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Unmanned aerial vehicles (UAVs) have been recently employed in combination with wireless sensor networks (WSNs) to collect
data efficiently and improve surveillance effectiveness. This integration enhances the WSN infrastructure where UAVs are used as
aerial base stations from which to access wireless sensors in hard-to-reach places within surveillance area. Consequently, the
UAVs have become a promising solution to maintain reliability for the communication between wireless sensors and base
station particularly in cases where infrastructure becomes unavailable such as hilly terrains and emergencies. However, UAVs
encounter many challenges which mainly focus on their lifespan and efficient placement that improves the coverage and data
collection. In this paper, a novel optimization study is presented to improve the lifespan of UAV-assisted cluster-based WSNs
deployed in 3D environment. This optimization study is based on two algorithms: (1) Particle Swarm Optimization (PSO)
which is employed to address the clustering problem in the WSN and (2) Genetic Algorithm (GA) which is employed to locate
an efficient UAV placement to maximize the lifetime. The UAV-WSN system is evaluated by considering two metrics: lifetime
and throughput. The simulation results show that varying UAV altitude has significant impact on both lifetime and throughput
especially in the presence of different terrain. With increasing altitude, lifetime and throughput decrease as this loss can be as
high as 94%. However, the proposed optimization plays a major role in combating these losses by redirecting the UAV to
efficient placement corresponding to the new altitude level to maintain maximum lifetime and throughput. Moreover, the
system lifetime concerning efficient UAV placement outperforms the one concerning centered placement at lower altitude,
while the difference between two cases becomes less at higher altitude. Thereby, these outcomes may provide interesting
measures for designing such integrated systems to achieve efficient data collection.

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly in
demand due to their importance in providing robust and
reliable communication systems for many civilian and mili-
tary domains. Recently, the UAVs are integrated with other
systems to create new sophisticated systems with more reli-
ability and efficiency [1]. One of these systems, which is
our focus in this study, is the integration of UAVs and wire-
less sensor networks (WSNs) to develop advanced system

called UAV-WSN system. This system shows significant effi-
ciency improvements in terms of operational lifetime,
energy consumption, and data collection [2–4]. Such inte-
gration often results in higher degree of reliability and qual-
ity of service (QoS).

Generally, the UAV-WSN system is a collaborative
hybrid system that provides a key solution to many issues
associated with the design of typical WSNs. The limited
power source in WSNs is a major design issue since the net-
work consists of battery-powered sensors in which this
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problem has a significant impact on the network lifetime [5,
6]. Besides, the WSNs encounter other limitations in terms
of coverage and data collection especially in hard-to-reach
areas such as rugged hilly terrain, and this affects the effec-
tiveness of surveillance systems as well as emergency situa-
tions where timely data collection is very important in
saving lives.

In order to address the aforementioned problems and
limitations, the paper proposes composite solutions: (1)
employ cluster-based WSNs and (2) employ UAV to act as
an aerial base station to access sensor nodes. Moreover, this
integrated system between WSNs and UAV is deployed in
3D environment to model hard-to-reach places and to imi-
tate cases of emergencies where the UAVs can provide a
solution through the integration with WSNs. Consequently,
the UAVs improve the accessibility and scalability issues of
WSNs and support large-scale surveillance systems.

On the other hand, the paper points out critical issues
regarding UAVs: lifetime and efficient placement. These
issues have significant impact on the efficiencies of data col-
lection and field coverage. Therefore, figuring out an appro-
priate solution to address these challenges is always the
major target for the current research works [7].

The need for this type of integrated systems has
increased and spread on a global scale. These systems play
a vital role in the formation of emergency infrastructure in
the case of severe damage to urban infrastructure due to nat-
ural disasters such as wildfires, floods, or earthquakes.
Thereby, establishing an emergency wireless communication
network supported by UAVs is one of the requirements for
maintaining connectivity and coverage for geographical
apart areas especially for the aforementioned cases [8–10].

Moreover, the paper sheds light on cases where the clus-
tering approach is useful to keep the communication with
the distributed users along different clusters supported by
the UAV to achieve the best coverage for the longest possible
period of time. The clustering technique is considered one of
the promising solutions for efficient data collection. The sur-
veillance region, which consists of randomly deployed sen-
sor nodes, is divided into subregions called clusters where
each one consists of a subset of sensor nodes called cluster
members (CMs). The cluster is responsible for collecting
the sensory data from its members and sending it to the des-
ignated sensor node called cluster head (CH). Then, the CHs
transmit the collected data to the UAV through the uplink.
This entire system which is depicted in Figure 1 is called
UAV-assisted cluster-based WSN, which basically improves
the energy efficiency of the WSNs, which is results in
improving the efficiency of data collection as well.

This paper proposes a novel optimization study to max-
imize the lifetime of UAV-WSN systems based on cluster-
ing. Besides, the proposed study introduces the 3D
environment in the network design to support the hilly ter-
rain as well as hard-to-reach regions. Furthermore, this work
investigates the efficient placement of the UAVs in order to
increase the efficiency of data collection.

The novelty of our work is to find the best solution for
clustering problem using PSO optimization taking into
account the hilly terrain of the surveillance region. The best

solution means to find the optimal centroids of clusters in a
3D environment which is the NP-hard problem. Besides, the
method produces an even distribution of centroids through-
out the surveillance region. The CH selection does not
directly determined by the PSO algorithm. However, in this
research, the CH selection process was incorporated in a
protocol that will be discussed later, in which several param-
eters are considered including the distance from centroid,
residual energy, and minimum path loss considering the
3D environment for upload transmission to UAV.

Additionally, some clustering methods that follow the
LEACH protocol [11] do not ensure the optimum outcomes
from clustering. Subsequently, some literature enhanced the
clustering problem by using optimization techniques such as
[12], which presented energy-efficient cluster head selection
algorithm based on the PSO. In this work, the authors first
presented a Linear Programming (LP) formulation for CH
selection problem. Then, they proposed the PSO-based CH
selection algorithm. This work considered number of factors
including the intracluster distance, sink distance, and residual
energy of sensor nodes. Also, in [13], the authors proposed an
energy-aware clustering method for WSNs using PSO algo-
rithm by simultaneously minimizing the intracluster distance
and optimizing the energy consumption. However, most of
the optimization-based clustering methods do not consider
the path loss model or the nature of the surveillance region.

Generally, the PSO has a significant impact in CH selec-
tion, but it does not directly select the CH. The optimization
side plays an important role in both intracluster communi-
cation through data transmission from CMs to CH [14]
and intercluster communication through uplink transmis-
sion from CHs to UAV which act as an aerial BS.

The main objective of this paper is to address the impact
of the UAV-WSN collaborative system to improve the lifespan
of cluster-based WSNs along with data collection. In contrast
to most of the previous literature, which focuses on maximiz-
ing the lifespan of the cluster-based WSNs, this study investi-
gates the extending of the WSN’s lifespan through the use of
UAVs and how this technology can affect energy efficiency
as well as data collection efficiency. The expected outcomes
of this research work is to get improvement for the typical
design of the WSNs in terms of operational lifetime and data
collection. Also, this research demonstrates in practice the
important needs for the integrated systems in emergency situ-
ations as well as 3D environment or mountainous terrain in
order to collect timely data.

Motivation and Contribution: the motivation of this
research is summarized as follows. Wireless sensors are ran-
domly deployed across certain areas where they will form a
WSN. Sensory data is collected from these power-limited
sensors. Sometimes, these sensors are deployed in inaccessi-
bility or hard-to-reach places, which leads to a lack of data.
Furthermore, there are some situations, such as emergencies,
military regions, or borders, where an assisted or collabora-
tive system is required to work jointly with WSNs for effi-
cient data collection. Therefore, the UAV is integrated with
the WSN to form the UAV-WSN system and achieve the
main objective, which is to maintain the availability and reli-
ability of data collection as long as possible. Thus, this work
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presents an improvement in the data collection efficiency by
maximizing the lifetime of the UAV-WSN system, which
supports the 3D environment. The proposed idea is innova-
tive and different from the previous one in terms of the opti-
mization problem and the system model.

