracted
through convolution blocks. For the abstracted data, the
extracted frequency-domain and spatial-domain features
are weighted from the time series perspective through the
attention mechanism, and the weighted data is classified
through the bidirectional GRU model. The specific process
is shown in Figure 6.

Perform spatial feature extraction to obtain feature matrix
A∗
1 , B∗

1 , C∗
1 ,D∗

1 , E∗
1 , F∗

1 and feature matrix A∗
2 , B∗

2 , C∗
2 ,D∗

2 , E∗
2 ,

F∗
2 . Concat the two spatial features to obtain matrix A1′ , B1′ ,

C1′ ,D1′ , E1′ , F1′, and transfer the matrix to the Conv block.
Abstract the spatial features through three-layer convolution
in the Conv block to obtain feature matrix A2′ , B2′ , C2′ ,D2′ , E2′ ,
F2′. The abstract matrix is subjected to maximum pooling, flat-
ten and linear network layers to obtain feature matrix A3′ , B3′ ,
C3′ ,D3′ , E3′ , F3′, and six matrices are Concat to obtain matrix
G1. At the same time, the random initialization matrix m is
used as the initial weight matrixW of attention after passing
through the embedding layer. After G1 is input, the final
weight matrix W ′ is obtained through multihead attention

Time sequence

Conv block

Comparison of convolution layers

Feature fusion

Using attention

Deep fusion of time series features

Comparison between GRU and Bi-GRU

Multi-scale convolutional Bi-GRU results based on label smoothing

Comparison of convolution scales

The better results

Figure 7: Overall experimental process.
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Figure 8: Two-layer convolution model results (the model is 5+1, there are two layers of the convolutional network, the size of one
convolution kernel is 5, and the size of one convolution kernel is 1).
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training, and the feature matrix G∗
1 is obtained after weight-

ing. The weighted matrix is passed into the bidirectional
GRU model to extract the time series features of the data.
Concat the states h1ðtÞ and h2ðtÞ at the last moment of
forward and reverse to obtain the final output state matrix
hðtÞ, and pass hðtÞ through the linear network layer to
achieve classification.

3. Experiment and Analysis

The batch size for training multi-aCRNN is 128, the dropout
is 0.5, the maximum number of epochs is 500, the learning
rate is 5 ∗ 10−5, and the number of heads is 8. PyTorch
implements the model, NVIDIA-SMI 460.67, CUDA Ver-
sion: 11.2, python version 3.7.0, PyTorch version 1.11.0.

Five cross-validations were used for each experiment in
this paper. They were performed for the average classifica-
tion accuracy (ACC) and the number of subjects (Num)
with average classification accuracy below 90% for arousal
(a) and valence (v) analysis. The overall experimental pro-
cess is shown in Figure 7. The idea is to compare the number
and scale of convolution layers, the use of attention, the

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Subject

Arousal
Valence

Avg (ACC): Arousal: 93.64%
Valence: 93.82%
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Figure 9: Deep convolution model results (the model is 5+4+4+1, and there are four layers of the convolutional network).
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Figure 10: Results of deep convolution classification based on attention (the model is 5+4+4+1+Att, and attention is used in the model).

Table 2: Comparison of model classification results before and
after adding attention.

Model ACC (a) Num (a) ACC (v) Num (v)

5+4+4+1 93.64% 3 93.82% 4

5+4+4+1+Att 94.35% 2 94.14% 6
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comparison between GRU and bi-GRU, and the use of label
smoothing.

