
Research Article
Hybrid RSS–AOA-Based Localization with Unknown Transmit
Power in Wireless Sensor Networks

Ruijie Ren,1 Jianding Yu,1 Youming Li ,1 Qinke Qi,1 and Yanhua Ye 2

1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
2China Mobile Group Zhejiang Co, Ltd., Ningbo Branch, Ningbo, China

Correspondence should be addressed to Youming Li; liyouming@nbu.edu.cn

Received 5 December 2022; Revised 13 May 2023; Accepted 15 December 2023; Published 24 January 2024

Academic Editor: Huan Liu

Copyright © 2024 Ruijie Ren et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we address the target localization problem based on hybrid range and angle measurements with unknown transmit
power in both noncooperative and cooperative scenarios, respectively. By analyzing the approximate expressions of the noise terms
in the measurement models, an original nonconvex localization problem is formulated according to the least square criterion. This
problem is transformed into a mixed semi-definite programing/second-order cone programing by using convex relaxation
techniques. Computer simulation results verify that the proposed algorithm can effectively solve the localization problem with
good performance in the unknown transmit power case.

1. Introduction

Nowadays, target location has been an increasingly important
information due to its wide applications in navigation, tracking,
monitoring, etc. [1]. However, the global positioning system
(GPS) cannot provide accurate location information in indoor
or other harsh environments due to the disability of GPS sig-
nals to penetrate in-building materials [2, 3]. Wireless sensor
networks attract more attention as they can provide localiza-
tion information in such harsh environments. Based on the
localization measurements related to distance, the methods
can be divided into time of arrival (TOA) [4, 5], time difference
of arrival (TDOA) [6], received signal strength (RSS) [7–9],
angle of arrival (AOA) [9, 10], and their combination
[11–13]. Compared with TDOA and TOA, the RSS-based
localization method is attractive due to its low cost and easy
tractability, and does not cause substantial power consumption.
However, the performance of the single measurement localiza-
tion method is limited, especially because the accurate model
parameters, including transmit power and path loss exponent,
are difficult to be determined in the actual environment. Cur-
rently, many methods based on hybrid RSS–AOA measure-
ments have been proposed to improve the performance
[14–17]. In the case of noncooperative localization, Yu [14]

proposed a WLS estimator based on hybrid RSS–AOA mea-
surements when the transmit power is known and provided a
closed-form solution without considering any constraint con-
ditions, causing low estimation accuracy. Qi et al. [15] pro-
posed a WLS estimator when the transmit power is known,
which is converted into RLS-semi-definite programing (SDP)
problem by using the semi-definite relaxation (SDR) technique.
The authors also extended the results to the case when the
transmit power is unknown. In the case of cooperative locali-
zation, Tomic et al. [16] studied the localization problem when
the transmit power is known. They fuzed RSS and AOA mea-
surements by using spherical characteristics, proposed a least
square (LS) estimator through a linearized measurement
model, and provided a closed-form solution. Tomic et al.
[17] also studied the problem when the transmit power is
unknown and formulated an original LS problem, which is
transformed into an SDP problem by using SDR technology.

In this paper, we address the noncooperative and cooper-
ative hybrid RSS–AOA-based localization problem with
unknown transmit power. We jointly estimate the target loca-
tion and transmit power through the following three steps.
First, we derive the approximation expressions of noise terms
using first-order Taylor expansion for measurement models.
Next, we formulate a nonconvex localization problem based
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on the LS criterion. Finally, we transform the nonconvex
problems into convex ones by introducing some auxiliary
variables and using some relaxation techniques.

Notation: In this paper, uppercase bold letters and low-
ercase bold letters, respectively, denote matrices and vectors,
lowercase regular letters denote scalars. k⋅jj denotes the
norm of a vector, ð⋅ÞT denotes the transpose of a vector or
matrix, IN denotes N dimensional identity matrix, RN

denotes N dimensional vector, matrix A ⪰ B denotes that
matrix A−B is a semi-definite matrix.

The reminder of the paper is arranged as follows: Section
2 describes the localization model and the derivation of the
algorithm in detail, Section 3 analyses the computational
complexity of the proposed and other discussed algorithms,
Section 4 discusses Cramer–Rao Lower Bound (CRLB) of the
proposed algorithm, Section 5 shows simulation results and
analyze in detail.