The main contributions of this work are briefly listed in
the following points:

(i) UAV-assisted cluster-based WSNs are modeled in a
3D environment that mimics the nature of different
terrain such as hilly terrain and hard-to-reach regions

(ii) Energy consumption model of the proposed net-
work was derived taking into account both the
transmit signal energy and the circuit energy

(iii) Optimization problem to maximize the lifetime for
the proposed UAV-WSN system is formulated

(iv) Particle Swarm Optimization (PSO) is used in the
clustering algorithm for the WSN, which is unique
work to the best of our knowledge

(v) Genetic Algorithm (GA) is employed to locate an
efficient 3D UAV placement that maximizes the
lifetime of the UAV-WSN system

(vi) The lifetime for the proposed system is investi-
gated at different altitudes of the UAV

(vii) The throughput for the uplink transmission from
cluster heads to UAV is investigated according to
different altitudes of UAV

(viii) The performance analysis for the proposed system
is studied taking into account two scenarios of the
UAV placement: centered placement at the sur-
veillance region and efficient placement (i.e.,
optimization-based placement)

The rest of the paper is organized as follows. Section 2
presents literature reviews. Section 3 demonstrates molding

and problem formulation. Section 4 discusses the perfor-
mance evaluations of the proposed work. Finally, Section 5
concludes the paper.

2. Literature Review

Many research studies have been proposed to explain what
motivates utilizing UAVs in WSN. Although the literature
covers a wide variety of such research studies, this review
will focus on utilizing UAVs in extending the uplink trans-
mission times for wireless devices.

2.1. Single-UAV Scenario. In [15], the problem of a single-
UAV placement is studied, where the objective function of
the optimization problem is to find an efficient placement
of a single UAV that prolongs the lifetime of indoor wireless
devices. The constraint sets of the optimization problem are
shown to be represented as a convex set in terms of three
variables, and an algorithm for finding an efficient place-
ment for the UAV is proposed. In [16], the authors study
an uplink power control problem for UAV-assisted wireless
communications. They jointly optimize the UAV’s place-
ment, wireless devices’ assigned bandwidth, antenna beam-
width, and transmit power to minimize the total power for
uplink while meeting the minimum rate need. To obtain a
suboptimal solution, a low-complexity iterative algorithm
is proposed. According to numerical results, the suggested
approach performs well in terms of uplink sum power
savings.

In [17], the authors study a cognitive UAV-enabled IoT
network, in which cognitive Internet of Things (IoT) devices
upload data to the UAV hub via a NOMA protocol in the
primary network’s spectrum. The objective function is to
maximize the minimum lifetime of IoT devices by jointly
optimizing the transmit power, UAV placement, and decod-
ing order subject to interference-power constraints in the
presence of the imperfect channel state information. They
use Lagrange duality to solve the formulated nonconvex
mixed-integer programming problem by jointly optimizing
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Figure 1: General model for UAV-assisted cluster-based WSN deployed in a rugged hilly terrain to collect data efficiently.
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the UAV placement and transmit power for a given decod-
ing order and obtaining the globally optimal solution. Then,
they use an exhaustive search to find the best decoding
order, which is suited to small-scale settings. They present
a low-complexity suboptimal approach for large-scale situa-
tions by converting the original problem into a more tracta-
ble equivalent form and using the successive convex
approximation technique and penalty function method to
solve it. The suggested design outperforms the benchmark
schemes significantly, according to numerical results.

In [18], the authors investigate energy-aware data collec-
tion in robot network clusters. A cluster head robot in each
cluster assigns one collaborative task to each cluster member
robot and gathers data from cluster members, while a UAV
visits a subset of cluster head robots to gather data from
them due to battery limitations. The UAV’s decision to visit
the subset of cluster heads is limited by a number of vari-
ables, such as the amount of remaining battery power and
the positions and data quality of each cluster head robot.
Cluster head robots are used as data relay nodes by nonvis-
ited cluster head robots. The UAV is utilized to minimize the
total joint costs of data qualities and energy consumption of
cluster head robots. A similar scenario is studied in [19] with
a different objective function, in which the optimization
problem is aimed at minimizing the UAV total energy con-
sumption coupled to minimum cost data collection from
cluster head robots by visiting optimally a portion of the
cluster head robots. In [20], the authors present an efficient
framework to realize efficient data collection from WSNs,
where a backup UAV carrying batteries travels alongside
the primary UAV to make up for the UAV’s lack of energy
while the primary UAV is sent out to gather the aggregated
data from cluster heads. The optimization problem is aimed
at finding the minimum mission time for a complete round
of data collection, which is formulated as a coordinated trav-
eling salesman problem with battery constraints and is
solved by utilizing a heuristic algorithm. The authors of
[21] study the UAV placement problem for critical nodes
in emergency networks. Two different optimization prob-
lems are formulated based on the nature of node criticality,
namely, capacity maximization and age of information
minimization. The first optimization problem is aimed at
enhancing the QoS for critical nodes, whereas the second
optimization problem is focused on nodes carrying critical
information.

2.2. Multiple-UAV Scenario. The authors of [7, 22] investi-
gate the UAV placement problem to determine the positions
of a group of UAVs that optimize uplink transmission dura-
tion of ground wireless devices until the first wireless device
runs out of battery. For the general case of many UAVs, they
propose an efficient technique to optimize the lifetime of
wireless devices. They also study the problem of minimizing
the number of UAVs needed to service ground wireless
devices so that each wireless device’s uplink transmission
time is more than or equal to a predetermined threshold.
They present two effective methods for reducing the number
of UAVs required to serve wireless devices. In [23, 24], the
authors investigate the problem of efficient 3D placements

for a set of UAVs in a mmWave network. The objective
function of the optimization problem is aimed at finding
the most effective UAV deployments that maximize the total
uplink transmissions’ time duration of ground wireless
devices in a mmWave network. Due to its intractability, they
propose a heuristic algorithm to solve the optimization
problem.

The authors of [25] optimize the 3D UAV placement
and path loss compensation factor to improve user coverage
in uplink transmission. Compared to the baseline scheme,
simulation results show that optimizing the UAV height
and path loss compensation factor resulted in greater cover-
age and throughput. Simulations were performed for four
alternative uplink power control scenarios, with the maxi-
mum power transmission scenario serving as a benchmark
for comparison. The simulation results show that when both
aerial and macrouser devices transmit with power control,
coverage is increased. In [26], the authors are interested in
maximizing the lifetime of ground wireless devices for com-
munications. The ground user’s lifetime is defined as the
amount of time that a ground wireless device can communi-
cate before the battery runs out. They use a frequency divi-
sion multiplexing uplink system in which multiple UAVs
serve the ground users. They propose an efficient approxi-
mation approach using judicious problem reformulation
and successive convex approximation techniques to solve a
joint user association, power control, bandwidth allocation,
and UAV deployment problem for lifetime maximization.
They show that in the case of a single UAV, the problem
can be solved globally via simple bisection. The simulation
results show that the proposed algorithms can reach near-
optimal performance and outperform heuristic approaches
significantly.

