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The Industrial Internet of Things (IIoT) has emerged as a technology that automates industrial processes. In IIoT networks, data
are collected from various nodes and sent to a base station for managerial purposes. However, in the industrial environment,
network reliability and delay are significant challenges due to the high likelihood of packet loss in radio networks. Anycast is a link
layer mechanism that increases reliability and reduces delay by allowing multiple receivers to be connected to a sender, and a single
packet is simultaneously sent to all receivers. The receivers decode the packet based on their priorities, and transmission succeeds if
at least one receiver can decode the packet. Moreover, mechanisms exist to limit the number of duplicates. This paper proposes a
novel centralized anycast aware scheduling algorithm (AASA), which implements anycast based on the 802.15.4e-time-slotted
channel hopping (TSCH) standard and in the stack of the 6TiSCH protocol. The goal of AASA is to improve IIoT networks more
reliable and reduce end-to-end delay. To do this, upon a link failure, AASA chooses an alternative link and the packet is sent
without any delay via that link through the same time slot. We implemented AASA in 6TiSCH simulator and carried out different
scenarios to investigate its efficiency under various conditions. Results from simulations show that AASA effectively increases
reliability by reducing repetitive packet transmissions and, thus, decreasing the delay in packet delivery.

1. Introduction

Industrial Internet of Things (IIoT) or Industry 4.0 is an
industrial revolution based on the Internet of Things (IoT)
to make production lines more scalable and adaptable [1].
These networks are composed of a large collection of wireless
nodes; each node consists of a processor, a power supply
(battery), a radio (for communications and data exchange),
and several physical sensors (temperature, pressure, humid-
ity, place, and so on) [2]. IIoT networks are used for specific
purposes such as environmental surveillance, target tracking,
or alarm systems in an industrial environment. These net-
works can remarkably improve connectivity, productivity,
scalability, time-saving, and cost-effectiveness in industrial
organizations [3].

The major challenges in the IIoT include delay reduction,
power consumption, reliability, and the lifespan of nodes [4].
Unfortunately, in most cases, radio links are not reliable. For

instance, interference between the radio channels may lead
to the loss of the packets transmitted over a link [5]. There is
a need for developing a mechanism for increasing reliability
and reducing delay and energy consumption. To this end, we
should maximize sleeping time to reduce energy consump-
tion. To overcome these limitations, the time-slotted channel
hopping (TSCH) MAC behavioral mode of 802.15.4e was
proposed. TSCH is based on time-slotted mechanism, where
nodes in 802.15.4e-TSCH networks communicate by follow-
ing a time division multiple access (TDMA) [6]. The medium
access control (MAC) layer controls the node’s radio for a fair
access to a shared channel [7]. Therefore, the MAC sublayer
requires an appropriate sleep/awake mechanism. What is
important in these networks is end-to-end reliability, and
adequate resources should be allocated all along the path
between the sender and the receiver while considering the
issue of power consumption. This issue can be managed by
multipath routing in the routing layer [8]. To this end,
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separate paths should be created between the sender and the
receiver to make the network more fault tolerant and increase
its reliability. Thus, the packet is lost only if all the links
between the sender and the receiver failed.

In most IIoT networks, scheduling helps to implement
reliable transmissions. A schedule is defined by the time slot
and channel on which a node should transmit/receive data
to/from its neighbors. The basic unit of bandwidth scheduled
is called cell. In the scheduling matrix, each node is awake in
a specific time interval in which it is either sending a packet
or waiting to receive a packet. To improve reliability, multi-
ple paths may be provisioned between a source and a desti-
nation. However, it also means that some extra time has to be
reserved in the scheduling matrix for these redundant paths
[9], which may be used only if a failure occurs. Alternatively,
additional cells may be provisioned for the retransmissions
to increase the network’s reliability [10, 11]. In this case, the
awake time of nodes increases further, as well as the net-
work’s required resources and power consumption.

The 802.15.4e-TSCH standard explains how the MAC
layer executes a schedule, but it does not specify how such
a schedule is built [12]. IETF 6TiSCH (Ipv6 over TSCH)
working group defined a sublayer built over TSCH called
6top (6TiSCH operational sublayer), which enables schedul-
ing in TSCH networks [13]. This paper investigates the any-
cast mechanism in IIoT and presents a centralized topology
and anycast-aware algorithm (with two and three receivers)
based on the 6TiSCH stack. In particular, we assign several
receivers to the same cell in the scheduling matrix to maxi-
mize sleeping time. This minimizes the number of retrans-
missions. Besides, it also reduces the delay and increases the
reliability, thus making the network fault tolerant. Moreover,
we improve the network lifetime compared with multipath
and retransmission cells. In summary, the contribution of
this paper is as follows:

(1) We propose a centralized topology-aware scheduling
method, where the nodes are scheduled from the
leaves to the root to reduce the end-to-end delay.

(2) We select (up to two) additional parents for any
node. We consider the number of children of other
nodes to balance the energy consumption and the
link reliability to the possible parents to also optimize
the reliability.

(3) We propose an implementation of the anycast mech-
anism with up to two and three parents on the sched-
uling algorithm. In particular, acknowledgments are
used to remove possible duplicates.

