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Identifying objects in surveillance and reconnaissance systems with the human eye can be challenging, underscoring the growing
importance of employing deep learning models for the recognition of enemy weapon systems. These systems, leveraging deep
neural networks known for their strong performance in image recognition and classification, are currently under extensive
research. However, it is crucial to acknowledge that surveillance and reconnaissance systems utilizing deep neural networks are
susceptible to vulnerabilities posed by adversarial examples. While prior adversarial example research has mainly utilized publicly
available internet data, there has been a significant absence of studies concerning adversarial attacks on data and models specific to
real military scenarios. In this paper, we introduce an adversarial example designed for a binary classifier tasked with recognizing
helicopters. Our approach generates an adversarial example that is misclassified by the model, despite appearing unproblematic to
the human eye. To conduct our experiments, we gathered real attack and transport helicopters and employed TensorFlow as the
machine learning library of choice. Our experimental findings demonstrate that the average attack success rate of the proposed
method is 81.9%. Additionally, when epsilon is 0.4, the attack success rate is 90.1%. Before epsilon reaches 0.4, the attack success
rate increases rapidly, and then we can see that epsilon increases little by little thereafter.

1. Introduction

In amilitary context, determining the classification of an adver-
sary’s weapon system holds significant importance when strat-
egizing for an operation. This is due to the fact that by
successfully identifying the enemy’s weapon system in advance,
it becomes possible to gain insight into their intentions and
subsequently devise effective countermeasures for the benefit of
friendly forces.

In the military, a variety of surveillance systems are
employed for the detection and classification of weapon sys-
tems. These surveillance systems gather information encom-
passing video footage, audio data, and signals, which is then
subject to analysis through human interpretation, typically
performed by surveillance officers or analysts. Nonetheless,
there are limitations to visually identifying and categorizing
weapon systems such as tanks and helicopters, especially

when they are maneuvering at high speeds in military sce-
narios. Furthermore, it is anticipated that relying solely on
human-operated surveillance systems will become increas-
ingly constrained in situations where troop numbers are
diminishing, and the precise monitoring of weapon systems
becomes paramount. Hence, there is a pressing need for
automatic weapon system identification technology in the
military, which can detect and classify objects employing
machine learning methodologies, thereby reducing reliance
on human visual feedback.

Numerous research endeavors are presently underway to
discern objects within image data procured via surveillance
systems. Among these efforts, deep neural networks have
exhibited noteworthy proficiency in the task of identifying
weapon systems via image classification. However, it is worth
noting that deep neural networks [1] are susceptible to vul-
nerabilities posed by adversarial example attacks [2–7].

Hindawi
Journal of Sensors
Volume 2024, Article ID 1124598, 9 pages
https://doi.org/10.1155/2024/1124598

https://orcid.org/0000-0003-1169-9892
mailto:hkwon.cs@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Adversarial examples involve injecting slight perturbations
into the original data, imperceptible to the human eye but
sufficient to cause misclassification by the model. Conse-
quently, video data integrated with adversarial examples
could potentially lead to misinterpretations by friendly clas-
sifier deep neural networks.

Nonetheless, prior research on adversarial examples has
largely overlooked the examination of adversarial attacks on
complex imagery related to real-world military scenarios
involving weapon systems. This paper addresses this gap by
conducting a comprehensive investigation into adversarial
example attacks, specifically targeting deep neural networks
responsible for classifying attack helicopters and transport
helicopters—critical components of military operations.

In this paper, we conducted an analysis of the adversarial
example technique applied to a model designed for classifying
different types of helicopter models. This method involves the
generation of adversarial examples by introducing minimal
noise to the original samples used by the helicopter classifica-
tion model, resulting in misclassifications by the targeted
model. The contributions of this paper can be summarized as
follows: First, we introduced an adversarial example approach
tailored to helicopter classification models relevant to military
scenarios, elucidating the method’s structure and underlying
principles. Second, we performed diverse image analyses on
adversarial examples and conducted an in-depth examination
of classification probability values. Third, we gathered an actual
military dataset and evaluated the method’s performance.
Furthermore, we verified the efficacy of adversarial examples
when applied to models responsible for classifying real-world
helicopters.