The authors in [27] study the problem of a UAV-assisted
network lifetime maximization in the presence of several
sources of interference, where the UAVs are used to collect
data from a set of wireless sensors. They show that because
the required transmission powers of the UAVs are directly
related to their locations in space, the placement of the
UAVs plays a major role in extending the network’s lifetime.
The UAVs transmit the obtained data to a primary UAV
called the leader, which is in charge of forwarding the data
to the base station via a backhaul UAV network in the sug-
gested scenario. Due to the problem’s nonconvexity, they use
spectral graph theory tools to solve it. The results of simula-
tions show that the proposed strategy can greatly increase
the UAV network’s lifetime.

The authors in [28] investigate the efficient deployment
and mobility of multiple UAVs that are utilized as aerial base
stations to collect data from ground IoT devices. A novel
framework is proposed for optimizing UAVs’ 3D position-
ing and mobility, device-UAV association, and uplink power
control to enable reliable uplink communications for IoT
devices with a minimum total transmit power. First, the effi-
cient UAV positions and associations are identified based on
the locations of active IoT devices at each time instant. The
UAVs’ optimal mobility patterns are then studied to dynam-
ically serve the IoT devices in a time-varying network. The
time instances at which the UAVs must update their
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locations are calculated based on the IoT devices’ activation
process. Furthermore, the optimal 3D trajectory of each
UAV is determined so that the total energy used for UAV
mobility while serving IoT devices is minimized. According
to simulation results, the proposed approach reduces the
total transmit power of IoT devices by 45% compared to
deploying stationary aerial base stations.

In [29], the optimal set of load-balanced cluster heads is
found using the Salp-Swam optimization method, and each
UAV’s optimal path is estimated using a metaheuristic based
on differential evolution. In order to shorten the time
required for data collection, multiple UAVs are deployed.
All UAVs leave from a base station to collect data, travel
to the cluster heads, and then, return to the base station.
The proposed scheme’s performance outperforms two
well-known existing schemes in terms of travel time. The
authors of [30] present a load-balanced cluster formation
scheme and a noncooperative cluster head selection algo-
rithm based on game theory. A hybrid metaheuristic-based
optimal path planning algorithm is proposed by combining
the best aspects of Dolphin Echolocation and Crow Search
metaheuristic techniques to provide timely delivery of sens-
ing information using UAVs. For both the load-balanced
cluster head selection problem and the best path planning
problem, a novel objective function is formulated. Result
analyses show that the proposed scheme significantly out-
performs the most recent schemes.

2.3. Metaheuristic Techniques. The works in [31–35] pro-
posed different methods based on metaheuristic techniques
for cluster head selection in IoT-WSN. In [31], an energy-
efficient cluster head selection using two metaheuristic algo-
rithms, namely, Competitive Swarm Optimization and Har-
mony Search Algorithm was proposed. The developed
approach provided a global search with a fast convergence
rate for energy-efficient cluster-based WSNs, using different
energy-saving strategies such as clustering methods and
optimal route selection for WSN devices. Moreover, the
authors in [32], developed a hybrid metaheuristic approach,
namely, Whale Optimization Algorithm with Simulated
Annealing algorithm, to minimize the device’s energy con-
sumption in IoT-based WSNs and to divide the IoT network
into clusters and select the best cluster head for each group.
The authors in [33] proposed a selection process based on
computational intelligence techniques, namely, neuro-fuzzy
inference system-based routing for intercluster transmission
in IoT-WSN. Specifically, this work developed a swarm
intelligence model with an adaptive neuro-fuzzy inference
system-based routing for clustered WSNs, to select the clus-
ter heads and efficient routes for multihop communication
in the WSN. The study in [34] developed a metaheuristic
approach using an adaptive neuro-fuzzy inference system
for decision-making called the MANFIS-DM approach for
UAV systems. The proposed approach sets the UAV net-
works into clusters and classified the images into appropriate
class labels. Moreover, this approach designed a fitness func-
tion for cluster head selection.

The authors of [12] propose an energy-efficient cluster
head selection algorithm based on PSO. They take into

account a number of factors, including the intracluster dis-
tance, sink distance, and residual energy of sensor nodes,
to determine how energy-efficient the proposed PSO
approach is. Additionally, they demonstrate cluster forma-
tion in which sensor nodes without cluster heads associate
with their cluster heads according to the weight function.
The algorithm is thoroughly tested using various WSN sce-
narios, number of sensor nodes, and number of cluster
heads. To show the proposed algorithm’s superiority, the
results are compared with other existing algorithms.

The problem of energy-balanced node clustering and
routing between cluster heads and the sink are taken into
consideration in [36]. An enhanced cuckoo search-based
energy balanced node clustering protocol is utilized for the
problem of energy-balanced node clustering. For the data
packet routing between cluster heads and the sink, they pro-
pose an improved harmony search-based routing protocol.
The average energy consumption, the number of active
nodes, the number of nodes that have died, and the network
lifetime are used to assess the performance of the proposed
integrated clustering and routing protocol. The integrated
clustering and routing protocol that is being proposed based
on Cuckoo-Harmony Search outperforms state-of-the-art
protocols.

3. Modeling and Problem Formulation

This section presents the main structure of the proposed
work. It demonstrates the UAV-WSN system model and
then formulates the optimization problem in terms of clus-
tering and optimal UAV placement by employing both algo-
rithms PSO and GA, respectively.

3.1. UAV-WSN System Model. The UAV-assisted cluster-
based WSN model under consideration (Figure 2) consists
of n sensor nodes S = fs1, s2, s3,⋯,sng grouped into k clus-
ters, such that L = fC1, C2, C3,⋯,Ckg. Each kth cluster is a
subset of L in which it consists of j cluster members such
that Ck = fm1,m2,m3,⋯,mjg, where jCvj not necessarily
equal to jCwj, ∀Cv , Cw ∈ L. Besides, each cluster is dominated
by predetermined Cluster Head (CH). In this work, the CH
is elected according to its maximum residual energy (Eres)
in which the residual energy should satisfy a threshold value
(i.e., Eres ≥ Eth), and this process is performed by employing
PSO which will be explained later in Section 3.2.1. Accord-
ingly, the proposed model comprised i cluster heads, such
that H = fh1, h2, h3,⋯,hig.

Consequently, the kth cluster is responsible for collecting
data and transmitting them to its corresponding ith CH by
means of intracommunication [14]. On the other hand, the
ith CH is responsible for transmitting the collected data to
the UAV by means of uplink transmission. This study
assumes that the channel model for CM-CH is Rayleigh flat
fading with path loss, and for CH-UAV is free-space path
loss. Mainly, the proposed system model is constructed
based on two submodels: (1) CM-CH communication model
and (2) CH-UAV communication model. These two submo-
dels are explained in more detail in the following
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subsections. All parameters used in formulating the system
model are listed in Table 1.

The challenges for the successful deployment of a UAV
in cluster-based wireless sensor networks include spectrum
efficiency, energy consumption, deployment time, backhaul,
and cost of deployment [37]. In this research work, we use a
rotary-wing UAV.

3.1.1. Cluster Members-Cluster Head Communication Model.
This section presents the ground communication model
adopted in this study. The communication model for CM-
CH addresses the wireless communication and energy con-
sumption required for data transmission between CMs and
CH as depicted in Figure 2. The communication model
described in [38–41] is adopted to model the communica-
tion between CMs and CH.

For the 3D cluster-based network, the CM-CH link at
distance

di,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
À Á2 + yi − yj

� �2
+ zi − zj
À Á2r

;∀i ∈H,∀j ∈ Ck,

ð1Þ

with νth power path loss has power gain factor given by [39]

Gd =
Pm
tx

Ph
rx

= G1d
ν
i,jMl, ð2Þ

where G1 which is the factor for antenna gain at distance 1

meter is calculated by [39, 41]

G1 =
4πð Þ2

G txG rxλ
2 , ð3Þ

where (G tx) and (G rx) are the antenna gains for both trans-
mitter and receiver, and λ is the wavelength.