(4) We evaluate our scheduling algorithm through
simulations.

The rest of this paper is organized as follows. Section 2
describes some background on 802.15.4e-TSCH, 6TiSCH,
and reviews some recent related works. The proposed solu-
tion is presented in Section 3. A comprehensive performance
evaluation is conducted in Section 4. Finally, a conclusion is
given in Section 5.

2. Background and Related Works

This section briefly details the behavior of the 802.15.4-
TSCH and 6TiSCH standards.

2.1. AnOverview of 802.15.4-TSCH and 6TiSCH.The 802.15.4
standard proposed the TSCH mode enable scheduled access
in multihop topologies. TSCH is a combination of time syn-
chronization, frequency division, and channel hopping. The
time is divided into slot frames or superframes that are
repeated cyclically over time. Each slot frame is divided
into a specific number of equal slots and iterates periodically.
The duration of a time slot is equal to the duration of the
transmission of a data packet and its possible acknowledg-
ment. All nodes in the network share this time structure.

Obviously, all the nodes must be synchronized, so that
they wake up and sleep simultaneously. Fortunately, any
transmission can be used in TSCH for resynchronization
since time offsets are fixed. Thus, it is sufficient to compute
the time difference between the actual and expected times of
arrival. All the nodes maintain an absolute sequence number
(ASN) that counts the number of time slots since the net-
work bootstrapped.

TSCH supports also channel hopping to exploit 16
orthogonal channels. More precisely, a cell is defined in the
scheduling matrix by a time slot and a channel offset. This
channel offset is then derived into a frequency at the begin-
ning of the time slot according to the Equation (1) [10]:

f ¼ ASNþ Channel offsetð Þ%NChannelsð Þ; ð1Þ

where ASN denotes the absolute slot number, channel offset
denotes the channel number allocated to each communica-
tion, and Nchannel is the total number of usable channels.

As aforementioned, this standard defines two types of
cells:

(1) Dedicated cells (colored cells in Figure 1): There is no
contention avoidance mechanism, and the transmis-
sion is triggered without any waiting time. The clear
channel assessment (CCA) may be used by the
sender only to detect external interference; therefore,
these cells should be allocated to noninterfering nodes.

(2) Shared cells: Random access is implemented to solve
contention. However, the backoff is not implemented
inside a cell but rather among cells. More precisely, a
sender which doesn’t receive an acknowledgment
assumes that a collision occurs. It chooses a random
backoff value, and skips the corresponding number
of shared cells before triggering retransmission.
This mechanism is expensive (increasing the delay),
but is required to use any transmission for the
resynchronization.

6TiSCH aims to implement the protocols to execute a low-
power network on top of the protocol stack [11]. The 6TiSCH
stack exploits IPv6 routing protocol for low-power and lossy
networks (RPL) in multihop networks for routing [14]. It also
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defines the 6P protocol to change dynamically the schedule.
6P supports both end-to-end instructions from a controller
and autonomous local negotiations between any pair of nodes
[15]. 6TiSCH defines a minimal configuration (6TiSCH min-
imal) based on which all the nodes stay simultaneously awake
in the shared cells. These cells are used by default to transmit
control packets such as enhanced beacon (EB) or DODAG
information object (DIO) [16].

Many centralized and distributed algorithms have so far
been proposed to overcome the challenges of IIoT concern-
ing the stack of the 6TiSCH protocol [17]. Centralized algo-
rithms need to be aware of the network topology, link
quality, and the traffic produced by every node. These algo-
rithms are dependent on a central controller that runs the
scheduling algorithm and informs all the nodes about it.
Palattella et al. [12] developed a centralized traffic-aware
scheduling algorithm called TASA, which solves scheduling
problems using the graph theory. In contrast to distributed
algorithms, the scheduling algorithm is executed locally
between each two nodes. For instance, 6top scheduling func-
tion (SFX) is a default distributed algorithm in 6TiSCH that
keeps the number of cells at least equal to the number of the
sent packets and relies on the hysteresis function to limit the
number of retransmissions [18].

2.2. Anycast Transmissions. Transmission of data packets
over wireless networks is inherently a broadcast transmis-
sion, so that all the neighboring nodes that are listening to
the network may capture and decode the transmission. In
TSCH, a scheduling matrix is defined detailing the cells
assigned to each link. More precisely, a link consists of a
pair of sender/receiver, using unicast transmissions.

Lampin et al. [19] proposed an opportunistic method of
packet forwarding based on RPL to use long-range low-
reliability radio links. The propose is to assign a transmission
to multiple receivers instead of a single one. However, their
proposition was not tailored for TSCH, with its strict timing
property. The transmissions could be scheduled simulta-
neously within a single time slot if they have the same trans-
mitter. Also, the existing opportunistic schemes for ad hoc
networks, such as ExOR [20], rely on adding a list of poten-
tial forwarders and their associated priorities in each
data packet. Since the IEEE 802.15.4 standard provides a

maximum transmission unit (MTU) of 127 bytes, ExOR
reduces significantly the part reserved for the payload.