The remainder of this paper is structured as follows:
Section 2 provides an introduction to the target model and
reviews previous research pertaining to adversarial examples.
Section 3 presents the methodology employed in generating
adversarial examples. Section 4 encompasses the experimen-
tal procedures and evaluation. Section 6 engages in discus-
sions concerning the implications of adversarial examples.
Lastly, Section 7 offers concluding remarks.

2. Related Work

This section describes related studies on models used in
helicopters that are target models and related studies on
adversarial examples.

2.1. Contents on the Convolutional Neural Network. The
classification model for helicopter types utilizes a convolu-
tional neural network (CNN) as its foundation, as referenced
in prior studies [8, 9]. CNN is a model that enhances perfor-
mance by extracting specific image features through a modi-
fied architecture within a deep neural network. First, CNN
distinguishes itself from traditional neural networks in terms
of processing speed. Unlike conventional neural networks,
which experience exponential increases in processing time as
the parameter size grows, CNN mitigates computational
demands by not connecting all perceptrons, allowing for
faster learning. Second, image data are typically 3D, compris-
ing height, width, and color components. The key difference

lies in whether spatial information within image data are
harnessed during the learning process. Traditional neural net-
works vectorize 3D data into 1D format for input. This trans-
formation results in the loss of spatial information that closely
relates to the data, including color. Conversely, CNN retains
the spatial characteristics of image data throughout its layers,
enabling the utilization of spatial information. Consequently,
CNN, characterized by reduced computational complexity,
swift performance, and the ability to consider spatial attri-
butes of image data, has gained widespread adoption in image
classification methodologies.

2.2. Content about Adversarial Examples. The concept of
adversarial examples was initially introduced by Szegedy
et al. [2]. Adversarial examples are samples that introduce
minimal perturbations to original data, rendering them indis-
tinguishable to humans but causing misclassification by deep
learning models. The fundamental approach to generating
adversarial examples involves iteratively updating the mini-
mal perturbations through multiple queries to the target
model, ultimately producing a sample that induces model
misclassification with the smallest possible perturbation. To
quantify theminimal perturbation, variousmetrics such as L1,
L2, and L1 are used to measure the difference between the
adversarial example and the original sample. Therefore, a
prerequisite for an adversarial example is that it must intro-
duce the smallest perturbation to the original sample while
satisfying the condition for model misclassification. The min-
imal perturbation criterion ensures that the noise remains
imperceptible to the human eye. In the case of typical color
images, this noise characteristic is challenging for humans to
discern. The condition that triggers model misclassification
typically involves a point located outside the decision bound-
ary of the original class. As a result, adversarial examples are
generated outside this decision boundary while minimizing
distortion relative to the original samples. There are different
perspectives for categorizing adversarial examples, with some
studies emphasizing the distortion between original samples,
while others focus on adversarial examples that are misclassi-
fied concerning the model’s decision boundary. Classification
of adversarial examples can also be based on the level of
information about the targeted model and the intended goal
of the attack, with this method categorizing them accordingly.