2. Problem Formulation

A sensor network consists of M targets with unknown loca-
tions x1;   x2;    :::; xM and N anchors with known locations
a1;   a2;    :::; aN   in a 3D localization scenario, as shown in
Figure 1.

Let A¼fði; jÞjkxi − ajjj≤Rg and B¼fði; kÞjjkxi−
xkjj≤Rg denote target/anchor and target/target communi-
cation links, respectively, where R denotes effective commu-
nication range of sensors.

In this paper, hybrid range and angle measurements are
utilized to model our localization problem.

First, RSS measurement can be modeled by using path
loss model, the relationship between RSS measurement and
path loss is LijðdBÞ¼ 10log10ðPT=PijÞ, where PT denotes
transmit power, Lij and Pij denote path loss value and receive
power between the two nodes i and j, respectively. Then, the
RSS measurement can be modeled as follows:

LAi j ¼ L0 þ 10γ log10
jjxi − ajjj

d0

� �
þ nij  i; j 2 Að Þ; ð1Þ

LBik ¼ L0 þ 10γ log10
jjxi − xkjj

d0

� �
þ nik  i; k 2 Bð Þ; ð2Þ

where d0 denotes the reference distance, L0 denotes the ref-
erence path loss value at d0; γ denotes path loss exponent,
jjxi − ajjj and kxi − xkjj denote the real distance between
anchor/target and target/target, respectively, RSS measure-
ment noises nij and nik can be modeled as nij~Nð0; σ2nijÞ and
nik~Nð0; σ2nikÞ, respectively.

Second, according to the geometric relationship, the
AOA azimuth and elevation measurements can be modeled,
respectively, as follows:

ϕA
i j ¼ arctan

xi2 − aj2
xi1 − aj1

 !
þ  mij  i; jð Þ 2 A; ð3Þ

ϕB
ik ¼ arctan

xi2 − xk2
xi1 − xk1

� �
þmik  i; kð Þ 2 B; ð4Þ

φA
i j ¼ arccos

xi3 − aj3
j jxi − ajj j

 !
þ vij  i; jð Þ 2 A; ð5Þ

φB
i j ¼ arccos

xi3 − xk3
j jxi − xkj j
� �

þ vik  i; kð Þ 2 B; ð6Þ

where the azimuth and elevation measurement noises mij;
mik and vij; vik are also modeled as mij~Nð0; σ2mij

Þ;mik~Nð0;
σ2mik

Þ and vij~Nð0; σ2vijÞ; vik~Nð0; σ2vikÞ.
Next, we perform first-order Taylor expansion and omit

the second-order and above noise terms when the noise is
small.

In this case, the expressions of noise terms of (1)–(6)
have the following approximations:

nij ≈
μ−1 ηd20 − βAi j

� �
2jjxi − ajjj 2

� �
2η

; ð7Þ

nik ≈
μ−1 ηd20 − βBik

À Á
2jjxi − xkjj 2

À Á
2η

; ð8Þ

ξAi j ≈ cTi j xi − aj
À Á

; ð9Þ

ξBik ≈ cTik xi − xkð Þ; ð10Þ

kT xi − aj
À Á¼ jjxi − ajjj cos φA

i j þ ζAi j; ð11Þ

kT xi − xkð Þ ¼ jjxi − xkjj cos φB
ik þ ζBik; ð12Þ

Anchor node
Target node
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φij
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FIGURE 1: Localization scenario.
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where η¼ η20, η0 ¼ 10
−L0
10γ , μ¼ d20

ln 10
10γ , 10

−ni
10γ ≈ 1− ln10

10γ ni, β
A
i j ¼

10
−LA

i j
10γ , βBik ¼ 10

−LB
ik

10γ , cij ¼ ½−sinðϕA
i jÞ; cosðϕA

i jÞ; 0�T , cik ¼
½−sinðϕB

ikÞ; cosðϕB
ikÞ;  0�T , k¼ ½0; 0; 1�T .

The expressions in (9) and (10) we have ξAi j ¼
mij ðcosðϕA

i jÞðxi1 − aj1Þþ sinðϕA
i jÞðxi2 − aj2ÞÞ, ξBik ¼mik ðcosðϕB

ikÞ
ðxi1 − xk1Þþ sinðϕB

ikÞðxi2 − xk2ÞÞ.