3.1. Comparison of the Number of Convolutional Layers.
Usually, in a convolutional neural network, the number of
convolutional layers determines the degree of abstraction
of features. Thereby, a more accurate prediction result can
be obtained. Therefore, this section compares the two-layer
and four-layer convolution results. The results are shown
in Figures 8 and 9:

It can be seen from Figures 8 and 9 that the deep convo-
lution is better than the two-layer convolution to a certain
extent for the experimental results, especially in the valence
result—the average accuracy of using deep convolution
increases by 0.83%. At the same time, judging from the clas-

sification results of a single subject, when using two-layer
convolution for classification, the arousal classification
results of 7 subjects were lower than 90%. The valence clas-
sification results of 6 subjects were lower than 90%. In con-
trast, in the four-layer convolution, there are three subjects
whose arousal classification results are lower than 90% and

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Subject

Arousal
Valence

Avg (ACC): Arousal: 94.54%
Valence: 94.56%
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Figure 11: Attention-based deep convolution (the model is 7+4+4+1+Att).
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Figure 12: Attention-based deep convolution (the model is 7+5+5+1+Att).

Table 3: Comparison of classification results of different scale
convolution kernel models.

Model ACC (a) Num (a) ACC (v) Num (v)

5+4+4+1+Att 94.35% 2 94.14% 6

7+4+4+1+Att 94.54% 5 94.56% 5

7+5+5+1+Att 92.02% 9 94.06% 6
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four subjects whose valence classification results are lower
than 90%, greatly reducing the degree of classification error.

3.2. Attention-Based Deep Convolution Classification Results.
For the features extracted by the convolution layer for differ-
ent periods, the traditional Concat method cannot suffi-
ciently distinguish the effectiveness of these features.
Aiming at this problem, we use the attention mechanism
for feature fusion so that the frequency-domain and
spatial-domain features of different periods can be distin-
guished by increasing the weight to achieve a better classifi-
cation prediction effect. The results are shown in Figure 10.

Comparing Figures 10 and 9, after adding attention, the
overall classification accuracy has been improved to a certain
extent. It can be seen from Table 2 that the average accuracy
of arousal classification increased by 0.71%, and the average

accuracy of valence classification increased by 0.32%. For a
single subject, using weighted feature fusion resulted in
greater progress in the more difficult second subject to clas-
sify. At the same time, only two subjects had an accuracy
rate below 90% for the arousal classification accuracy rate.
Still, six subjects had an accuracy rate below 90% in the
valence classification results. Since the weighted fusion is
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Figure 13: GRU model results (the model is 7+4+4+1+Att+GRU).

A
CC

 (%
)

Arousal
Valence

Avg (ACC): Arousal: 94.34%
Valence: 94.10%

50.00

60.00

70.00

80.00

90.00

100.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Subject

Figure 14: Bi-GRU model results (the model is 7+4+4+1+Att+bi-GRU).

Table 4: Comparison of classification results between GRU and bi-
GRU models.

Model ACC (a) Num (a) ACC (v) Num (v)

GRU 94.35% 2 94.14% 6

Bi-GRU 94.34% 2 94.10% 5
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carried out on the results of the convolution of six time
periods, it has much to do with the convolution process. It
is guessed that the locality of the initial convolution causes
the attention of the model to be limited during learning, so
the overall accuracy of valence classification has improved,
and some single-subject results have declined.

3.3. A Comparative Study of Convolution at Different Scales.
Since the convolutional layer is limited by the size of the
convolution kernel when performing feature extraction, the
size of the convolution kernel of the model is experimentally
explored in this section. It can be seen from Figures 11 and
12 that different convolution kernel sizes have a significant
impact on classification accuracy and classification stability.

It can be seen from Table 3 that the first layer of convolution
is the feature extraction of the original data, so by comparing
the convolution kernels with the convolution kernel size of 5
and 7, it can be seen that the convolution kernel of 7 scales is
used in the classification results better than five-scale convo-
lution, and the accuracy of valence classification is improved
by 0.42%. This is because large-scale convolution has a more
extensive perception range when extracting features from
the original data, which can significantly reduce the limita-
tions of spatial feature extraction. However, this is only
limited to the extraction of initial features. The effect of
using a larger-scale convolution in the middle layer convolu-
tion is significantly reduced. This is because the middle layer
convolution is a reabstraction of features. A larger-scale
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Figure 15: Single-scale convolutional bi-GRU results based on label smoothing (the model is 7+4+4+1+bi-GRU+lab).