2.2.1. Information for the Target Model. Adversarial examples
are categorized based on the level of information available about
the target model, resulting in two main divisions: white box
attacks [10–14] and black box attacks [15–18]. A white box
attack occurs when the attacker possesses complete knowledge
about the target model. This encompasses awareness of the
model’s architecture, parameters, and the probability values
associated with its outputs. Conversely, a black box attack is
executed without any prior information about the target model.
In the case of black box attacks, some studies consider the
model’s output probability values as a black box, attempting
to infer these values for specific input data. Generally, if the
attacker can ascertain the probability values for each class
with black box access, it becomes relatively easy to generate
adversarial examples, making the assumption of unavailable
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probability values a more challenging scenario. Practically
speaking, black box attacks are somewhat closer to real-world
conditions compared to white box attacks. Since white box
attacks can achieve nearly 100% success rates in the realm of
image classification, research efforts have shifted toward
developing effective black box attack strategies. Within black
box attacks, several techniques have emerged, including uni-
versal perturbation [19, 20], transfer attacks [21–23], and
substitute network methods [24]. First, the universal pertur-
bation method, although introducing strong noise, aims to
mislead the attacker into classifying the data as the desired
target class by adding specific noise to all original data. This
technique utilizes noise that maximizes the gradient loss func-
tion across multiple models, adding noise to original samples
to elevate the probability of another class appearing in the
final softmax layer of deep learning models, thereby crafting
adversarial examples susceptible to attack in a general context.
Second, transfer attacks involve creating adversarial examples
from one model that exhibit some degree of attack efficacy
against an unknown model. By enhancing and diversifying
the ensemble adversarial examples, which originally targeted
local models, these attacks achieve higher success rates against
any other model. Transfer attacks consistently yield high suc-
cess rates, often stemming from the observation that models
optimized for specific data tend to exhibit similar decision
boundaries. Lastly, the substitute network method leverages
the fact that when the target model operates as a black box, a
closely resembling substitute network is first created. Adver-
sarial examples generated for this substitute network subse-
quently exhibit some attack effect against the black box
model. In related research, it was demonstrated that a similar
model could be constructed for MNIST through 200 queries,
illustrating the practical attack potential against real-world
image machine learning services.

2.2.2. Purpose of Recognition of Adversarial Example. Adver-
sarial examples can be categorized into targeted attacks [10]
and untargeted attacks [25], depending on the attacker’s
objectives. Targeted adversarial examples are crafted to be
misclassified as a specific class predetermined by the attacker,
while untargeted adversarial examples are designed to be
misclassified as any random incorrect class, deviating from
the original class. Generally, untargeted adversarial examples
are considered easier to generate, featuring less distortion,
while targeted adversarial examples represent a more sophis-
ticated form of attack, as they aim for misclassification into a
class specified by the attacker. In most cases, the research on
adversarial examples follows a sequence, starting with inves-
tigations into untargeted adversarial examples before delving
into targeted adversarial examples once a sufficient body of
research results has been accumulated.

3. Proposed Scheme

An adversarial example is created by introducing slight per-
turbations to test data, specifically targeting a pretrained
model. As illustrated in Figure 1, these adversarial examples
are generated by adding minimal noise to the original data,

taking into account the classification scores produced by the
target model.

This methodology can be expressed mathematically as
follows: The operation function of the local model, denoted
as ML, is represented as fLðxÞ :. The local model ML is trained
using the original training dataset. Given the pretrained local
modelML, the original training data x2X, their correspond-
ing class labels y2Y , and the target class labels y2Y , we
solve an optimization problem to create a targeted adversar-
ial example x:

x : argmin
x

L x; xð Þ s:t: fL xð Þ ¼ y∗; ð1Þ

where Lð⋅Þ: represents a distance metric between the original
sample x and the transformed example x. The notation
argminx FðxÞ : signifies that FðxÞ: is minimized with respect
to the value of x. The function fLð⋅Þ : is the local model’s
classification function, determining the input’s class label.
To generate these x examples, each adversarial example is
produced using the fast gradient sign method [26].

The proposed method generates x∗ using the L1 norm
with the following equation:

x∗ ¼ x þ ɛ ⋅ sign rlossF;y xð Þ
� �

; ð2Þ

where y represents the original class, and F denotes the
model’s operation function. In this process, the gradient of
the loss with respect to the input x is calculated, and the
result is used to update x based on the ɛ value, resulting in
the creation of x∗. Despite its simplicity, this method demon-
strates strong performance.

4. Experimental Setup and Results

We demonstrate the effectiveness of generating adversarial
examples for military models specialized in classifying heli-
copters through experimentation. This section outlines the
experimental configuration used to assess the performance.