Similarly, from (11) and (12), we have ζAi j ¼ vij sinφA
i jj j

xi − ajj j, ζBik ¼ vik sinφB
ikj jxi − xkj j.

We define a vector y¼ ½xT1 ; xT2 ; ::::::; xTM�T (y2R3M×1)
as a column vector including all target locations, then xi ¼
ET
i y, where Ei ¼ ei ⊗ I3; ei denotes the ith column of the

M-dimensional identity matrix, and ⊗ denotes Kronecker
product.

According to LS criterion, the joint estimation of
unknown parameters of x and η can be formulated as follows:

by;bη½ � ¼ argmin
y;η

∑
A

μ−1 ηd20 − βAi j

� �
2j jET

i y − ajj j 2
� �

2η

24 352

þ ∑
A

cTi j E
T
i y − aj

À Áh i
2

þ∑
A

cos2 φA
i j

� �
j jET

i y − ajj j2 − kT ET
i y − aj

À Á
ET
i y − aj

À Á
Tk

h i
2

þ∑
B

μ−1 ηd20 − βBik
À Á

2j jET
i y − ET

k yj j 2
À Á

2η

� �2
þ ∑

B
cTik ET

i y − ET
k y

À ÁÂ Ã
2

þ∑
B

cos2 φB
ik

À Áj jET
i y − ET

k yj j2 − kT ET
i y − ET

k y
À Á

ET
i y − ET

k y
À Á

Tk
Â Ã

2:

ð13Þ

2.1. Noncooperative Localization. In the noncooperative local-
ization scenario, there is no communication link between
target and target, so the set B in models (1)–(6) is empty.
For ease of understanding, we just consider one target, i.e.,
M¼ 1. In this case, (13) can be rewritten as follows:

min
x;η

 ∑
N

j¼1

μ−1 ηd20 − β2j x − a j
  2

� �
2η

0@ 1A2

þ ∑
N

j¼1
cTj x − a j
À Á� �

2

      þ ∑
N

j¼1

kT x − a j
À Á

− cos φj x − a j
 

sin φj x − a j
 

 !
2

:

ð14Þ
Since (14) is a nonconvex problem, and it is difficult to

obtain its solution directly. In the following section, we develop
methods to transform this problem into a convex optimization
problem by applying some relaxation techniques. For this pur-
pose, we introduce auxiliary variable h; f , and g , where f j ¼
cTj ðx− a jÞ, then (14) can be expressed as follows:

min
x;η;h;f ;g

 ∑
N

j¼1
hj þ fk k2 þ ∑

N

j¼1
g i

s:t: 
2μ−1 ηd20 − β2j x − a j

  2
� �

η2σ2n j
− hj

24 35
 ≤ η2σ2n j

þ hj

 f j ¼ cTj x − a j
À Á

 

2 kT x − a j
À Á

− cos φj x − a j
 À Á

sin2 φj

À Á
x − a j
 2 − g j

" #
 ≤ sin2 φj

À Á
x − a j
 2 þ g j:

ð15Þ

Furthermore, we introduce auxiliary variables l and d,
where lj ¼kx − ajjj2 and dj ¼kx− ajjj, then problem (15) is
equivalent to the following problem:

min
x; η; h; f ; g
 l;d; t

 ∑
N

j¼1
hi þ t þ ∑

N

j¼1
g i

s:t: 
2μ−1 ηd20 − β2j lj

� �
η2σ2n j

− hj

24 35
 ≤ η2σ2n j

þ hj

 lj ¼ xTx − 2xTaj þ aj
  2

 f j ¼ cTj x − aj
À Á

 

2 kT x − a j
À Á

− cos φjdj
À Á

sin2 φj

À Á
lj − g j

" #
 ≤ sin2 φj

À Á
lj þ g j

 dj ¼ x − aj
 

 jjf jj2 ≤ t:

ð16Þ

Next, we relax z¼ xTx into z≥ xTx, which can be trans-

formed into a linear matrix inequality, i.e., ½ I3 x

xT z
�⪰0 by

Schur complement [18], τ¼ η2 is transform into η2 ≤ τ, addi-
tionally,  dj ¼kx− ajjj is transformed into kx− ajjj≤ dj by
second-order cone relaxation (SOCR) technique.