As CM (transmitter) transmits a signal xðtÞ with power
Pm
tx, it will be added to noise signal nðtÞ (Figure 3), which

is additive white Gaussian noise (AWGN) in this study.
Thereafter, the signal-to-noise ratio (SNR) for the received
signal yðtÞ = xðtÞ + nðtÞ at the CH (receiver) is given by [39]

γ =
Ph
rx

2Bσ2Nf
, ð4Þ

where B is the channel bandwidth, σ2 is the power spectral
density of the AWGN, and Nf is the receiver noise figure.
Consequently, the total noise power is N = 2Bσ2Nf .

From Equation (2) and Equation (4), taking into account
that Pm

tx = Ph
rxGd , the SNR becomes

γ =
1
Gd

·
Pm
tx

2Bσ2Nf
⇒ γ =

1
G1d

ν
i,jMl

·
Pm
tx

2Bσ2Nf
: ð5Þ

In this work, the SNR is considered as an important con-
straint since it indicates the channel quality between CMs
and CH within each cluster.
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CM

CM

CH

CM

CH

CH

CMCM
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CM

CM

(xu, yu, zu)

(xi, yi, zi)

(xj, yj, zj)

j

i

di

di,j

Figure 2: Proposed model for UAV-assisted cluster-based WSN showing uplink transmission form CHs to UAV for the collected data from
CMs.
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(1) Energy Consumption Model. The energy consumption
model addresses both transmitted energy (Et) and circuit
energy (Ec). Thereby, each jth CM within kth cluster con-
sumes E (Joule) to transmit K-bit packet to its corresponding
ith CH during τ period of time which is given by

Em
i,j = Em

tx,i,j + Em
c,j,∀i ∈H,∀j ∈ Ck: ð6Þ

Each jth CM consumes energy for transmitted signal to i
th CH which is calculated by

Em
tx,i,j = Pm

tx,i,j · τi,j,∀i ∈H,∀j ∈ Ck: ð7Þ

In order to investigate different data rates (i.e., modula-
tion order), the M-ary Quadrature Amplitude Modulation
(MQAM) is adopted in the communication system between
the ith CH and jth CM because it is commonly used for data
transmission in the cutting edge systems.

In the MQAM system, the number of bits per symbol is
b = log2M bits (i.e.,M is the modulation order, whereM = 2b
). The K-bit packet has K/b symbols to be transmitted, and

the symbol duration time for each symbol is τs, then

K
b
=
τi,j
τs

⇒ b =
Kτs
τi,j

: ð8Þ

The channel bandwidth in MQAM, which is assumed to
be fixed, is B = 1/τs when the squared pulses are employed
[39]; then, the number of bits is

b =
K
Bτi,j

: ð9Þ

Therefore, the duration time to transmit K -bit packet is

τi,j =
K
Bb

⇒ τi,j =
K

B log2M
: ð10Þ

Furthermore, the Etx for each CM is calculated at prede-
fined bit error rate (BER) Pb corresponding to SNR (γ). For
the case of MQAM, the BER is upper bounded by [42]

Pb ≤
4

log2M
1 −

1ffiffiffiffiffi
M

p
� �

e− 3γ/2 M−1ð Þð Þ: ð11Þ

From Equation (11), we can solve it for γ to get an upper
bound as follows:

γ ≤
2
3

M − 1ð Þ ln
4 1 − 1/

ffiffiffiffiffi
M

p� �� �
Pb log2M

0
@

1
A: ð12Þ

Equation (12) points out to the upper bound of the SNR
since the objective is get maximum transmit energy. By
substituting the value of γ from Equation (5) in Equation
(12), then solving it for Pm

tx,i,j, we get

Pm
tx,i,j =

4
3
GdBσ

2Nf M − 1ð Þ ln
4 1 − 1/

ffiffiffiffiffi
M

p� �� �
Pb log2M

0
@

1
A: ð13Þ

Finally, Em
tx,i,j can be calculated by substituting Equation

(13) into Equation (7), and it becomes

Em
tx,i,j =

4
3
GdBσ

2Nf M − 1ð Þ ln
4 1 − 1/

ffiffiffiffiffi
M

p� �� �
Pb log2M

0
@

1
A · τi,j:

ð14Þ

From Equation (14), it can be noticed that the transmit
energy Em

tx,i,j for the jth CM decreases monotonically as long
as the transmission time τi,j decreases provided that both the
packet size K and channel bandwidth B are constant
values [39].

Regarding circuit energy consumption Ec, in contrast to
transmit energy Etx, it does not depend on the transmission
distance d. As depicted in Figure 3, depending on the role of

Table 1: Parameters used in formulating the problem.

Parameter Description

di, j CM-CH distance in meters, ∀i ∈H, ∀j ∈ Ck.

di CH-UAV distance in meters, ∀i ∈H.

Em
i,j Total energy consumption at CM, ∀i ∈H, ∀j ∈ Ck.

Pm
tx,i,j Transmitted power from jth CM to ith CH.

Em
tx,i,j Transmitted energy from jth CM to ith CH.

Ph
rx,i Received power at ith CH.

Ph
tx,i Transmitted power from ith CH to UAV.

Eh
tx,i Transmitted energy from ith CH to UAV.

B Channel bandwidth.

σ2 Power spectral density of the AWGN.

Nf Receiver noise figure.

ν CM-CH link path loss exponent.

Li CH-UAV path loss, ∀i ∈H.

τi, j Transmission time from jth CM to ith CH.

τi Uplink transmission time from ith CH to UAV.

E Total energy consumption for transmitting K-bit
packet.

K Message length in bits.

Ec Energy consumption for circuit.

Pc Power consumption for circuit.

Pc,tx Power consumption for transmitter circuit.

Pc,rx Power consumption for receiver circuit.
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the sensor node (i.e., transmitter or receiver), the model is
generally given by

Ec = Pc · τ, ð15Þ

where Pc is the total circuit power consumption and τ is
the duration time for transmission. Pc is calculated by

Pc = Pc,tx + Pc,rx, ð16Þ

where Pc,tx is the transmitter circuit power consumption
given by

Pc,tx = PDAC + PSyn + PMix + PFilt,tx: ð17Þ

Also, Pc,rx is the receiver circuit power consumption
given by

Pc,rx = PADC + PSyn + PMix + PFilt,rx + PIFA + PLNA: ð18Þ

The circuit blocks which are depicted in Figure 3 and
employed in Equation (17) and Equation (18) are digital-
to-analog converter (DAC), analog-to-digital converter
(ADC), frequency synthesizer, mixer with local oscillator
(LO), transmitter filter, receiver filter, intermediate fre-
quency amplifier (IFA), and low-noise amplifier (LNA).

Moreover, the transmitter also has power amplifier (PA)
component which has a significant impact on the total
power consumption as it has a relation with transmit signal

power. The power consumption of the PA is given by [39].

PAmp = α · Ptx, ð19Þ

where α is the power amplifier coefficient, and in case of
MQAM system, α = ðξ/ηÞ − 1 with ξ is peak to average ratio
(PAR), ξ = 3ðð ffiffiffiffiffi

M
p

− 1Þ/ð ffiffiffiffiffi
M

p
+ 1ÞÞ, which is dependent on

modulation scheme and its order, and η is drain efficiency
for RF power amplifier.

