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With the rapid development, extensive knowledge, and diverse application scenarios of target perception and positioning tech-
nology in sensor networks, a passive target perception and localization platform based on Wireless Sensor Networks (WSN) has
been designed. The platform is mainly applied for the teaching of electronic information, communication, and Internet of Things
(IoT) engineering. The platform follows the teaching concept of “developing students’ ability to solve complex engineering
problems” in the emerging engineering discipline and combines experimental simulation with real-world testing, as well as
integrating scientific research and teaching. It encompasses technical elements such as perception and localization theory, sparse
representation classification modeling, solving underdetermined equations, data analysis, and sparse coding, as well as nontechni-
cal aspects such as team collaboration and cost budgeting. The platform boasts high fidelity and scalability, providing students with
the opportunity to develop comprehensive practical and innovative skills in solving complex engineering problems.

1. Introduction

With the rapid development of the digital economy, there is
an increasing demand for new, innovative technology talents
in society [1]. In 2017, a new engineering construction plan
[2] was introduced with the goal of cultivating comprehen-
sive practical abilities and the ability to solve complex engi-
neering problems in engineering students. While the existing
experimental teaching equipment, such as the virtual simu-
lation experimental platform [3–5], has helped to overcome
time and space limitations, allowing students to conduct
experiments anytime and anywhere, it is still not fully effec-
tive in cultivating practical abilities in electronic information
majors when facing complex engineering problems.

In recent years, information and communication tech-
nology (ICT) has played an increasingly important role in
both industrial and social fields. Because of the excellent
performance in speech signal processing and image proces-
sing, machine learning methods, particularly deep learning,
have been widely applied in various areas such as signal
feature extraction [6], recognition and classification [7, 8],
and information security [9] for wireless communication
networks [10]. Liu et al. [6] presented the SA2SEI method,

which effectively extracts discriminative radio frequency fin-
gerprinting features and achieves higher identification per-
formance. In a similar vein, the authors [7], developed a
novel framework called contour stellar image (CSI) to trans-
form signal waveforms into images. This approach allows for
the use of deep learning methods and provides a new solu-
tion for signal recognition. In addition, a multistream con-
volutional neural network (MS-CNN) was proposed in [8] to
handle multiview pearl images and achieved better accura-
cies. In [9], the authors explored the attack methods on
modulation recognition and evaluated the effectiveness of
adversarial attacks on signals. They also assessed the reliabil-
ities of convolutional neural networks (CNNs). To reduce
the computing’s memory consumption of delay tolerant net-
works based on wireless networks, Zheng et al. [10] proposed
an algorithm called Galliot. This algorithm aims to minimize
the on-board memory consumption.

The sixth generation (6G) has been the focus of extensive
research in wireless communication in recent years. One key
technology in the sixth-generation mobile communication
(6G) is target perception and localization, which is essential
for integrated sensing and communications (ISAC) [11].

Hindawi
Journal of Sensors
Volume 2024, Article ID 1315785, 7 pages
https://doi.org/10.1155/2024/1315785

https://orcid.org/0000-0003-4045-3656
mailto:cq@jsut.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This technology will play an increasingly important role
in future scenarios such as intelligent transportation, smart
home, and healthcare. However, traditional localization tech-
niques typically require the target to be attached with electronic
devices, which may not be suitable for specific application sce-
narios such as emergency rescue and intrusion detection. In
contrast, passive target perception and localization technology
[12–14] does not require the target to carry any electronic
device or tag, and does not require the target to actively partici-
pate in the localization process. By deploying a number of radio
frequency (RF) sensors around the monitoring environment,
target localization can be achieved. This technology is suitable
as an innovative experimental project due to its typical char-
acteristics of complex engineering problems, which involve
interdisciplinary knowledge such as mathematical modeling,
algorithm design, protocol analysis, and image processing, as
well as nontechnical factors such as team collaboration, task
allocation, and engineering budgeting.