Then, the final optimal problem can be written as follows:

min
x; η; h; f ; g
z; l; d; t; τ

 ∑
N

j¼1
hj þ t þ ∑

N

j¼1
g j

s:t: 
2μ−1 ηd20 − β2j lj

� �
η2σ2n j

− hj

24 35
 ≤ η2σ2n j

þ hj

 lj ¼ z − 2xTaj þ aj
  2

  f j ¼ cTj x − aj
À Á

 

2 kT x − a j
À Á

− cosφjdj
À Á

sin2 φið Þli − g i

" #
 ≤ sin2 φj

À Á
lj þ g j

  x − a j
  ≤ dj

 

2f

t − 1

" #
 ≤ t þ 1 ;   

2η

τ − 1

" #
 ≤ τ þ 1

 

I3 x

xT z

" #
⪰ 0:

ð17Þ
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The above is the proposed mixed SDP/second-order cone
programing (SOCP) algorithm for noncooperative localiza-
tion. This mixed SDP/SOCP algorithm is referred to as
SDP/SOCP1.

2.2. Cooperative Localization. In the cooperative localization,
we introduce variables f ; g; f 0; g 0, then (13) is equivalent to
the following:

min
y;η;f ;g;f 0;g 0

∑
A

μ−1 ηd20 − βAi j

� �
2j jET

i y − ajj j2
� �

2η

24 352

þ∑
A
f 2i j þ ∑

A
g2i j

þ∑
B

μ−1 ηd20 − βBik
À Á

2j jET
i y − ET

k yj j2
À Á

2η

� �2
þ∑

B
f 02ik þ ∑

B
g 02ik

s:t:  f ij ¼ cTi j E
T
i y − aj

À Á
g ij ¼ cos2 φA

i j

� �
j jET

i y − ajj j2 − kT ET
i y − aj

À Á
ET
i y − aj 

À Á
Tk

  f 0ik ¼ cTik ET
i y − ET

k y
À Á

g 0ik ¼ cos2 φB
ik

À Áj jxi − xkj j2 − kT xi − xkð Þ xi − xkð ÞTk:
ð18Þ

For the sake of ease, we stack the variables f ij; g ij; f
0
ik; g

0
ik

into vector z. And we introduce variables h; e; t; dAi j; d
B
ik;Y ,

where dA
i j ¼ j jET

i y− ajj j2; dBik ¼ j jET
i y− ET

k yj j 2;  Y ¼ yyT .
Then (18) is equivalent to the following:

min
Y ; y;η; h; e; t;
z;dA

i j; d
B
ik

 ∑
A
hij þ ∑

B
eik þ t

s:t: 
μ−1 ηd20 − βAi j

� �
2
dAi j

� �
η2 − hij

24 35
 ≤ η2 þ hij

 dAi j ¼ trace ET
i YEið Þ − 2aTj E

T
i y þ jjajjj2

μ−1 ηd20 − βBik
À Á

2dBik
À Á

η2 − gik

" #
 ≤ η2 þ g ik

 dBik ¼ trace ET
i YEið Þ − 2trace ET

i YEkð Þ þ trace ET
k YEk

À Á
z

t − 1=4

" #
 ≤ t þ 1=4

 Y ¼ yyT :

ð19Þ

The following optimization problems are formed by
using techniques similar to the problem formation of (17),
we relax Y ¼ yyT into Y ≥ yyT , and τ¼ η2 into η2 ≤ τ.

min
Y ; y;η;h; e; t;
z;dA

i j; d
B
ik; τ

 ∑
A
hij þ ∑

B
eik þ t

s:t: 
μ−1 ηd20 − βAi j

� �
2
dAi j

� �
τ − hij

24 35
 ≤ τ þ hij

  dAi j ¼ trace ET
i YEið Þ − 2aTj E

T
i y þ jjajjj2

μ−1 ηd20 − βBik
À Á

2dBi j
� �

τ − g ik

" #
 ≤ τ þ g ik

 dBi j ¼ trace ET
i YEið Þ − 2trace ET

i YEkð Þ þ trace ET
k YEk

À Á
z

t − 1=4

" #
 ≤ t þ 1=4;  

η

τ − 1=4

" #
 ≤ τ þ 1=4;  

Y y

yT 1

" #
≥ 0:

ð20Þ

The algorithm is referred to as SDP/SOCP2. SDP/SOCP1
and SDP/SOCP2 can be solved by CVX [24] in MATLAB.