Figure 2 depicts a scheduling matrix. As shown in
Figure 2, node A has two parents, C and D, and node B
has also two parents, E and D. With anycast, a node can
use a single time slot to send its packet to its two parents
at the same time. As shown in Figure 2, there are three types
of cells:

(1) Anycast cells correspond to anycast transmissions,
that is, transmissions that go from one sender to
multiple receivers.

(2) Dedicated cells are for one-to-one transmissions, that
is, a single receiver sends data specifically to one
receiver (identical to what is described in 802.15.4e).

(3) Shared cells are allocated for control packets, typi-
cally transmitted in broadcast.

Huynh et al. [21] indicated the efficiency of anycast
scheduling in the reduction of energy consumption without
compromising reliability. They demonstrate that there exists
an optimal scheduling policy in which the same reliability is
obtained with a reduction in energy consumption and delay
if anycast is used at the link layer. Hosni and Theoleyre [22]
developed a routing solution in which k different receivers
can be chosen according to the link packet delivery ratio with
the sender (k-cast). The solution, however, was evaluated by
simulation in a way that the probability of packet loss was
independent for all links. Recently, Hermeto et al. [23] exam-
ined the performance of anycast by means of an experimen-
tal dataset (packet loss/reception for a set of multipoint
links). They simulated a wireless network through replaying
test datasets. Finally, duocast (i.e., anycast with two receivers)
has been implemented in a 6TiSCH stack [24].

To the best of our knowledge, the anycast mechanism has
not so far been implemented on centralized scheduling algo-
rithms with the aim of enhancing reliability and reducing the
delay.

3. Problem Statement and Proposed Solution

As shown in Figure 2, in the anycast mechanism, a sender
transmits its data to two receivers in the same time slot. The
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FIGURE 1: A sample TSCH scheduling matrix.
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priority of transmission is given to the preferred parent and if
acknowledgment is not received from the preferred parent,
this will be recognized by the next parent or parents via the
CCA mechanism and they forward the packet. As shown in
Figure 2, for example, let’s suppose that, for node A, the
preferred parent is C and the secondary parent is D. We
may face the following situations:

(1) C receives the packet initially: It forward the packet
without considering node D and D removes the
packet after receiving it.

(2) C does not receive the packet initially: D which has
already received the packet discovers via the CCA
mechanism that C has not sent acknowledgment to
A and then forward the packet.

(3) D receives the packet initially: It waits to see if C
receives the packet or not. If C receives the packet,
D will remove it; otherwise, it will forward the packet.

(4) None of the parents receives the packet: A retrans-
mission is triggered.

3.1. Description of the Approach. In this section, we describe
our proposed anycast mechanism specifically with two and three
parents on a network with tree topology. The proposed solution
uses centralized scheduling, so that, for each node that initially

connects to the network, the central controller an ordered list of
parents (based on the packet delivery ratio (PDR) of links
attached to it, as well as the number of the children of other
nodes). Next, the network topology (including all the links along
with the nodes and their parents) is given to the scheduling
algorithm and the schedulingmatrix is created using the existing
information for this network.Theprocedure is shown inFigure 3.
According to this figure, our proposed method encompasses
four input parameters. These include new node joining the net-
work, network topology, PDR of all links between the new node
and existing nodes, as well as the number of children associated
with each node. The aforementioned inputs are then sub-
jected to Algorithms 1 and 2, which subsequently facilitate
the operation of routing and selection of new parents for
newly added nodes within the network (as depicted in the
second box). Following this, the network undergoes a trans-
formation resulting in a new topology, including the neces-
sary links and flows. This newly transformed network is
then utilized by the scheduling algorithm—Algorithm 3—
in order to schedule all flows accordingly. Upon completion
of this process, the output is a correctly scheduled algorithm
containing all relevant links.

Our selected topology is similar to the directed acyclic
graph (DAG), as shown in Figure 2, but it is worthmentioning
that our proposed method can be applied to any type of topol-
ogies and it is not limited to only DAG topologies. We assume
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FIGURE 2: A sample TSCH scheduling matrix containing anycast cells.
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that the controller has to allocate the transmissions for a con-
vergecast traffic pattern: the network traffic flows from all the
nodes toward the root node (node F, as shown in Figure 2).

3.2. Parent Selection Algorithm. In 6TiSCH networks, any
node that is not yet connected to the network waits for EB
from other nodes. After receiving the EB, it sends a RPL
connection request (DIS) to the sender node and, on the other

side, the sender node sends a DIO message to the requesting
node. The DIO message contains the rank of each node along
with information about the DODAG. In general, two methods
of parent selection are defined in 6TiSCH:

(1) Using the rank of other nodes: The new node selects
as parent the neighbor with the lowest rank. The new
node then computes its own rank based on the DIO

1: Inputs:

linksPDR: List of all links with their PDR

nodes: List of all nodes in topology

2: Outputs:

parentList: List of three parents, respectively

3: Initialization:

parentsList ← ()

maxChild ← 2 ⊳ maximum number of child a parent can have

maxParents ← 3 ⊳ maximum number of parent a node can have

4: sortedParentsByPDR ← sortParentByPDR (nodes, linksPDR)

⊳ descending sort of all parents by PDR joining node can have

5: for parent 2 sortedParentsByPDR do

6: if numChild(parent) < maxChild then

7: parentsList.insert(parent)

8: if parentList.size()=maxParents then

9: break

10: end if

11: end if

12: End if

ALGORITHM 1: Parent selection in the proposed method.