We summarized the main contributions of the article as
follows: (1) we design a scheme for passive target perception
and localization platform; (2) a set of RF sensor network
equipment in three scenarios is constructed; and (3) with
numerical experiments, we validate the feasibility of the plat-
form that can not only fulfill the requirements for experi-
mental verification and scientific research measurement, but
also foster students’ professional knowledge and practical
innovation abilities in advanced theory, platform construc-
tion, algorithm design, and data analysis methods for target
perception and localization.

The remainder of the article is organized as follows. Section 2
introduces the design scheme of the platform. In Section 3, the
theorymodeling is described. Followed by algorithm embedding
in Section 4 and Section 5 elaborates on the experimental verifi-
cation. In Section 6, conclusions are drawn.

2. Design of Platform System

The platform consists of three modules: theory modeling, algo-
rithm embedding, and experimental verification, as illustrated
in Figure 1. The first module, theoretical modeling, involves the
modeling and analysis of passive target perception and locali-
zation. This includes a description of target localization pro-
blems, the impact of wireless signal shadowing, channel fading
models, sparse signal representation, received signal strength
(RSS) measurement, and unconstrained optimization pro-
blems. In the secondmodule, algorithm embedding, the mech-
anism of positioning algorithms is studied and the algorithm is
designed and improved. Finally, the experimental verification
module tests and verifies the performance of the localization
algorithms using the platform. Through the process, students
can learn to design experimental plans that are tailored to

specific scenarios, build a sensor network platform, collect
experimental data, and analyze the performance.

3. Theory Modeling

Theoretical modeling involves analyzing radio frequency sig-
nal propagation and wireless channel features, as well as
utilizing sparse signal representation and reconstruction
methods. Wireless channels are characterized by variability
and multipath propagation, and the communication link is
susceptible to factors such as limited sensor node energy and
multipath signal interference. In addition, spatial obstacles,
such as humans, can block the propagation of wireless links,
resulting in significant fluctuations in the RSS measurements
of the nodes, which is known as the shadowing effect. By
leveraging the shadowing effect, radio frequency sensing net-
works have the potential to accurately detect the target loca-
tion, making it possible to design a passive target localization
platform.

Sparse representation methods are commonly utilized in
various digital signal processing fields, including compressed
sensing [15], pattern recognition, and image processing [16].
This approach involves representing natural signals through
linear combinations of a small number of atoms from a
standard orthogonal basis. An overcomplete dictionary
[17] is the one in which the number of columns in the
dictionary matrix, known as atoms, greatly exceeds the num-
ber of rows. A key aspect of sparse representation is dictio-
nary learning, which can be achieved through two main
methods. The first method involves using a predefined dic-
tionary, such as discrete cosine transform and wavelet, as
orthogonal basis functions. The second approach is adaptive
dictionary learning, which involves learning from training
data [18].

The area is divided into square grids, with the target
assumed to be at the center of the grid (reference point or
RP). As the number of targets is significantly smaller than the
number of grids, the problem of target location estimation
can be transformed into a sparse representation classification
(SRC) task [19]. This approach utilizes signal reconstruction
to achieve accurate target location estimation.

The Orthogonal Matching Pursuit (OMP) algorithm is
known for its high-computational efficiency and is often
utilized [20] in signal reconstruction. However, its use of
the least-squares method for each iteration and selection of
only one effective atom can result in worse accuracy in signal
reconstruction. To address this issue, researchers have pro-
posed the iterative soft thresholding algorithm (ISTA) algo-
rithm [21], which utilizes the gradient method of convex
optimization to solve the optimal solution of the objective
function based on sparse constraints, thereby improving the
accuracy of signal reconstruction.

The issue of passive target perception and localization in
sparse scenes involves various theoretical challenges which
are not typically covered in traditional localization theory
and practical teaching. Therefore, teachers must persist in
the latest scientific research and students must engage in
thorough analysis and self-learning of theories.