3. Complexity Analysis

There exists a tradeoff between algorithm estimation accu-
racy and computational complexity, which is one of the most
important indicators for evaluating the realizability of the
algorithm. We analyze the worst-case complexity, i.e., we
assume that the nodes in the network are interconnected,
the total number of the communication link is C¼ jAj þ
jBj, where jAj ¼MN; jBj ¼MðM − 1Þ=2. The formulation
of hybrid SDP/SOCP in worst-case is shown as follows [19]:

O
ffiffiffi
μ

p
m∑

Nsd

i¼1
nsd

3

i þm2 ∑
Nsd

i¼1
nsd

2

i þm2 ∑
Nsoc

i¼1
nsoci þm2 ∑

Nsoc

i¼1
nsoci þm3

� �� �
;

ð21Þ

wherem denotes the number of equation constraints, nsdi and
nsoci denote the dimensions of ith semidefinite cone (SDC)
and ith second-order cone (SOC), respectively. Nsd and Nsoc

denote the number of constraints of SDC and SOC, respec-
tively, μ¼∑Nsd

i¼1n
sd
i þ 2Nsoc is the so-called barrier parameter.

Since we investigate the worst-case complexity of the algo-
rithm, the total number of communication links of the net-
work is K ¼ jAj þ jBj, where jAj ¼MN; jBj ¼MðM − 1Þ=2.

Based on (21), we calculate the complexity of the pro-
posed and the existing algorithm in noncooperative and
cooperative localization.

From Tables 1 and 2, we observe that the complexity of
the algorithm is related to the number of sensors. Compared
with noncooperative localization, the complexity of the
cooperative localization is greatly higher.

4. CRLB

The CRLB is an unbiased estimation that can achieve the
optimal estimation accuracy theoretically and can be used
as a criterion for evaluating the performance of the localiza-
tion algorithm. In the study of Kay [22], CRLB is expressed
by the trace of F−1, i.e.
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CRLB¼ trace F−1ð Þ; ð22Þ

where F denotes Fisher Information Matrix (FIM), in coop-
erative localization, we define a variable θ¼ ½xT ; η�, the
expression of FIM is shown as follows:

Fi;k ¼ E
∂2 ln p L; θð Þ

∂θ2

� �
; ð23Þ

where  pðL; x; L0Þ is joint probability density function of the
unknown parameter. F is as follows:

F ¼ F1 F2

FT
2 F4

" #
; ð24Þ

where F1 is a 3M × 3M square matrix whose elements were
given in [23], F2 and F4 are given as follows:

F2 ¼

⋮
∑

fjjjði; jÞ2Ag
ξ ⋅

xi1 − sj
jjxi − sjjj2

þ ∑
fkjjði; kÞ2Bg

ξ ⋅
xi1 − xk1
jjxi − xkjj2

∑
fjjjði; jÞ2Ag

ξ ⋅
xi2 − sj

jjxi − sjjj2
þ ∑

fkjjði; kÞ2Bg
ξ ⋅

xi2 − xk2
jjxi − xkjj2

∑
fjjjði; jÞ2Ag

ξ ⋅
xi3 − sj

jjxi − sjjj2
þ ∑

fkjjði; kÞ2Bg
ξ ⋅

xi3 − xk3
jjxi − xkjj2

⋮

26666666664

37777777775
;

i¼ 1;…;N , ξ¼ 1
σ2n
⋅ 10γ
ln10 and F4 ¼ ∑

fjj jði; jÞ2Ag

1
σ2n

þ ∑
fkj jði; kÞ2Bg

1
σ2n
.

5. Results and Discussion

In this section, we compare the performance of the proposed
algorithm with existing methods for both noncooperative
and cooperative localization.

The normalized root mean square error (NRMSE) is
introduced to evaluate localization performance, which is
defined as follows:

NRMSEx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

∑
Mc

m¼1
∑
M

i¼1

xim − bx imk k2
Mc

s
; ð25Þ

and

NRMSETP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

∑
Mc

m¼1

L0 − bL0

 2
Mc

vuut
; ð26Þ

where Mc denotes Monte Carlo (Mc) runs, M denotes the
number of the targets, xi m and bx i m, respectively, denote true
location and estimated location of the ith target in the mth
MC run. Particularly, when M¼ 1, NRMSE is just RMSE
(root mean square error).