4.1. Datasets. The dataset was compiled using publicly avail-
able helicopter image data from the Internet. It included
images of both attack helicopters and transport helicopters.
Specifically, the attack helicopter used was the Hughes AH-64
model known as the Apache, while the transport helicopter
was the Sikorsky Airlines UH-60 (S-70A) model referred to as
the Black Hawk. Each helicopter’s dataset comprised a total of
1,000 images, with 500 images collected evenly for each type
of aircraft. Out of these, 400 images per category were allo-
cated for training purposes, while the remaining 100 images

Original sample x x∗

Original class y Transformer Target model

Loss function

FIGURE 1: Overview of the proposed scheme.
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(equivalent to 20% of the total image data) were reserved for
testing and evaluation.

4.2. Model Configuration. The target model was constructed
using a CNN. Table 1 illustrates the architecture of the CNN
model employed for helicopter-type classification. Compris-
ing a total of 17 layers, excluding the input layer, it encom-
passes four convolutional layers for feature extraction from
image data, four max-pooling layers to filter out less relevant
features, and one layer responsible for converting input
information into 1D format. Additionally, the model incor-
porates a flatten layer, five fully connected dense layers for
input–output connections, and three dropout layers, applied
to specific perceptrons to mitigate overfitting. Table 2 shows
the model parameters. This model was trained using 800
training data samples, achieving an impressive classification
accuracy of 98.9% on 200 test data samples.

4.3. Generation on Adversarial Examples. Within the meth-
odology, we generated 1,000 adversarial examples for each
approach. These adversarial examples were crafted with the
aim of causing misclassification into a class distinct from the
original class, and we employed the Adam optimization algo-
rithm [27] during the optimization process.

5. Experimental Results

The term “attack success rate” denotes the percentage at which
an adversarial example is erroneously classified by themodel as
the specific target class chosen by the attacker. For instance, if
93 out of 100 adversarial examples are classified as the attack-
er’s chosen class, the attack success rate would be 93%.

Figure 2 provides illustrations of original samples and
their corresponding adversarial examples. In the figure, the
original sample is correctly identified as an Apache by the
model. However, the adversarial example, which introduces
minimal noise to the original sample, is misclassified by the

model as a Black Hawk. Remarkably, this adversarial exam-
ple, although correctly recognized as an Apache by humans,
is erroneously classified as a Black Hawk by the model.

Moving on to Figure 3, it showcases examples of adver-
sarial examples generated with varying epsilon values rang-
ing from 0.1 to 0.9. The figure visually demonstrates that as
the epsilon value increases, the level of distortion gradually
intensifies. Nonetheless, it is important to note that adver-
sarial examples manage to introduce adversarial noise with-
out compromising the original sample’s content.

Figure 4 provides insights into the attack success rate of
adversarial examples in relation to the epsilon value. As
depicted in the figure, as epsilon increases, the attack success
rate of the adversarial example also rises. From epsilon
0.1–0.9, the average attack success rate of the proposed
method is 81.9%. Additionally, when epsilon is 0.4, the attack
success rate is 90.1%. Before epsilon reaches 0.4, the attack
success rate increases rapidly, and then we can see that epsi-
lon increases little by little thereafter.

Additionally, according to the reviewer’s comment, we
compared attack possibilities and performance by applying
styless [29], styless-mi [30], styless-mi-ti [31], and styless-
mi-ti-di [32] methods. The styless method was applied as a
comparison method. The styless method is a method of per-
forming a transfer attack by adding an inject style layer to the
model and modifying the style of the original sample. This
method has the advantage of being able to attack by applying
several types of styles.