As a result, the total energy consumption to transmit K
-bit packet from source (jth CM) to destination (ith CH)
over distance di,j during τi,j transmission time can be
obtained by substituting Equation (14) and Equation (15)
into Equation (6) as follows:

Em
i,j = Pm

tx,j + Pm
c,j + PAmp

� �
· τi,j

= Pm
tx,i,j + Pm

c,j + αPm
tx,i,j

� �
· τi,j

= 1 + αð ÞPm
tx,j · τi,j + Pm

c,j · τi,j:

ð20Þ

Hence, we get

Em
i,j = 1 + αð Þ 43GdBσ

2Nf M − 1ð Þ ln
4 1 − 1/

ffiffiffiffiffi
M

p� �� �
Pb log2M

0
@

1
A

0
@

1
A

· τi, j + Pm
c,j · τi,j:

ð21Þ

Therefore, the energy consumption per information bit
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Figure 3: Transmitter-receiver communication model [39].
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is given by Em
bit = Em/K . Moreover, in Equation (21), it can be

noticed that the circuit energy consumption has a significant
impact on the total energy consumption. That is, for mini-
mum transmission time, the transmission energy consump-
tion is maximized; in contrast, the circuit energy
consumption is minimized [39]. Thus, there is an optimal
value for the transmission time in order to minimize the
total energy consumption. Particularly, for simplicity pur-
poses, the modulation order is not considered. Instead, a
fixed data rate is employed in the proposed system. In future
work, this issue will be taken into account.

(2) Maximum Power Constraint. Since wireless sensors are
limited in power due to battery limitations, the total power
consumption is restricted by the availability of battery
power. Let Pmax be the maximum power available to trans-
mit K -bit packet in which it is equal to the maximum bat-
tery output at the transmitter, ignoring all power
consumption from other circuit components [39]; then, the
maximum power constraint is

1 + αð ÞPtx + Pc,tx ≤ Pmax: ð22Þ

Therefore, the maximum transmit power consumption
is upper bounded by [40]

Ptx,max ≤
Pmax − Pc,tx

1 + αð Þ : ð23Þ

Consequently, for the case of MQAM system power con-
straint becomes

1 + αð Þ 43GdBσ
2Nf M − 1ð Þ ln

4 1 − 1/
ffiffiffiffiffi
M

p� �� �
Pb log2M

0
@

1
A + Pc,tx ≤ Pmax:

ð24Þ

3.1.2. Cluster Head-UAV Communication Model. This sec-
tion presents the ground-to-UAV communication model
employed in this study. The communication model men-
tioned in [7] is adopted in this work to model the communi-
cation between CHs and UAV. It is assumed that the
channel between CHs and UAV is line of sight (LoS) as
the free space path loss model is employed. The path loss
between the ith CH and the UAV is given by

Li =
4πdi f
c

� �2
,∀i ∈H, ð25Þ

where di is the uplink distance between the ith CH and the
UAV, and it is given by

di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xuð Þ2 + yi − yuð Þ2 + zi − zuð Þ2

q
: ð26Þ

Consider an uplink transmission from the ith CH
located at (xi, yi, zi) and UAV located at (xu, yu, zu). Then,

the data rate given by

Ci = Bi log2 1 +
Ph
tx,i/Li
N

 !
,∀i ∈H, ð27Þ

where Ph
tx,i is the transmit power from the ith CH to UAV, N

is the noise power, and Bi is the channel bandwidth for the i
th CH. If it is assumed that Bu is the bandwidth for the UAV,
then Bi = Bu/jHj, where jHj is the cardinality of set H (i.e.,
number of all CHs in H). Besides, if it is assumed that all
sensor nodes have same data rate R, then the minimum
transmit power to meet this requirement is given by

Ph
tx,i = 2R· Hj j/Bu − 1

� �
NLi,∀i ∈H: ð28Þ

Consequently, the corresponding minimum transmit
energy is given by

Eh
tx,i = Ph

tx,iτi,∀i ∈H: ð29Þ

Each CH is served by a UAV for a time τi seconds in
which it depends on the residual energy Eres,i of the battery.

3.2. Problem Formulation. In this research, the optimization
study under consideration employs two algorithms as will be
explained in the next sections: (1) Particle Swarm Optimiza-
tion (PSO) and (2) Genetic Algorithm (GA). In PSO, the fit-
ness function is an objective function representing the
optimized problem. The goal of the PSO algorithm is to find
an efficient solution to the optimization problem by finding
the set of parameters that minimize or maximize the fitness
function. Specifically, the main objective of this work is to
find the efficient placement of the UAV subject to maximiz-
ing the lifetime of the cluster-based wireless network oper-
ated jointly with the UAV. In this paper, lifetime T is the
fitness function which is defined as the sum of the time
duration for CM-CH transmission and CH-UAV uplink
transmission.

The formulation of the proposed optimization model is
given by

max
Xu ,Yu ,Zuð Þ

T = 〠 Hj j
i=1〠

Ckj j
j=1 τi,j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

CM−CHTransmission

+ 〠 Hj j
i=1τi|fflfflffl{zfflfflffl}

CH−UAVUplink

, ð30Þ

subject to

Ph
tx,i ≤ Pmax,∀i ∈H, ð31aÞ

Eh
tx,i ≤ Eres,i,∀i ∈H, ð31bÞ
Eres,i ≥ Eth,∀i ∈H, ð31cÞ

τi,j + τi ≥ τth,∀i ∈H,∀j ∈ Ck, ð31dÞ
γj ≥ γmin,∀j ∈ Ck, ð31eÞ
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Pm
tx,i,j ≤ Pmax,∀i ∈H,∀j ∈ Ck, ð31fÞ

xmin ≤ Xu ≤ xmax, ð31gÞ
ymin ≤ Yu ≤ ymax, ð31hÞ
zmin ≤ Zu ≤ zmax: ð31iÞ

The objective function Equation (30) is to maximize the
lifetime of the cluster-based network in which it consists of
individual transmission time for all CMs, within the kth
cluster, jointly with their corresponding CHs.

The optimization problem formulation subject to set of
constraints from Equation (31a) to Equation (31i) explained
as follows:

(i) Constraint Equation (31a) ensures that the maxi-
mum transmit power for each CH should not
exceed its maximum transmit power. It can be cal-
culated from Equation (28)

(ii) Constraint Equation (31b) ensures that the total
energy consumed by CH should not exceed its bat-
tery energy level Eres,i. It can be calculated from
Equation (29)

(iii) Constraint Equation (31c) ensures that the avail-
able battery energy level Eres,i should be greater
than Eth.

(iv) Constraint Equation (31d) ensures that both CMs
and their corresponding CHs is served for a time
greater than τth

(v) Constraint Equation (31e) is the SNR (γ) constraint
corresponding to certain BER, and it can be calcu-
lated from Equation (12)

(vi) Constraint Equation (31f) is the maximum power
constraint which ensures that the maximum trans-
mit power for each CM should not exceed its max-
imum transmit power, and it can be calculated
from Equation (23)

(vii) Constraint Equation (31g) to Equation (31i) repre-
sent the minimum and maximum allowed values
for the coordinates of the UAV

Clustering sensor nodes is an efficient topology control
strategy for reducing sensor node energy consumption and
maximizing WSN lifetime. In a cluster-based WSN, the clus-
ter heads face some additional burdens for operations like as
data collecting, data aggregation, and data transfer to the
base station. As a result, balancing the load on the cluster
heads is a difficult task for the WSNs’ long-term operation.
For a WSN, load-balanced clustering is well-known to be
an NP-hard problem [43]. In this paper, the PSO is
employed for the clustering design problem, and the GA is
employed to locate an efficient 3D UAV placement that
maximizes the lifetime of the UAV-WSN system.

3.2.1. Clustering Approach Using Particle Swarm
Optimization (PSO). This section presents the mathematical

formulation of the clustering problem using PSO which is
considered as an optimization problem. PSO is a metaheur-
istic algorithm that can be employed for clustering problems.
In this section, we provide a comprehensive discussion of
PSO clustering algorithms with their pseudocode, and we
provide a computational complexity analysis for each
algorithm.