We deploy N anchors and M targets randomly in a cube
space ½0; 30�× ½0; 30�× ½0; 30�m3 in each Mc run. The refer-
ence distance is d0 ¼ 1m, the path loss exponent (PLE) is γ¼
2:5. However, in practice, PLE is an experience value, which
is closely related to the hardware condition and the wireless
signal propagation environment, so PLE is assumed to follow
the uniform distribution on an interval ½2:2; 2:8�, i.e., γ 2
½2:2; 2:8�.
5.1. Noncooperative Localization. In noncooperative WSN,
targets communicate with anchors, exclusively. We compare
the proposed algorithm with the previous algorithm,
“WLS1,” proposed by Yu [14], and “GTRS1,” proposed by
Tomic et al. [17]. For the sake of generality, we assumeM¼ 1.
In this part of simulation, Mc¼ 5; 000.

Figure 2 shows the RMSE comparison of the proposed
algorithm with the other methods versus the number of
anchors when σni ¼ 6 dB; σmi

¼ 5deg; σvi ¼ 5deg. Figure 2
shows that the localization performance becomes better as
the number of anchors increases. This is due to the fact that
more measurement information is utilized to estimate the
target location. Furthermore, the estimation error of the pro-
posed SDP/SOCP1 algorithm is smaller than that of and the
proposed algorithm is closer to CRLB.

Figure 3 is the RMSE versus standard deviation of RSS
measurement noise on target location estimation. Figure 3
shows that the localization performance of all the discussed

TABLE 1: Summary of the considered method in noncooperative localization.

Method Description Complexity

WLS1 The WLS1 method by Tomic and Beko [20] OðNÞ
GTRS1 The GTRS method by Qi et al. [15] 2 ⋅ OðKmaxNÞ
SDP/SOCP1 The method proposed in Equation (17) OðN3:5Þ

TABLE 2: Summary of the considered method in cooperative localization.

Method Description Complexity

SDP1 The SDP1 method used RSS measurement by Chang et al. [21] Oð ffiffiffiffiffi
M

p ð4M4ðN þ M
2 Þ2ÞÞ

SDP2 The SDP2 method used hybrid RSS/AOA measurement by Qi et al. [15]  Oð ffiffiffiffiffiffiffi
3M

p ð81M4ðN þ M
2 Þ2ÞÞ

SDP/SOCP2 The method proposed in Equation (20)  Oð ffiffiffiffiffiffiffi
3M

p ð81M4ðN þ 2MÞ2ÞÞ
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algorithms becomes worse as the quality of measurement
weakens, as expected. Furthermore, the proposed algorithm
provides the best performance among the discussed
algorithms.

Figures 4 and 5 are the RMSE versus standard deviation
of azimuth and elevation measurement noise on target loca-
tion estimation, respectively. We get the similar conclusion
as in Figure 3.

Figure 6 shows the RMSE comparison of the proposed
algorithm with the others versus the number of anchors
when σni ¼ 3 dB; σmi

¼ 3deg; σvi ¼ 3deg. Figure 6 shows that
the RMSE of the transmit power estimation is decrease as the
number of anchors increases. Figure 6 also shows that the

proposed algorithm provides the best estimation perfor-
mance among the two discussed algorithms.

5.2. Cooperative Localization. Figure 7 shows the RMSE
comparison of the methods versus the number of anchors
when σni ¼ 5 dB; σmi

¼ 4deg; σvi ¼ 4deg;R¼ 8m. In the sim-
ulation, Mc¼ 20;000. Figure 7 shows that the NRMSE
decreases as the number of nodes increases since more
measurement information in target/target communication
links can be captured to locate the target. Though the
performance of the proposed algorithm is slightly better
compared to SDP, it confirms that the localization
performance of combined measurement in a hybrid system
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is much better than single measurement in a traditional
system.

6. Conclusions

In the paper, we have addressed the localization problem
based on hybrid RSS–AOA measurement in noncooperative
and cooperative scenarios when transmit power is unknown.
Based on measurement model, we formulate original optimal
problems according to LS criterion and transform the non-
convex problem into mixed SDP/SOCP problems by some
relaxation techniques, by means of which the unknown
parameters x and η are jointly estimated.