1: Inputs:

links: List of all links in the topology

nodes: List of all nodes in topology

2: Outputs:

routesList: List of all routes to root, respectively

3: routesList ← ()

4: for node 2 nodes do

5: route ← ()

6: depth ← getDepth(node)

7: route.insert(node)

8: for i ← 1,depth do

9: parent ← route(-1)

10: node ←getParent(parent)

11: route.insert(node)

12: end for

13: routeList.insert(route)

14: End for

15: Return sort(routeList)

ALGORITHM 2: Route list creation in the proposed method.
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of the parent and the objective function. The next
DIO will advertise its novel rank [14].

(2) Using the PDR of links that are connected to the new
node: In this method, a node measures the average
PDR with all its already associated neighbors. Then,
the node selects parents that have link PDR greater
than ACCEPTABLE_LOWEST_PDR value. This
value can be predefined by an administrator [11].

In fact, after the implementation and evaluation of both
methods, we concluded that, under identical circumstances
and in similar topologies, the second method would have a
better performance in terms of delay and reliability. There-
fore, the second method is used to select parents in this
study. But we made a few changes in this method. In 6TiSCH
networks, when the topology is formed and the coordinates
of each node are determined, the RSSI value is calculated
based on the distance of the nodes, and then the initial
PDR value (calculated in the Connectivity.py file in the
6TiSCH simulator) is calculated based on the RSSI. This
PDR is updated during the lifetime of the network and is
not fixed, so parents change during the lifetime of the net-
work (exactly when only rank is used to select the parent).
The selection of parents is described in Algorithm 1. For any
node that connects to the network, the PDR of all its links
with its neighbors is calculated and listed in order from high-
est to lowest (line 4). Next, nodes are selected for the parents
from the sorted list whose children are not more than or
equal to 2 (in order to prevent the formation of queues in
the node’s memory; lines 6–11).

In the default 6TiSCH parent selection method, only the
parent whose communication link with the child node has
the highest PDR is selected. If the same process is used in
parent selection (when the anycast mechanism is used), an

intermediate node may be selected as a parent for multiple
nodes, and another node may not be selected as a parent for
any node.

The improvement made in the presented parent selection
algorithm also considers the number of children when select-
ing the parent, and when the number of children of a node
exceeds a certain value (mentioned as 2), that node is not
selected as parent and the next node in the sorted list of
parents based on PDR is checked. This value can be changed
by the administrator, but to improve network performance,
this value should be larger in larger networks and smaller in
smaller networks.

To make it clearer, we illustrate the process of parent
selection for the topology, as shown in Figure 4. In this
figure, values on edge show PDR and directed edge shows
parent–child relationship nodes and here, for simplicity and
to prevent network complexity, we assume that the maxi-
mum number of selected parents and children is 2. In this
figure, C and D are the first and second parents of node A,
and the new node G seeks to connect to the network and
select two parents for itself. As shown in Figure 4, each edge
is labeled by its corresponding PDR. In the parent selection
phase, all the nodes are put into a sorted list named
SortedParentsByPDR= [D, E, B,C, A] according to the
PDR of the links between them and the new node. Then,
node G starts the parent selection process from the list Sor-
tedParentsByPDR based on the number of children of each
node. The number of children is included both in the DIO
message (only in the packet responded to the DIS (DODAG
information solicitation) that the joining node sends) and in
the destination advertisement object (DAO) message. In
DIO, the joining node knows the number of children of
the parent and in DAO, the root node can know the structure
of the network.

As shown in Figure 4. D has two children; it is not accepted
as the first parent. Instead, E and B are taken as the first and
second parents, respectively. Finally, the network’s topology
takes the form of what is displayed in Figure 5.
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In this article, the number of parents is two and three,
and the maximum number of children of each node is two.
These values depend on the opinion of the network admin-
istrator. One of the things that can be investigated in the
future is determining these values optimally.

3.3. Computing Routes. TSCH relies on a scheduling matrix,
assigning cells to each link (i.e., pair of sender/receiver). In
anycast, several receivers are scheduled in the same cell. All
the receivers are in listening mode before the transmitter
triggers a transmission. A node that is not taking part in
any transmission/reception can sleep without creating deaf-
ness. By minimizing the number of cells assigned to each
node, the controller can reduce the energy consumption
and, thus, can increase the network lifetime. Thus, we have
to carefully select the set of parents for each node to balance
the energy consumption and, thus, improve the network
lifetime (the parent selection algorithm presented in Section
3.2 implies the same thing). Because when choosing parents,
it should be done in such a way that the number of lost
packets does not happen as much as possible because each
packet lost means retransmission and waking up the sender
and receiver nodes, and this itself causes an increase in energy

consumption and a decrease in network life. Obviously,
enough transmission opportunities have to be allocated to
respect a high end-to-end reliability.

We proceed in the following way to create the list of flows
and their routes (Algorithm 2):

(1) We calculate the depth of each source node in the net-
work (line 6). getDepth function calculates the depth of
a node from the path of both of its parents and returns
the maximum depth as the depth of the node.