Particle Swarm Optimization is an evolutionary
population-based search method developed in 1995 by Ken-
nedy and Eberhart [44]. PSO is inspired by the social behav-
ior of a school of fish and flocks of birds, and it is used to
solve complex optimization problems based on the move-
ment and intelligence of swarms. In PSO, swarm members
represented as particles; each particle position is considered
as a candidate solutions for the optimization problem. Thus,
in the initialization stage, it has a fitness evaluation (i.e.,
objective) function; the aim of fitness function is to evaluate
the solution by assigns each particle’s position to a fitness
value. Each particle in the swarm keeps track to its highest
fitness value; the best solution achieved by this particle is
called personal best. Moreover, the particle position with
the highest fitness value is called the global best. Then, the
PSO iteratively improving a candidate solutions is based on
the local best (Lbest) solutions for each particle and the
global best (Gbest) solutions for all particles within the
swarm [45].

At every iteration, the new position for each particle is
computed by adding the particle’s current velocity to its
position. Then, each particle’s velocity is modified towards
its Lbest and Gbest employing Equation (32), and its new
position is found utilizing Equation (33). The ith swarm par-
ticle changes its velocity viðtÞ and position piðtÞ at the time
step t based to the following equations:

vi t + 1ð Þ =w × vi tð Þ + r1 × c1 × Lbesti tð Þ − pi tð Þð Þ + r2 × c2
× Gbest tð Þ − pi tð Þð Þ,

ð32Þ

pi t + 1ð Þ = pi tð Þ + vi t + 1ð Þ, ð33Þ
where w is the inertia weight which is a factor for the conver-
gence behavior of the PSO since it affects the particle velocity
change, r1 and r2 are uniformly distributed random num-
bers defined on the interval ð0, 1Þ, and c1 and c2 are acceler-
ation coefficients.

The PSO algorithm uses a clustering approach where
each particle in the swarm moves towards its best previous
position, called Lbest, and the global best position called
Gbest. This movement is repeated until the maximum num-
ber of iterations is reached, which is the termination condi-
tion [46]. Algorithm 1 presents the pseudocode for this
approach.

Basically, the proposed protocol for the clustering pro-
cess can be described in two stages: (1) cluster formation
and (2) cluster head selection. In cluster formation stage,
the PSO algorithm is employed to produce clusters of sensor
nodes with the best centroid location in which an even dis-
tribution of centroids is guaranteed across the sensor field.

10 Journal of Sensors



In cluster head selection stage, a certain proportion of the
sensor nodes closest to centroid is determined; then, the sen-
sor node with the maximum residual energy along with min-
imum path loss (considering the 3D environment due to the
terrain) is a candidate to be selected as cluster head. The pro-
tocol is explained as follows:

Stage 1: Cluster Formation

(1) Deploy n sensor nodes randomly within certain area
with designated initial energy Einit

(2) Determine number of clusters K

(3) Form clusters of sensor nodes and find the centroid
location for each cluster using PSO algorithm. In this
context, the clustering optimization is an NP-hard
problem; therefore, the results (i.e., centroids with
even distribution) represent approximate solutions
[43]

Stage 2: Cluster Head Selection

(1) Determine a proportion of the sensor nodes, 10% for
instance, closest to the centroid. This proportion
represents the candidates to be elected as CH

(2) The sensor node with maximum residual energy Eres
along with minimum path loss will be elected to be
CH

(3) The elected CH will aggregate the data from CMs
and transmit it to the UAV via uplink transmission

The computational complexity of the PSO clustering
algorithm depends on four steps, namely, (a) initialization
of each particle with ck, (partitioning of the data set); this
requires n operations. (2) For each point in the data set,
compute Euclidean distance with all centers, then assign
each point to the cluster with nearest ck (calculate partition-
ing quality), which requires n iterations for inner loop and p

iterations for the outer loop. (3) Performs T iterations for
step 2. (4) Performs p iterations to update velocity and posi-
tion for each particle. Then, the worst case complexity of
these steps can be expressed as OðnpTÞ. For constant T the
algorithm complexity is OðnpÞ≃Oðn2Þ. Moreover, the GA
and PSO algorithms’ complexity has been discussed in
details in [46, 47].

3.2.2. Efficient UAV Placement Using Genetic Algorithm
(GA). This section presents the problem of locating an effi-
cient placement of the UAV while providing coverage for
all CHs and an effective method to solve it using GA. This
algorithm is considered as metaheuristic technique inspired
by Darwin’s natural evolution and natural selection theory.
GA can be utilized to discover a near optimal solution for
nonconvex optimization problems [48, 49]. In this paper,
GA is employed to locate an efficient 3D UAV placement
that maximizes the lifetime of the UAV-WSN system. Then,
the GA phases is discussed [48] and how GA algorithm can
be used in finding an efficient solution to the optimization
problem.

GA consists of five main phases, namely, (1) initial pop-
ulation, (2) fitness function, (3) selection, (4) crossover, and
(5) the mutation. In the first phase, a random generation
process starts with a group of individuals, which is named
initial population Npop. Each individual describes a logical
solution to the optimization problem. A group of parameters
containing numerals, characters, and/or alphabets is used to
represent each individual, which is called a chromosome. In
this work, we represent the 3D locations (xu, yu, zu) of the
UAV as individuals (i.e., chromosomes). The fitness func-
tion (FF) represents the second phase of the GA. It deter-
mines how good the candidate’s solution is. Specifically,
FF is used to assess each individual in the population by
computing the fitness value correlated to each individual.
In every iteration, the individuals are represented by fitness
scores (FS), which are used to describe the next generation
production step. The individual with a higher FS will be

Result: Set of K clusters
Inputk: Number of resulting clusters

D = fpiji = 1, 2, 3,⋯, ng; n data points.
ck: clusters centers k = 1,⋯, K .
Initialization The position and velocity are randomly initialized for all particle’s; ck is randomly Initialized for all particles’; iter

= iterations
foriter = 1 to max_iter do
forParticle = 1 to total number of particlesdo

forfpiji = 1, 2, 3,⋯, ngdo
calculate the Euclidean distance of Edi for cluster center:

∑K
k=1∑i∈ckEdiðxi − ukÞ =∑K

k=1∑i∈ckkxi − ukk2:
pi is allocated to the cluster that has the nearest ck

end
Update Lbest and Gbest values for each particle
The velocity and position are updated for each particle using Equation (32) and Equation (33) respectively.

end
end

Algorithm 1: Clustering with Particle Swarm Optimization (PSO).
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selected in the next phase. The third phase is the selection;
this phase selects a set of individuals with the highest FS
for generating the next generation. The third phase is the
selection; this phase selects a set of individuals with the high-
est FS for generating the next generation. The selection
phase is also indicated as parents. In the next generation,
they inherit their genes to the offspring. This paper utilizes
the tournament selection method to choose the fittest indi-
viduals from the current generation. Then, we pass on the
selected candidates to the next generation. The crossover is
considered the fourth phase. A crossover point is randomly
selected from the genes inside the chromosome. Parents’
genes are exchanged among themselves until reaching the
crossover point to generate offspring. After that, the next
generation is produced from the new offspring, which then
will be added to the population. Finally, the mutation phase
takes place in each iteration to guarantee the population’s
diversity and tackle the convergence to a local optimal solu-
tion. This paper utilizes a bit flip mutation operator in this
phase. In this paper, the objective of the formulation prob-
lem is to find an efficient UAV 3D placement that maxi-
mizes the lifetime of the UAV-WSN system. We use the
GA to find the efficient UAV placement such that the path
loss value is minimized. Figure 4 depicts the flowchart of
the Genetic Algorithm.