Experimental platform

Theory modeling Algorithm embedding Experimental verification

FIGURE 1: Design scheme of the experimental platform.
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4. Algorithm Embedding

4.1. Sparse Coding. Sparse coding is the process of finding
sparse solutions from underdetermined equations using over-
complete dictionaries, sparse coefficients, and observation
matrices. It is known for its simple decision rules, high-
positioning accuracy, and computational efficiency. The
OMP algorithm, used for sparse encoding, employs L0 norm
constrained objective function minimization to determine the
optimal sparse solution for Equation (1). In Equation (1), the
first term represents the error function, whereas the second
term is the regularization term. Y is the observation vector, A
is the learning dictionary, X is the sparse coefficient vector, and
τ is the regularization parameter.

X∗ ¼ arg min
x

1
2

Y − AXk k22 þ τ Xk k0: ð1Þ

However, solving Equation (1) and finding the smallest
subset that can represent the signal become more difficult to
solve because it requires enumerating subsets of dictionaries
and leads to an exponential increase in computational com-
plexity as the number of dictionary columns increases. Fur-
thermore, due to the nondifferentiability and nonconvexity
of the L0 norm, the processing speed is slowed down when
dealing with high-dimensional data.

In contrast, the ISTA algorithm utilizes the L1 norm
minimization to achieve the optimal sparse solution. Recent
research [22] has shown that sparse coding via the iterative
shrinkage thresholding algorithm (SC-ISTA) offers several
advantages, including improved localization accuracy,
robustness and reduced time cost, when compared to using
L0 as a penalty. Accordingly, the objective function is repre-
sented as

X∗ ¼ arg min
x

1
2

Y − AXk k22 þ τ Xk k1: ð2Þ

In the teaching process of embedding algorithms, it is
important to supplement relevant literature, such as solving
inverse problems of underdetermined equations and uncon-
strained optimization problems, understanding orthogonal
basis and norm representation, and other basic concepts.
In addition, the research content can be further expanded
by comparing the performance of other algorithms proposed
in recent literature [23], which demonstrates the effective-
ness of the platform being used. Through the learning pro-
cess, students will have a solid foundation to conduct
innovative experiments.

4.2. The Embedded Algorithm Based on ISTA. In this section,
we will provide an overview of the passive target perception
and localization algorithm based on the ISTA algorithm.

The ISTA algorithm utilizes a soft thresholding operator
to iteratively compute the sparse coefficient vector in
Equation (1), as depicted in Figure 2, in which Y is the input
signal,W¼ 1

C A
T , R¼ I − 1

C A
TA. The soft thresholding oper-

ator hθð⋅Þ : is defined as

hθ xið Þ ¼ xij j − θð Þþsign xið Þ; i¼ 1; 2;⋯; n: ð3Þ

Among which, θ represents the thresholding constant.
The soft threshold iteration operation in Figure 3 is repre-
sented as follows:

xiþ1 ¼ hθ
1
C
ATY þ I −

1
C
ATA

� �
xi

� �
: ð4Þ

The iterative operation process stops when certain con-
ditions are met, and the output is represented by X∗ ¼fx∗1 ;
⋯; x∗p ;⋯; x∗Kg:, in which p represents the position of the grid
center point and K represents the number of grids. Here, the
term “certain conditions” refers to either reaching to the
maximum number of iterations or having a residual that is
lower than the empirical threshold value. The index of the
target location is denoted by φ, which corresponds to the
maximum element value in the solution as

φ¼ argmax x∗1 ;⋯; x∗p ;⋯; x∗K
� �

: ð5Þ

To this end, the experimental platform has successfully
completed single target perception and localization. The theo-
retical analysis can help students understand the mechanism,
clarify the design ideas, and lay the foundation for algorithm
implementation and subsequent experimental verification. To
achieve the goal, the teaching design requires teachers to con-
cretize algorithm principles into algorithm implementation
processes, encourage students to engage in immersive thinking,
cultivate students’ research-oriented learning [24], and adopt
appropriate modeling methods and innovative practical abili-
ties to represent different scenarios and changes in data with
models.