(2) The links on the path to the root are calculated (lines
8–12). getParent function returns all parents of node,
and algorithm 2 performa a kind of breadth first
search (BFS).

(3) The total path is inserted in the list routeList (line 13).
(4) We sort the routeList to return (line 15). More pre-

cisely, it is sorted according to the length of the flows
in descending order.

Then, we schedule the first flow on this list and then
remove it from the list (Algorithm 3). We reiterate until all
the flows in the routeList have been scheduled.

1: Inputs:

routesList: List of all routes to root, respectively

2: Outputs:

MX: 2D scheduling matrix

3: for route 2 routeList do

4: slot ← getFirstAvailableTimeSlot(MX) ⊳ allocation of the first timeslot

5: for hop 2 route do

6: slot++
7: while slot < slotFrameLength do

8: if timeSlotCollision(hop, slot) then

⊳ Checks whether there is an collision in timeslot or not

9: slot++
10: continue

11: else

⊳ Return available channeloffset for hop(sender, receiver) in timeslot slot

12: channel ← getChannelOffSetAvailable(hop, slot)

13: if channel then

⊳ set hop(sender, receiver) in timeslot slot and channeloffset channel

14: setMX(hop, slot,channel)

15: else

16: slot++
17: continue

18: end if

19: end if

20: end while

21: end for

22: End for

23: Return MX

ALGORITHM 3: Scheduling process in the proposed method.

Journal of Sensors 7



Finally, a list like the following is created in which longer
flows appear first. As shown in the topology in Figure 5, node
G is located at the lowest depth of the tree; therefore, all the
paths from G to F should be scheduled first.

routeList¼ GBE; BDE; EF; DF; EFð Þ; BDE; DF; EFð Þ;ð
ACD; CF; DFð Þ; EFð Þ; DFð Þ; CFð ÞÞ:

ð2Þ
3.4. Adressing Parents in the Packet Header. In the 6TiSCH
protocol stack, in the network layer, and in the 6lowpan
sublayer, when sending the packet and header compression,
source mac and destination mac are added to the packet
header. In the approach presented in this sublayer, the mac
address of the second and third parents (if any) is also added.
Also, an anycast bit is added to identify that the source mac
of this packet (sender) has second and third parents. On the
receiving side, in the 802.15.4-TSCH sublayer, the anycast bit
is first checked, and if this bit is set, the destination macs in
the packet header are compared with the mac of the node
that received the packet. If the mac of the node that received
the packet is among the destination macs, it means that a
MAC layer frame has been received and this frame is deliv-
ered to the higher layer (6lowpan). Otherwise, it will be
dropped. In layer 6lowpan, it is checked whether this packet
should be forwarded or dropped (based on the four situa-
tions mentioned in Section 3).

3.5. Proposed Scheduling Algorithm (AASA). The network
exploits a DAG topology, and we consider the following
constraints when constructing the scheduling matrix:

(1) We schedule longer flows first. Indeed, longer flows cre-
ate more constraints because of the multihop topology.

(2) We maximize the reliability and consider uniquely
dedicated cells. Thus, a node can be either in RX
mode or in TX mode [25].

(3) We try to minimize the end-to-end delay by mini-
mizing the buffering delay. Indeed, any intermediary
hop has to buffer the packet until a TX cell is sched-
uled for the next hop. Thus, consecutive links are
scheduled in consecutive time slots.

We now compute the schedule along the paths computed
through Algorithm 2. We schedule the flows one by one. For
instance, the flow from G is scheduled first because it con-
tains four links. Some of the links are anycast (one transmit-
ter and two receivers), and the other ones are unicast.

Besides, the links have been scheduled back-to-back to
reduce the end-to-end delay: the buffering time is minimized.
We also consider the order constraint specific to anycast.
Indeed, a packet may come from several paths. Thus, the TX
cell has to be scheduled after all the RX cells. It is worth noting
that two transmission opportunities have to be allocated for
the link EF, for instance, because its link quality is lower.

By convention, we consider that the cell (0,0) is reserved
for control packets transmitted in broadcast (Figure 6). All the
nodes have to stay awake to receive EB, DIO, etc. As shown in
Figure 6, for the scheduling of the G-to-F flow, all links (blue
cells) have been scheduled in consecutive time slots.

Next, the second flow of routeList (B to F) should be
scheduled. According to the scheduling matrix, the BDE
link should be scheduled in the sixth time slot (lines 8–10
of Algorithm 3) because nodes B, D, and E were in the TX or
RX mode in the first and second time slots; also, DF and EF
have been scheduled in the third, fourth, and fifth time slots.

Afterward, in the same way, DF and EF are scheduled in
the seventh and eighth time slots.

Then, the flow from A to F should be scheduled. As
shown in Figure 6, the ACD link can be scheduled in the
first time slot. The reason is that none of A, C, or D has been
scheduled in this time slot. Afterward, the CF is scheduled in
the second time slot and DF in the eighth time slot.

Next, the scheduling of the EF, DF, and CF flows is
selected from routeList and scheduled in the appropriate cells.