The GA complexity depends on these parameters, fitness
computation function (ft), population size (P), number of
generations (G), crossover (C), crossover probability (Cp),
mutation (M), and mutation probability (Mp). The worst
time complexity of GA is OðP ∗ Cp ∗OðCÞ ∗Mp ∗OðMÞ
∗OðftÞÞ. As we can notice, GA depends on many constant

Start

Initial population randomly 
generated

Output = best individual

End

Yes

No

For each individual: 
evaluate fitness function.

Is termination
criteria met? 
Max. num of

iteration.

Tournament selection of 
parents for next-generation

Crossover-operator to 
generate offspring 

Mutation-operator: Mutate 
generated offspring 

New population generated

Figure 4: Genetic Algorithm flowchart.

Table 2: Simulation parameters.

Parameter Value

R dimensions 1000m × 1000m
Pb 10−3

Pmax 250mW

K 1024 bit

f c 2.4GHz

σ2 -120 dBm/Hz

Nf 10 dB

G1 30 dB

Ml 40 dB

ν 3.5

η 0.35

B 1KHz

Bu 50KHz

R 50 kbps

τth 900 s
maxAlt−UAV 500m
minAlt−UAV 75m
max iterations 100 (for PSO and GA)

Battery capacity 170mAh

Battery voltage 2 volts
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parameters, namely, population size, crossover probability,
and mutation probability. Thus, the computational complex-
ity can be simplified as: OðOðCÞ ∗OðMÞ ∗OðftÞÞ. In GA,
the fitness function requiresOðn log ðnÞÞ time, the initial tour-
nament takes OðnÞ, and the selection takes Oðlog ðnÞÞ opera-
tions. Crossover and mutation require p times. The worst
case computational complexity of the GA is Oðp:nlogðnÞÞ.

4. Simulation Results

This section presents a performance analysis for the pro-
posed optimization framework. This analysis is demon-
strated in two parts: (1) cluster-based WSN formation
using PSO and (2) determine efficient placement for the
UAV using GA. In this study, two main metrics are
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Figure 5: Different views for the sensor nodes distributed randomly within surveillance region. Specifically, four views is presented for the
distribution of wireless sensors within the coverage region.
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addressed to evaluate the performance of the UAV-WSN
system, namely, (1) Lifetime and (2) throughput. Lifetime is
defined as the total duration time for both CM-CH trans-
mission and CH-UAV uplink transmission. On the other
hand, throughput is defined as the total number of packets

which are successfully received at UAV via uplink transmis-
sion over the entire lifetime.

Table 2 lists all parameters that are used for the simula-
tion. Besides, for safety reasons and to avoid collisions, in
this work, the minimum UAV altitude is set to 75m [50, 51].

4.1. Cluster-Based WSN Formation. This section presents the
results for clustering the WSN using PSO. In this work, it is
assumed that 250 sensor nodes are deployed randomly
within the targeted surveillance region R with dimensions
1000m × 1000m. These sensor nodes are nonuniformly dis-
tributed based on the beta distribution function.

Figure 5 presents four views for the distribution of wire-
less sensors within the coverage region. Specifically,
Figure 5(a) shows the top view distribution for sensor nodes,
while Figures 5(b) and 5(c) present 3D and side views for
sensor nodes. It is clear from these figures that the subarea
has different terrains, ranging in 0-20m elevation levels.
Moreover, Figure 5(d) shows the density distribution for
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Figure 6: WSN clustering is performed by employing PSO algorithm within surveillance region. Top and 3D views clustering is shown for
sensor nodes with 5 clusters using the PSO algorithm. Each cluster is marked with a different color.

Table 3: Locations for the five selected cluster heads using PSO
Algorithm.

Cluster head ID Location (xi, yi, zi)
CH1 171:97,295:72,8:94ð Þ
CH2 211:02,769:53,4:01ð Þ
CH3 750:41,204:26,9:89ð Þ
CH4 486:97,392:17,6:77ð Þ
CH5 836:46,760:89,3:99ð Þ
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the wireless sensors, the yellow gradations indicating nodes
at 14-20m elevation levels. In contrast, the blue graduations
indicate an elevation level of less than 14m.

In order to form cluster-based WSN, the PSO algorithm
is employed to partition the sensor nodes into k clusters.
PSO can perform a parallel and global search to find an effi-
cient and near-optimum solution to the clustering problem.
Moreover, PSO avoids the clustering problem using conven-
tional clusteringmethods in k-means such as trapped into local
minimum solution and can produce better symmetric clusters
with equal sizes and densities. The proposed model works for
any number of k clusters, as can be deduced from the input
of Algorithm 1. For the scenario under consideration, the tar-
geted surveillance region is partitioned into 5 clusters.

Figure 6 shows the clustering approach for sensor nodes
into 5 clusters using the PSO algorithm. Each cluster is
marked with a different color. Figure 6(a) depicts the top
view for the 5 clusters and their cluster centroids, while
Figure 6(b) depicts the 3D view for the clustering.

Regarding cluster head selection, the following steps are
followed: first, for each cluster, the Euclidean distance between
the cluster center (i.e., cluster centroid) and all sensor nodes is
calculated. Then, the sensor node with the shortest distance to
the centroid is selected as a cluster head. This work assumes
five cluster heads with ðxi, yi, ziÞ coordinates given in Table 3.

Employing clustering method in WSNs has several
advantages in terms of managing the limited energy source
by controlling the topology of the WSNs. Besides, clustering
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Figure 7: Top and 3D UAV views using an efficient placement method by employing GA algorithm.
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method has a significant impact on improving the lifespan of
the WSNs. Cluster-based WSN result in burden balancing
among clusters where each cluster has its own duty for
aggregating sensory data and transmitting it to the cluster
head. Then, each cluster head is responsible for transmitting
the data to the UAV via uplink transmission. The PSO
ensures load balancing by approximating the appropriate

centroid for each cluster. However, this process is considered
as an NP-hard problem because the centroids for clusters are
approximate solution.

4.2. Determine Efficient Placement for UAV. This section
presents the results for efficient UAV placement using GA.
The efficient 3D placement for the UAV is determined using
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Figure 8: UAV-WSN system throughput for uplink transmission from CHs to UAV at different UAV altitudes. Specifically, the total
transmitted information from five CHs to the UAV via uplink transmission scenario is presented at different UAV altitudes ranging
from 75m to 450m.
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Figure 9: The lifetime of UAV-WSN system with path loss model based on microwave operating at 2.4GHz. The results show the system
lifetime at different UAV altitudes considering the two cases of UAV placement: (1) efficient from optimization and (2) centered at the
surveillance region.
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Figure 10: The lifetime of UAV-WSN system with path loss model based on mmWave operating at 5.7GHz. The results show the system
lifetime at different UAV altitudes considering the two cases of UAV placement: (1) efficient from optimization and (2) centered at the
surveillance region.
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GA such that the lifetime for sensor nodes is maximized.
Figures 7(a) and 7(b) present the top view and the 3D view
for the UAV placement, respectively.

In the optimization problem, the goal is to find an effi-
cient UAV placement such that the lifetime of the UAV-
WSN system is maximized. Generally, WSNs are equipped
with sensors to collect sensory data such as temperature,
humidity, and vibration. These sensors transmit a fixed
amount of information Ci several times during a day. Usu-
ally, sensors operate in two modes: active and inactive
modes [52]. During the active mode, the sensors transmit
the collected data to the base station while during the inac-
tive mode, no data is being transmitted. Therefore, the
power consumption in the inactive mode can be neglected.
In the simulation results, we assumed each CH has a nonre-
chargeable battery with a capacity of 170mAh, and the bat-
tery voltage is Vi = 2v, and the current Ii is variable based on
the transmitted power Pi =ViIi [53].