A
CC

 (%
)

50.00

60.00

70.00

80.00

90.00

100.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Arousal
Valence

Avg (ACC): Arousal: 96.02%
Valence: 95.74%

Subject

Figure 16: Multiscale convolutional GRU results based on label smoothing (the model is 5&7+4+4+1+GRU+lab).
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convolution will affect the initial feature information and
cover the part of the effective information in the initial fea-
tures, resulting in a decrease in the classification results.

3.4. GRU and Bi-GRU Comparative Experiment. For time
series, the time series features are extracted through a recur-
rent neural network to optimize the model. In this section, a
comparative experiment is carried out on the GRU and bi-
GRU networks, and the experimental results are shown in
Figures 13 and 14. It can be seen from Table 4 that the clas-
sification accuracy results of GRU and bi-GRU are almost
the same, and the classification results for a single subject
are also relatively close. For this phenomenon, the use of
GRU and bi-GRU will be further explored in Section 3.5.

3.5. Multiscale Fusion Model Based on Label Smoothing. In
Section 3.4, GRU and bi-GRU are explored, but the experi-
mental results are relatively close and cannot clearly show
the pros and cons of the model. At the same time, we explore
convolutional networks of different scales in Section 3.3 and
find that larger initial convolution kernels are more effective
for extracting spatial features but whether retaining the fea-
tures of smaller-scale convolutions at the same time will pro-
mote emotion recognition to a certain extent. The multiscale
fusion model based on label smoothing will be explored in
this section. The results are shown in Figures 15–17 and
Table 5.

After label smoothing, the model’s accuracy has been
significantly improved, and the results for a single subject

are also more stable. In the single-scale Bi-GRU fusion
model (7+4+4+1+Bi-GRU+lab), the accuracy of arousal
and valence reached 96.09% and 96.02%, respectively, and
there is only one subject with a classification accuracy below
90%. Since some subjects have certain errors in the experi-
ment, it is difficult to improve the classification accuracy of
some subjects. These noises will also affect the classification
results of other subjects and even lead to the model’s accu-
racy. The training results are getting worse and worse. It
can be seen that AdamW and label smoothing can signifi-
cantly promote the fitting of the model and the calibration
of the network, which can dramatically reduce the impact
of label noise.

It can be seen from Table 5 that the training results of bi-
GRU are significantly better than GRU. In the multiscale
network, the results of bi-GRU (5&7+4+4+1+bi-GRU+lab)
reach 96.43% and 96.30%, respectively, compared with
96.02% and 95.74% of the GRU network (5&7+4+4+1
+GRU+lab), the results of using bi-GRU are improved by
0.42% and 0.56%, respectively, and the overall optimization
was achieved. It shows that in the EEG time series data,
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Figure 17: Multiscale convolutional bi-GRU results based on label smoothing (the model is 5&7+4+4+1+bi-GRU+lab).

Table 6: Comparison of experimental results between splicing and
stacking preprocessing methods.

Methods ACC (a) Num (a) ACC (v) Num (v)

Splicing 94.96% 2 94.60% 4

Stacking 96.43% 1 96.30% 1

Table 5: Comparison of multiscale and GRU and bi-GRU experimental results based on label smoothing.

Model ACC (a) Num (a) ACC (v) Num (v)

7+4+4+1+bi-GRU+lab 96.09% 1 96.02% 1

5&7+4+4+1+GRU+lab 96.02% 1 95.74% 1

5&7+4+4+1+bi-GRU+lab 96.43% 1 96.30% 1
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the reverse time series information also has a certain effect,
promoting the overall experimental results. At the same
time, by comparing the experimental results of single-scale
and multiscale, it can be seen that the results of using 5-
scale and 7-scale convolution kernels at the same time to
extract features from the original data are significantly better
than the results of using 7-scale convolution kernels alone.
Indicating the fusion of different scale features is more help-
ful for the model to learn more comprehensive and effective
information to achieve better classification results.