The presented solution we named anycast aware sched-
uling algorithm (AASA) uses many cells because it schedules
each route separately from the origin to the destination and it
is possible that part of several routes are shared, in which
case the common links are scheduled several times. Also, for
example, when we want to schedule the route from B to F
(orange cells, as shown in Figure 6), we cannot place the BDE
link in cells 1–5 due to time-slot collision; therefore, we
schedule it in cell 6. Finally, although in this algorithm, reli-
ability is improved and latency is reduced, as nodes stay
awake for more time slots, network energy consumption
will increase.

3.6. Compact Mode of AASA. Importantly, to make the
scheduling matrix more compact and make more effective
use of the cells, we could only consider the main parents
when applying constraint 2 for scheduling named compact
mode of anycast aware scheduling algorithm (CMAASA),
which would give us a scheduling matrix, as shown in
Figure 7.
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FIGURE 6: The proposed scheduling matrix for the topology of Figure 5 when traffic is initiated at node G.
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For example, when we want to schedule route from B to
F, we can place BD link in time slot 1 because the B and D are
not scheduled in this time slot. In fact, in this algorithm, only
the first parent is considered when checking interferences,
but both parents (if any) are scheduled. For further explana-
tion, we consider two scenarios:

(1) In the first scenario, we assume that the packet sent
from node B is not received by the first parent (D)
but is received by the second parent (E). In this case,
this packet remains in the queue of a node and must
be forwarded in time slot 2 or 5. In these time slots,
there is a packet of node G and the data sent by node
E itself, so the sending of packet B is delayed.

(2) In the second scenario, we assume that the GF flow is
not received at the first link by the first parent (E) but
by the second parent (B), the packet must be for-
warded by node B. As a result, it should wait until
the next slot frame and the first time slot because it
has been scheduled only in the first time slot of the
BD (E) link. At the same time, however, B has its own
packet on the transmission queue and, therefore, the
packet received from G has to wait in B’s queue
before being sent in the next slot frame. This will
increase delay in the transmission process.

Therefore, in the CMAASA, although the number of
used cells will decrease, the amount of delay will increase.

4. Performance Evaluation

We implemented the scheduling process described in
Algorithm 3 (AASA and CMAASA). We implemented two

scenarios using the parent selection algorithm presented in
Section 3.2:

Scenario 1: We create a static topology with 16 nodes
(Figure 8). We evaluate and discuss the performance of
the compact mode of AASA.
Scenario 2: Twenty topologies are generated randomly. The
average of the execution results is taken as the final results.
We study the impact of the network size (number of nodes)
and of the packet interarrival. In this scenario, we use
AASA to schedule the links.

The number of parents is a parameter of the simulation
(comprised between 1 and 3). We consider a convergecast
traffic pattern with constant bitrate flows.

We performed the simulations using the 6TiSCH standard
simulator [11], which is an event-based simulator based on
Python. This simulator was developed by the IETF 6TiSCH
work group and is used as a simulator for standard experiments.
The source code of our simulation is available [26]. Table 1
shows the simulation parameters.

We evaluate our proposed solution in terms of the fol-
lowing metrics:

GE(B) EF DF CF EF DF EF

BD(E)

AC(D)
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FIGURE 7: The compact scheduling matrix for the topology of Figure 5.
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FIGURE 8: Part of static 16 nodes topology.

TABLE 1: Simulation parameters.

Value Parameter

6TiSCH Simulator
1, 2, 3, 4, and 5 pkt/s CBR
DoDAG (tree) Topology
Pister–Hack model Propagation model
8, 12, 16, and 20 Topology size
Converging toward the root Traffic pattern
10ms Time slot duration
101 time slots Slot frame length
16 Number of physical channel
OF0 Rpl OF
1 pkt/60 s DIO transfer rate
9 hr Simulation time
6.4 μC Idle listen
54.5 μC TxDataRxAck
49.5 μC TxData
32.6 μC RxDataTxAck
22.6 μC RxData
0.0 μC Sleep
2,821mAh Battery capacity
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(1) End-to-end PDR: Ratio of the number of packets
received correctly by root to the number of packets
produced by the sources.

(2) End-to-end delay: Amount of time between the gen-
eration of the packet and its reception by the root
node.

(3) Network lifetime: We consider the first death. Thus,
we measure the amount of time until one node out of
energy.

(4) Average number of packets in the queue: We count
the number of packets that each second-level and
lower nodes have in their queue.

4.1. Scenario 1: Static Topology. We first measure the impact
of the number of parents in the DAG (Figure 9). In this
section, we have compared the proposed algorithms with
the MSF algorithm that is implemented by default in the
6TiSCH simulator. MSF defines both the behavior of a
node when joining the network and how the communication
schedule is managed in a distributed fashion. As shown in
Figure 9(a), our scheduling algorithm schedules efficiently
the links back-to-back even in AASA. Thus, we greatly
reduce the end-to-end delay. Having a compact schedule
has a cost on the delay. Also, as can be seen, the MSF algo-
rithm has a higher delay than the proposed algorithms. This
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FIGURE 9: Evaluation of static topology for two scheduling implementations: (a) delay; (b) network lifetime; (c) packet delivery.
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difference is even greater when only one parent is used
because adding another parent will prevent retransmission.
Therefore, the difference in end-to-end delay between the
AASA and CMAASA will become smaller but not disappear
since sometimes all the parents do not receive the packet
simultaneously and this will cause retransmission. As in the
AASA repetitive paths are again scheduled in the same slot
frame, the packet will be retransmitted immediately in the
same slot frame at the next link without waiting for the next
slot frame (a case where CMAASA is used for scheduling).
Therefore, the delay will be reduced.