Figure 5 shows examples of adversarial samples generated
by the proposed method, styless, styless-mi, styless-mi-ti, and
styless-mi-ti-di methods. The proposed method shows the
adversarial example generated after setting epsilon to 0.4. In
the figure, we can see that for each method, adversarial sam-
ples are generated by adding minimal noise to the original
samples. Table 3 shows the attack success rate of adversarial
samples generated by the proposed method and the styless,
styless-mi, styless-mi-ti, and styless-mi-ti-di methods. The
proposed method shows an attack success rate of 90.1%
when epsilon is 0.4. From the table, the styless-mi-ti and
styless-mi-di methods have a higher attack success rate than
the proposed method. However, in Figure 5, we can see that
relatively more noise is reflected in the original sample in the
styless-mi-ti and styless-mi-di methods. Additionally, the
proposed method can be adjusted to increase the attack suc-
cess rate by increasing the epsilon value. Therefore, it can be

TABLE 1: Model architecture.

Layer type Shape

Conv. with ReLU (224, 224, 64)
Max pooling (112, 112, 64)
Conv. with ReLU (112, 112, 128)
Max pooling (2, 2)
Conv. with ReLU (56, 56, 128)
Max pooling (2, 2)
Conv. with ReLU (28, 28, 128)
Max pooling (2, 2)
FC with ReLU (100,352)
FC with ReLU (1,024)
FC with ReLU (256)
FC with ReLU (256)
FC with ReLU (64)
FC with ReLU (16)
Softmax (2)

Conv. means convolutional layer. FC indicates the fully connected layer.

TABLE 2: Model parameters.

Parameter Values

Optimizer Adam [27]
Learning rate 0.1
Momentum 0.9
Delay rate —

Dropout [28] 0.5
Batch size 128
Epochs 20
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seen that there is a trade-off between the noise added to the
original sample and the attack success rate.

6. Discussion

In this section, we address the assumptions, advantages, attack
considerations, applications, and limitations and future work of
the proposed method.

6.1. Assumption. The method operates under the assumption
that the attacker is conducting a white box attack on the
target model. In this context, the attacker is required to pos-
sess knowledge about the model’s architecture, parameters,
and classification scores. This information is crucial for gen-
erating adversarial examples, as it is necessary to be aware of
the classification scores associated with each class.

6.2. Advantage and Contributions of the Proposed Method.
The advantage of this paper is that it directly constructed a
helicopter dataset related to the military. Helicopter data
published on the Internet were collected, and each image
was labeled and verified by a professional soldier. Addition-
ally, the proposed method is a study applying adversarial
examples to military images. In existing research, adversarial
example studies using military images were insufficient. In
that respect, it is meaningful as a study on security and trust

related to artificial intelligence models in the defense field.
Lastly, image analysis of adversarial examples was performed
by presenting the attack success rate and degree of image
distortion according to epsilon.

The contributions of the proposed method include data
aspects, helicopter classification model construction, and
adversarial example generation for the helicopter classifica-
tion model. In terms of data, we conducted experiments by
constructing a dataset of military-used helicopter copters.
We believe that building datasets in the field of artificial intel-
ligence is also meaningful research and has contributions.
This is because building a dataset and benchmarking, it is
recognized bymajor academic societies and journals and pub-
lished as a paper. Therefore, the contribution of the proposed
method is that helicopter copters used in military affairs were
collected by soldiers with expertise. Second, in terms of heli-
copter classification model, a CNN was constructed and
trained to construct a military helicopter model. Third, we
proposed adversarial sample generation for the helicopter
copter model using the fast gradient sign method. The pro-
posed method calculates the model’s loss function for the
input image and then adds adversarial noise to the input
image in a direction that increases the value of the loss func-
tion. This method is a simple but effective adversarial sample
that can cause misidentification of the target model.
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FIGURE 2: An example of the original sample and the adversarial example: (a) original sample and (b) adversarial example.
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6.3. Attack Considerations. The target model employed in
this study serves as a binary classifier, distinguishing between
mobile helicopters and transport helicopters. Our focus in
this paper has been on generating adversarial examples

specifically tailored for a binary classifier model. However,
it is worth noting that generating adversarial examples capa-
ble of causing misclassification by the binary classifier proved
to be more challenging. Despite employing the iterative fast
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FIGURE 4: The attack success rate of the adversarial examples according to epsilon ɛ.
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FIGURE 3: An example of adversarial examples according to epsilon ɛ: (a) original, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f ) 0.5, (g) 0.6, (h) 0.7, (i) 0.8,
and (j) 0.9.
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gradient sign method for attacking the binary classifier
model, the results indicated that the attack was not particu-
larly effective. Nonetheless, it is important to emphasize that
even for a binary classifier model, successful attacks can still
be executed by generating adversarial examples through the
fast gradient sign method.