3.6. Contrast of Splicing and Stacking Preprocessing. This sec-
tion experimentally explores two different preprocessing
methods, splicing and stacking. It can be seen from
Table 6 that the stacking preprocessing method improves
the arousal and valence classification results by 1.47% and
1.7%, respectively, compared with the splicing preprocessing
method. And, for a single subject, the stacking results are
more stable. At the same time, the splicing method has
two subjects with an accuracy of less than 90% in arousal
classification and four subjects with an accuracy of less than
90% in valence classification. So in this experiment, the
stacking preprocessing method is used for the experiment.

4. Discussion

As shown in Table 7, when the model learns spatiotemporal
information based on extracting frequency information, it
tends to get a better experimental result. However, when
the model does not distinguish the obtained information
and trains all the information, it will affect the training effect
of the model. We perform weight training on the extracted
features through the attention mechanism, amplify effective
information, reduce invalid information, and use label
smoothing to reduce the impact of noise in the label on
the final classification result. It can be seen by comparing
the papers using the same feature information that multi-
aCRNN (ours) outperforms the 4D-CRNN model by
2.21% and 1.72% on the arousal task and the valence task,
respectively, and surpasses the DE-CNN-BiLSTM model by
1.57% and 2.28%. We can conclude that selectively training
on frequency, spatial, and temporal information is more
conducive to emotion recognition, and reducing label noise
positively affects emotion recognition.

5. Conclusions

This paper proposes a multiview feature fusion attention
convolutional recurrent neural network model for EEG sen-

timent analysis. This method extracts more comprehensive
spatial feature information through multiscale convolution
and combines the frequency-domain features and spatial-
domain features of EEG data. The weight fusion is carried
out from the time series perspective so that the model learns
more accurate information for classification prediction.
Through the comparison experiment between GRU and bi-
GRU networks, the bi-GRU network is determined as the
network layer for temporal feature extraction. At the same
time, the noise in the label is smoothed, which effectively
reduces the impact of label noise on the classification results,
realizes emotion recognition in complex practical situations,
and is verified on the DEAP dataset. The multi-aCRNN
model achieved 96.43% and 96.30% on the arousal task
and valence task, respectively. At the same time, this paper
conducts an experimental comparison of stacking and splic-
ing of motor conversion methods to understand the impact
of different feature combination methods on sentiment anal-
ysis. These experiments can be the basis for further research
on EEG characteristics and better experimental research on
emotion analysis.

Although the experiments in this paper effectively fuse
multiview features and obtain high classification accuracy,
the model still has shortcomings in classification tasks. In
future work, we will extend multi-aCRNN to a multiclass
classifier to obtain more accurate emotional state localiza-
tion and achieve more accurate and good classification
results.
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data set DEAP, and the data set source link is http://www
.eecs.qmul.ac.uk/mmv/datasets/deap/.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

XF and RH conceived the project, designed the experiments,
and drafted the manuscript. RH, FB, PC, and ZF collected
the data and conducted the experiments. RH, FB, and XF
proofed and polished the manuscript and organized this
project.

Table 7: Comparison of results with other papers.

Nos. Model Information ACC (a) ACC (v)

1 2DCNN-BiGRU (2021) [22] Spatial+temporal 87.89% 88.69%

2 ERDL (2020) [23] Frequency+temporal 90.45% 90.6%

3 4D-CRNN (2020) [24] Frequency+spatial+temporal 94.22% 94.58%

4 DE-CNN-BiLSTM (2022) [25] Frequency+spatial+temporal 94.86% 94.02%

5 Multi-aCRNN (ours) Frequency+spatial+temporal 96.43% 96.30%
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