Figure 9(b) shows the average network lifetime. The net-
work lifetime is longer when the CMAASA is used because
the scheduling algorithm allocates fewer cells to each of link
without tentative cells. Since a node can sleep during the
unscheduled cells, the CMAASA decreases energy consump-
tion. Also, it can be seen in MSF that the network lifetime is
less than that of CMAASA, because in MSF, the allocation of
cells in the scheduling matrix is random and there is no
particular order, so the number of retransmissions will be
more. Obviously, lower reliability and a larger delay are the
prices to pay for this energy gain. We can note that the
decrease in the network lifetime remains acceptable for two
parents or less. After three parents, more receivers are sched-
uled, that have to stay awake, and the additional parents are
very seldom used.

In this study, the destination of all packets is the sink
node. Using the anycast mechanism, if a link fails, the packet
can be sent through an alternative link and transmitted
through the same time slot. Therefore, this feature guaran-
tees high reliability in the transmission of packets. As shown

in Figure 9(c), the network’s reliability is higher when AASA
is used. The reason is that, in this algorithm, a packet that is
lost has much more cells available for retransmission and
will have higher chances of being delivered to the sink node.
Also, adding a new parent will increase the network’s reli-
ability because packet loss is sometimes even probable in
retransmissions and this could be prevented by the second-
ary and third parents. Thus, we can maintain a CMAASA
and reduce the retransmissions with only a small impact on
the network lifetime.

4.1.1. Number of Queue Packets of Multiparent Nodes. We
measure the queue size of the different nodes. We consider
three modes for this scenario: one parent, two parents, and
three parents and use AASA for scheduling method. The
topology size is 16 nodes, and packet transmission rate is
2 pkt/s. The rest of the parameters are the same, as shown
in Table 1. Figure 8 shows a part of the network topology
focusing on node 5. In this part, we want to check the num-
ber of packets in this node’s buffer, as shown in Figure 10. In
this figure, the average number of packets in the queue of
node 5 in every 10 slot frames is shown over time. For exam-
ple, between slot frames 500 and 1,000, the average number
of packets in the buffer of node 5 is much higher in single-
parent mode than in two- and three-parent modes. As shown
in Figure 10, the number of packets in the queue may present
a few bursts with only one parent. Indeed, retransmissions
may occur, and the node has to postpone its retransmissions
to the next slot frame. The queue may possibly accumulate
the packets before the retransmission succeeds. Inversely,
withmore parents, the retransmissions are much less frequent.
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We remind that a transmission fails if no parent is able to
decode it. Thus, considering multiple parents helps to reduce
themaximumqueue size, which corresponds to the worst case.
Thus, anycast helps to reduce the constraints on the queue
length, and the number of buffer overflows.

4.2. Random Topology. In this scenario, we make use of the
AASA algorithm.

4.2.1. Impact of Topology Size (Number of Nodes). The aver-
age end-to-end delay in relation to the topology size is shown
in Figure 11. Figure 11(a) indicates that, as the number of
network nodes increases, the end-to-end delay increases as

well whatever the number of parents. However, exploiting
multiple parents reduces the end-to-end delay. This is
because with the increase in the number of parents, the
number of packet loss decreases and as a result the number
of retransmissions decreases again, which leads to lower
delay in three and two parent modes compared to single
parent mode. The counterpart is an impact on energy con-
sumption (Figure 11(b)). Indeed, more receivers are sched-
uled for each transmission and have to stay awake to decode
the packet. This has an impact on the network lifetime.
Inversely, more parents mean also fewer retransmissions.
On average, the network lifetime is slightly decreased with
a larger number of parents.
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FIGURE 11: Impact of topology size: (a) average delay; (b) average network lifetime; (c) average PDR.
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However, we consider this is the price to pay for high
reliability achieved by anycast (Figure 11(c)). Indeed, a larger
number of receivers means that fewer packets are lost. We
need fewer retransmissions to obtain high end-to-end reli-
ability. Even with 20 nodes in the network, we are able to
provide reliability higher than 99%, which should be suffi-
cient for most applications. If we want to consider even
higher reliabilities, our scheduling algorithm may allocate
retransmission opportunities when allocating cells.

4.2.2. Impact of Packet Rate. The average end-to-end delay in
relation to the packet send rate, as shown in Figure 12(a),
indicates that, as the packet rate grows in the network, the

end-to-end delay increases. Indeed, more packets imply
more collisions and retransmissions. Thus, the buffering
delay increases as well. Exploiting multiple parents helps to
reduce the delay: retransmissions are only due to collisions
and not due to a low link quality. Indeed, exploiting multiple
receivers decrease the probability to not be able to decode the
packet at the receiver side.