5. Experimental Verifications

After completing the theoretical modeling and algorithm
embedding, the next step is to enter the experimental verification
stage. The stage is divided into three parts: experimental scenario
construction, data collection and preprocessing, and algorithm
programming and analysis, as illustrated in Figure 3.

5.1. Experimental Scenario Construction. The scenario con-
sists of three distinct areas: an unobstructed square indoor
corridor, a rectangular indoor scene with mess, and an
obstructed square outdoor scene, as shown in Figure 2.
The outdoor scene serves as the testing environment for

+

hθInput Output

Y

R

W
X

FIGURE 2: Flowchart of the ISTA algorithm.
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the signal processing and network (SPAN) laboratory [25].
To ensure consistency in the testing, the parameters for each
scenario, such as sensor node spacing and node height from
the ground, are kept consistent with those of the public
dataset. For example, in the indoor square scene, 12 ZigBee
sensor nodes are deployed around the area with a size of 4m
× 4m. The nodes are spaced 1.3m apart and are positioned
0.9m above the ground. The area is divided into 25 square
grids, which serve as RPs (represented by a quadrangle in
Figure 2). The ZigBee nodes use a CC2530 chip and operate
in the 2.4 GHz frequency band, communicating through the
IEEE 802.12.4 protocol. Each node collects data and sends it
to the coordinator, which then transmits it to the computer
for processing through a serial port.

5.2. Feasibility Verification. The experiment aims to detect
the presence of a target in a monitoring area by observing the
attenuation of wireless links caused by the obstruction of the
target (such as humans, animals, or objects). The experiment
is shown in Figure 4, for which the target’s position is
inferred using the shadowing effect.

Taking the indoor square scene shown in Figures 4 and 5
as an example, the 12 sensor nodes in the monitoring area
are sequentially numbered as modules 1–12. These nodes
were tested in both unmanned and manned scenarios.
With the target occupied, the coordinates of the target loca-
tion are recorded. For instance, Modules 1 and 7 form link 1,
whereas Modules 4 and 11 form link 2. Both links are
obstructed by targets, but there is no obstruction between
link 3, formed by Modules 5 and 8. To illustrate, Figure 6(a)
shows the measured value of link 1 undergoing significant
attenuation under target occlusion, while the signal attenua-
tion of link 3 in Figure 6(b) remains almost unchanged.
According to [25], the average RSS difference between the
outdoor link with obstruction link and the link without
obstruction is about 8 dBm. However, the difference is nearly
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zero between the two links without obstruction. The
designed experimental results demonstrate that target occlu-
sion can cause a significant decrease in wireless link signal
strength, and that it is possible to use this effect to infer the
target’s position.

5.3. Data Collection and Preprocessing. The process has two
stages: offline training and online matching, for which data
are collected and preprocessed as depicted in the middle of
Figure 2. During the offline training phase, the target tra-
verses all grids and collects multiple received signal strength
identifier (RSSI) measurements at each RP to form the dic-
tionary matrix. Each element of the matrix is denoted as
RSSM×N , representing the RSSI measurement received by
the Mth access point (AP) from the Nth AP. Specifically,
when the target is first located at the first RP, each sensor
as AP takes turns collecting 12 measurements, which are
repeated 20 times at each AP. This process is then repeated
at the second RP and all remaining 25 RPs. To improve
computational efficiency, the collected data are preprocessed.
This involves selecting 15 out of 20 measurements to form an
offline overcomplete dictionary with a size of 144× 375. The
dictionary has 144 rows, representing the atomic elements of
the dictionary composed of 12 APs taking turns collecting
RSS data from the other 12 APs (including this AP), and
375 columns, representing the atomic number composed
of 15 RSS measurements and 25 RPs. In the online matching
stage, the current RP’s target RSS value is measured to form
an online observation vector, and the objective function opti-
mization method is used to calculate a sparse solution. To
enhance the accuracy of our experiments, we can take mea-
sures such as increasing the number of APs and data dimen-
sions. However, this may result in higher hardware costs and
decreased computational efficiency.