In addition, it is meaningful that a binary classifier was
created by learning a target model by collecting helicopter
datasets related to military conditions. It is not a dataset
published on the Internet, but a dataset that is being applied
in an actual military situation is directly collected and a
model is developed. And it seems that there is a contribution
point compared to other papers in the creation of adversarial
examples for these models.

In terms of evaluation metrics, we used attack success
rate as the evaluation metric in this paper. The attack success
rate is the number of successful attacks divided by the total
number of test data. For example, if out of 200 test data, 20
samples failed the attack, which means the attack success rate
is 180/200, indicating a 90% success rate.

6.4. Applications. This technique holds the potential for mil-
itary applications involving camouflage through the use of
adversarial examples. It specifically generates adversarial
examples for helicopters, which are accurately identified by
humans but misclassified by the model. The applicability of
this approach extends beyond helicopter classification

models to encompass tank classification models and other
deep learning models related to military operations. Conse-
quently, it can be deployed to enhance camouflage systems
for military assets like helicopters and tanks, thereby reduc-
ing the risk of misclassification by the model.

6.5. Limitations and Future Work. The proposed method is
not scoped to apply adversarial examples in physical environ-
ments. In this study, the proposed method is to classify images
when provided, using a deep learning model in a computer
environment. Therefore, we did not apply the process of
extracting and recognizing images from the real environment.
In order to do this in a physical environment, adversarial patch-
ing methods, camera viewing angles, weather effects, etc., are
complexly considered, so it is beyond the scope of this research.
As a future study, camouflaging adversarial examples to mili-
tary helicopters in real environments would be an interesting
research topic.

In this approach, adversarial examples were successfully
generated for a binary classifier model targeting helicopter
types. However, generating adversarial examples for a multi-
classifier model for helicopter types proved to be a more
challenging task. In future research endeavors, the focus
will shift toward developing methods for attacking models
that classify various military equipment, such as tanks and
self-propelled artillery, as well as exploring strategies for han-
dling multiple classifiers in such scenarios.

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ
FIGURE 5: An sampling of the adversarial example for the (a) original, (b) proposed, (c) styless, (d) styless-mi, (e) styless-mi-ti, and (f ) styless-
mi-ti-di methods.

TABLE 3: Comparison of the proposed method, styless, styless-mi, styless-mi-ti, and styless-mi-ti-di methods.

Description Proposed (%) Styless (%) Styless-mi (%) Styless-mi-ti (%) Styless-mi-di (%)

Attack success rate 90.1 89.7 89.9 90.6 91.2
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7. Conclusion

In this paper, we have devised an adversarial example for a
military helicopter copter classification model. Our approach
yielded an adversarial example that was correctly identified
by humans but misclassified by the model trained on real
helicopter copter dataset. In the proposed method, adversar-
ial examples are created by adding adversarial noise in a
direction that increases the value of the loss function, which
represents the difference between the predicted value of the
target model for the image to which adversarial noise was
added to the original sample. The experimental results dem-
onstrated that the average attack success rate of the proposed
method is 81.9%. Additionally, when epsilon is 0.4, the attack
success rate is 90.1%. Before epsilon reaches 0.4, the attack
success rate increases rapidly, and then we can see that epsi-
lon increases little by little thereafter.

Future research endeavors will encompass evaluating the
effectiveness of this approach with diverse image datasets
[33] such as MNIST, CIFAR10, and ImageNet. Additionally,
an intriguing avenue of exploration involves the creation of
various adversarial examples utilizing generative adversarial
networks [34]. Lastly, research on ensemble-type defense
methods for the proposed method will be an interesting
research topic in future research.
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