As shown in Figure 12(b), as the network’s packet rate
grows, its lifetime decreases. Indeed, more packets have to be
transmitted, which increases mechanically the energy con-
sumption. When the packet send rate increases, the possibil-
ity of collision in the network increases, and as a result, the
number of retransmissions increases. This condition causes
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the nodes to stay awake in more time slots, which leads to an
increase in energy consumption. When multiple parents are
used, the energy for maintaining several receivers awake
increases. Thus, the network lifetime decreases. However,
this loss seems acceptable with regard to the improvement
in reliability and end-to-end delay. When the number of
packet loss decreases with the increase of the number of
parents, it increases the reliability in the network. As shown
in Figure 12(c), the number of packet losses is significantly
decreased with multiple parents. However, the reliability in
the network decreases with the increase in network latency.
The reason is clear. As mentioned, with the increase in the
number of packets sent per unit of time, the amount of
collision in the network increases; as a result, the value of
PDR decreases, which means that fewer packets reach their
destination with the increase of interference in the network.

4.3. Energy Consumption. In this section, we present the
energy consumption model for our proposed model. Accord-
ing to the given reliability, we investigate the average current
consumption for the successful transmission of packets in
different scenarios of one, two, and three parents. Table 1
shows the amount of current consumed in terms of micro-
coulombs for each state (sleeping, awake, idle, transmitter,
receiver, transmitter–receiver Ack, receiver–transmitter Ack)
of the node. Each state is explained separately as follows:

Idle: Time slot during which a node listens for data but
receives none.
TxDataRxAck: A time slot during which the node sends
some data frame and expects an acknowledgment
(ACK).

TxData: Similar to TxDataRxAck, but no ACK is expected.
This is typically used when the data packet is broadcast.
RxDataTxAck: A time slot during which the node receives
some data frame and sends back an ACK to indicate
successful reception.
RxData: Similar to the RxDataTxAck but no ACK is sent
(for a broadcast packet).
Sleep: Time slot during which the node’s radio stays off.

In the proposed model to calculate the current consump-
tion, the total number of slots when the node in each which
of the introduced modes, has been multiplied by the corre-
sponding value of the same state and the results are added
together.

Charge¼ Idle listen slots × 6:4; ð3Þ

Chargeþ¼TxDataRxAck slots × 54:5; ð4Þ

Chargeþ¼TxData slots × 49:5; ð5Þ

Chargeþ¼RxDataTxAck slots × 32:6; ð6Þ

Chargeþ¼Rx slots × 22:6; ð7Þ

Chargeþ¼Sleep slots × 0: ð8Þ

Next, the value of charge is divided by the total time the
node has been in the network to calculate the average amount
of current consumed by the node in terms of Microamp.
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avgCurrent¼ Charge
asn × tschSlotDuration

: ð9Þ

To calculate the energy consumed in Watts, the amount
of current consumed must be multiplied by the voltage:

Consumed energy ¼ avgCurrent × Voltage: ð10Þ

In the following, the amount of energy consumed for the
rip sensors [27] is used in the IoT; based on the energy
consumption calculation model, we will check the average
energy consumption for transmitting packets based on dif-
ferent PDRs in one, two, and three parent scenarios. The
simulation is based on the parameters, as shown in Table 1.
The packet transmission rate is 5 pkt/s, the topology size is
20, and the algorithm used is AASA. In this simulation,
values between 0.91 and 1 for network reliability are given
manually.

As shown in Figure 13, the slope of the line correspond-
ing to one parent is higher and the lowest slope is related to
three parents. The reason is clear. In the case where all nodes
have a parent, the number of retransmissions increases rap-
idly when network reliability decreases and the nodes stay
awake in more time slots, which according to the provided
energy consumption model, the energy consumption of the
nodes will increase at a faster rate. But in the two-parent and
three-parent modes, retransmissions rarely happen and the
energy consumption of the nodes does not change signifi-
cantly. It can also be seen that, in general, the energy con-
sumption related to the three-parent mode is more than the
other modes. Because, as mentioned in Sections 4.1 and 4.2,
adding a parent increases the current consumption of nodes
and ultimately reduces the network lifetime.

5. Conclusion

This paper implemented and evaluated an anycast mecha-
nism on a centralized scheduling algorithm based on the
802.15.4-TSCH and 6TiSCH protocol stack. We propose as
well a specific scheduling algorithm to take benefit from the
anycast feature. Indeed, each transmitter sends its packet
simultaneously to two or more receivers in a single time
slot. If the packet acknowledgment is not received from the
receiver with higher priority, the second, third, etc., receiver
will decode the packet, send its acknowledgment to the
sender, and forward the packet further. Our findings suggest
that by using the anycast mechanism end-to-end delay is
significantly reduced while the network’s reliability increases.
Since several nodes are awake instead of two nodes in each
cell, these improved performances have a negative impact on
the network lifetime: that’s the price to pay for high reliability.

In future work, we expect to measure the performance of
our system in a real environment (also known as testbed).
We also expect to investigate the time–variant characteristics
of the environment and how to adapt the schedule to
changes, when, e.g., the link quality varies over time. Anycast
should help us to keep high reliability: even if the link quality

of a specific link evolves, the other parents may serve as
fallback alternatives, until the schedule is patched.
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