The design of programming includes node program-
ming, coordinator programming, and fingerprint database
construction programming. Taking node program design
as an example, first, we should initialize and apply for each
node to join the coordinator to create a ZigBee network.
After the node successfully joins the network, it enters a
waiting state for data to be transmitted. After receiving the
configuration information sent by the upper computer
through the coordinator and completing the configuration,
the coordinator sends a RSSI request. The working node then
broadcasts the signal, which is received by the sampling
node. The sampling node then receives the RSSI value and
ID information sent by the working node. The sampling
node packages the data into the corresponding format and
sends it to the coordinator.

5.4. Algorithm Realization and Analysis. According to the
ISTA algorithm described in Section 4.2, high-level program-
ming languages such as C, Python, and Matlab can be used to
solve the optimal problem of the objective function in
Equation (1). However, students may encounter difficulties
during this process due to a lack of experience in parameter
debugging. These difficulties may include setting an unrea-
sonable maximum iteration time and using improper values
for the threshold parameter. To overcome these challenges,
students will need to consult a significant amount of infor-
mation, engage in deep thinking, and continuously practice
to gain experience.

Accuracy is commonly used as an evaluation metric for
measuring localization performance. It is defined as the ratio
of correctly estimated samples to the total number of sam-
ples. To account for environmental noise, the signal-to-noise
ratio (SNR) is often used to assess signal quality under vary-
ing levels of noise. As shown in Figure 7, the algorithm’s
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positioning accuracy was compared in three different exper-
imental scenarios, as depicted in Figure 2. The results indi-
cate that the accuracy was higher in the square outdoor scene
compared to the other two scenarios. This can be attributed
to the presence of buildings and other structures in indoor
environments, which can cause multipath interference and
impact the accuracy of the algorithm. In addition, it is
important for students to be guided in using other evaluation
metrics and strategies to improve their performance. For
instance, they can utilize localization error to evaluate the
accuracy of their predictions. Providing students with spe-
cific examples and guidance is crucial in helping them
improve their performance.

During the verification process, it is important to analyze
the impact of multiple factors on positioning performance.
For example, the factors that contribute to the higher posi-
tioning accuracy of outdoor compared to square indoor
areas, the superior performance of the ISTA algorithm
over the OMP algorithm, and the general principles of
node deployment for different scenarios. It is also crucial
to guide students in integrating project design and develop-
ment processes, as well as engineering project management
principles, into solving engineering problems. Because the
real scenarios and localization requirements vary, the thresh-
old parameters and data dimensions are not standardized.
Therefore, scientific planning is necessary to reflect the com-
plexity and creativity of engineering problems. It should be
noted that while increasing the number of nodes can
improve positioning accuracy, it also leads to higher storage
costs and reduced computational efficiency. Through practi-
cal experience, students can effectively apply their knowledge
of technical factors and nontechnical factors such as cost
budgeting and project management.

6. Conclusion

A passive target perception and localization platform has
been designed, utilizing radio frequency sensor networks.
The platform incorporates both technical and nontechnical
elements, including theory analysis, algorithm design, soft-
ware development, hardware deployment, data collection,
and project management. It aims to assist students in mas-
tering the latest theoretical modeling, algorithm design, and
experimental verification techniques for passive target per-
ception and localization. The platform utilizes affordable
off-the-shelf sensors, making it more closely aligned with
real-world engineering practices. By fully utilizing existing
scientific research and teaching resources, the platform pro-
vides students with authentic, innovative, and comprehensive
engineering exploration capabilities, effectively enhancing
their ability to solve complex engineering problems.
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