It is assumed that Ci is fixed for all sensors in the net-
work; thus, the required transmit power Pi to send informa-
tion with data rate Ci is given in Equation (27). The findings
in this paper are presented based into two metrics: (1) life-
time benchmarks with fixed data rate Ci and (2) total infor-
mation transmitted over the entire lifetime (i.e., throughput).

Figure 8 presents the total transmitted information from
five CHs to the UAV via uplink transmission scenario at dif-
ferent UAV altitudes ranging from 75m to 450m. From
Figure 8(a), we notice that at a low altitude of the UAV
(i.e., 75m), the 2D efficient position of the UAV (according
to the surveillance region) that maximizes the total transmit-
ted information is located at ðx = 839, y = 742Þ.

On the other hand, as the UAV altitude increases, the effi-
cient placement of the UAV approaches the centroid of the
CHs (i.e., the center of the surveillance region) which is depicted
in Figures 8(b)–8(f). The reason for this behavior can be
explained due to the distribution of CHs over a nonflat terrain
region as shown in Figure 5(d). Therefore, at low UAV altitude,
the path loss distance will mainly rely on the nature of the ter-
rain. Accordingly, as the UAV altitude increases, the effect of
nonflat terrain decreases until it becomes negligible at a certain
altitude. Specifically, the difference in distance between the CHs
and the UAV becomes very small at high altitudes.

In other words, the GA is a metaheuristic algorithm
which always searches for the optimum UAV position at

(xu, yu, zu). The simulation is started with minimum UAV
altitude which is set to 75m, and the GA algorithm also
begins by looking for the (xu, yu) position on the ground.
The result show that this position is not located at the center
of the surveillance region which is an interesting finding,
and this is because of the impact of the nonflat terrain (i.e.,
hilly terrain). Moreover, the simulation shows that as the
UAV elevate to higher altitude, the (xu, yu) position on the
ground converges to the center of the surveillance region
under consideration. This is also another interesting finding
that indicates the vanishing for the impact of the nonflat terrain
because of the channel path loss and fading. Consequently, this
will result inmaximizing the lifetime and throughput in the case
of lower altitude of the UAV; in contrast, for higher altitude, the
lifetime and the throughput will decrease.

Figure 9 depicts the UAV-WSN system lifetime in terms
of efficient UAV placement compared to its centered place-
ment at different altitudes according to the surveillance area.
Also, it shows that the system lifetime for the efficient place-
ment outperforms the centered placement at the lower alti-
tude level, while the difference becomes less at the higher
altitude. Moreover, it can be noticed that as the UAV alti-
tude increases, the lifetime decreases. The reason for these
outcomes is that different terrain such as rugged hilly terrain
has a high impact on the channel path loss between CHs and
UAV.

Moreover, another extensive performance analysis is
carried out for the proposed work. As a benchmarking, the
path loss model based on microwave bands operating at fre-
quency 2.4GHz, which depicts the results in Figure 9, is
compared with the path loss model based onmillimeter wave
(mmWave) bands operating at frequency 5.7GHz in terms
of UAV-WSN system lifetime. For the scenario of
mmWave-based system, the results are depicted in
Figure 10 and show that the lifetime decreases significantly
as the UAV altitude increases for the both UAV placements:
efficient and centered with better performance for the effi-
cient placement. Generally, both results (Figures 9 and 10)
are consistent and follow the same behavior; however,
microwave-based system has superior performance com-
pared to mmWave-based system.

These results can be justified based on the fact that the
path loss in mmWave frequencies is generally greater than
that in microwave frequencies due to the higher atmospheric
absorption and scattering in the mmWave range. This
higher path loss in mmWave frequencies can affect the life-
time of wireless devices in a significant way compared to
microwave path loss model. Consequently, the higher path
loss in mmWave frequencies can cause wireless devices to
consume more power to maintain a reliable wireless link.
Therefore, the increased power consumption can lead to a
shorter battery life for wireless devices, especially for
battery-operated devices such as IoT devices.

On the other hand, Table 4 presents the UAV-WSN sys-
tem performance at different UAV altitudes and their corre-
sponding efficient placements which result from the GA
algorithm. Specifically, this table depicts the lifetime and
the total throughput of the system for UAV altitudes from
75 to 450 meters. This table also shows that both the lifetime

Table 4: UAV-WSN system performance at UAV efficient
locations.

UAV altitude
(meter)

UAV placement
xi, yið Þ Lifetime (day)

Throughput
(packet × 106)

75 (839,742) 1238:43 5200

150 (460,544) 309:03 1300

225 (456,536) 177:08 750

300 (453,521) 123:84 520

375 (456,502) 92:59 390

450 (464,490) 72:92 300
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and the throughput are inversely proportional to the UAV
altitude. Moreover, as the UAV altitude increases, the 2D
coordinate placement of the UAV converges to the center
location of the targeted surveillance region. Thereby, the
change in UAV altitude will affect both the lifetime and
throughput. This impact is depicted in Figure 11, where
the loss percentage for both lifetime and altitude reach up
to 75% when the altitude change from 75m to 150m. Also,
the loss percentage decreases to reach about 21% for the life-
time and 23% for the throughput when the altitude change
from 375m to 450m. Generally, the overall loss is about
94% when the UAV elevates from 75m to 450m. This find-
ing is interesting since it exposes the significant impact of
the rugged terrain on the performance of the system.
Accordingly, certain settings for the system should be taken
into account related to the type of terrain to achieve efficient
data collection.

5. Conclusion

In this work, the limitations and challenges of WSNs in a 3D
environment were addressed where scanty and insufficient
sensory data is collected. Therefore, an integrated and col-
laborative UAV-WSN system was introduced to encounter
the lack of infrastructure especially in hard-to-reach areas
(i.e., hilly terrain) as well as emergency situations. Since
the efficiency of the data collection is influenced by the life-
span of the sensor networks, an optimization problem was
proposed to maximize the lifetime of the UAV-assisted
cluster-based WSNs. This optimization study was based on
two algorithms: (1) Particle Swarm Optimization (PSO)
which was responsible for clustering approach in the WSN

and (2) Genetic Algorithm (GA) which was responsible for
locating an efficient UAV placement subject to maximize
the system lifetime. The proposed study was presented in a
unique way, unlike previous works. The network and physi-
cal layers were considered in the formulated problem. Per-
formance evaluation for the proposed work was conducted
and analyzed considering two metrics: lifetime and through-
put. The results evinced that with minimum UAV altitude,
the position is not located at the center of the surveillance
region in which this case results in maximum lifetime and
throughput. In contrast, as the UAV altitude increases, the
lifetime and throughput decrease. Thus, the optimization
formulation played a vital role in maximizing the lifetime
and efficiently collecting sensory data by directing the
UAV to efficient placement. On the other hand, the cluster-
ing approach demonstrated a significant effect on the life-
span and data collection at designated UAV altitudes.
Moreover, the UAV-WSN collaborative system showed reli-
able and robust communication links between sensor nodes
and UAV in the 3D regions, particularly in hilly terrain. As a
result, these findings may provide outstanding guidance for
the future design of these systems.

In future work, the plan is to employ multiple UAVs in
the WSNs. Besides, different modulation orders will be
investigated in order to study their impact on both energy con-
sumption and throughput. Also, we intend to study the impact
of different clustering techniques on the operational lifetime.
This may reveal other findings related to the design of UAV-
WSN systems. In addition, a future plan could be to conduct
real experiments and compare their results with simulations.
Also, various techniques such as collision avoidance algo-
rithms and weather conditions will be considered.
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Figure 11: The loss percentage for both lifetime and altitude due to change in UAV altitude.
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