We investigate the influence of a number of anchors and
standard deviation of different types of measurement noise
on localization accuracy in noncooperative localization sce-
narios; the results demonstrate the advantage of the pro-
posed algorithm. Also, we investigate the influence of the
number of targets on localization in a cooperative localiza-
tion scenario; the results demonstrate that the performance
of hybrid measurement is obviously better than a single
measurement.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would gratefully acknowledge the grants from
the International Cooperation Pro-ject of the Ministry of
Science and Technology under grant 2018YFE0206500, by
the National Natural Science Foundation of China under
grant 61571250, in part by the Zhejiang Natural Science
Foundation under grant LY22F010018.

References

[1] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative
localization in wireless networks,” Proceedings of the IEEE,
vol. 97, no. 2, pp. 427–450, 2009.

[2] C. Tang, L. Zhang, Y. Zhang, and H. Song, “Factor graph-
assisted distributed cooperative positioning algorithm in the
GNSS system,” Sensors, vol. 18, no. 11, Article ID 3748, 2018.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393–422, 2002.

[4] S. Wu, S. Zhang, and D. Huang, “A TOA-based localization
algorithm with simultaneous NLOS mitigation and synchro-
nization error elimination,” IEEE Sensors Letters, vol. 3, no. 3,
pp. 1–4, 2019.

[5] J. Shen, A. F. Molisch, and J. Salmi, “Accurate passive location
estimation using TOA measurements,” IEEE Transactions on
Wireless Communications, vol. 11, no. 6, pp. 2182–2192,
2012.

[6] K. W. K. Lui, W.-K. Ma, H.-C. So, and F. K. W. Chan, “Semi-
definite programming algorithms for sensor network node
localization with uncertainties in anchor positions and/or
propagation speed,” IEEE Transactions on Signal Processing,
vol. 57, no. 2, pp. 752–763, 2009.

[7] S. Chang, Y. Li, X. Yang, H. Wang, W. Hu, and Y. Wu, “A
novel localization method based on RSS-AOA combined
measurements by using polarized identity,” IEEE Sensors
Journal, vol. 19, no. 4, pp. 1463–1470, 2019.

[8] J. Shi, G. Wang, and L. Jin, “Least squared relative error
estimator for RSS based localization with unknown transmit
power,” IEEE Signal Processing Letters, vol. 27, pp. 1165–1169,
2020.

[9] Y. Zheng, M. Sheng, J. Liu, and J. Li, “Exploiting AoA
estimation accuracy for indoor localization: a weighted AoA-

13

12

11

10

9

8

7

6

5

4

3
6 7 8

N
9

7

4.7482
4.7481

4.748

10

RM
SE

 (m
)

SDP/SOCP2
SDP1

SDP
CRLB

FIGURE 7: The RMSE-versus-M comparison.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5
4 6 8

N
95 7 10

RM
SE

-T
P 

(d
B)

SOCP-SDP
WLS1

CRLB-unknown 1.0

FIGURE 6: The RMSE of the transmit power estimation versus N
comparison.

Journal of Sensors 7



based approach,” IEEE Wireless Communications Letters,
vol. 8, no. 1, pp. 65–68, 2019.

[10] D. J. An, C.-M. Moon, and J.-H. Lee, “Derivation of an explicit
expression of an approximate location estimate in AOA-based
localization,” in 2017 7th IEEE International Symposium on
Microwave, Antenna, Propagation, and EMC Technologies
(MAPE), pp. 552–555, IEEE, Xi’an, China, 2017.

[11] Y. Wang and K. C. Ho, “Unified near-field and far-field
localization for AOA and hybrid AOA-TDOA positionings,”
IEEE Transactions on Wireless Communications, vol. 17,
no. 2, pp. 1242–1254, 2018.

[12] M. Katwe, P. Ghare, and P. K. Sharma, “Robust NLOS bias
mitigation for hybrid RSS-TOA based source localization
under unknown transmission parameters,” IEEE Wireless
Communications Letters, vol. 10, no. 3, pp. 542–546, 2021.

[13] S. Chang, Y. Zheng, P. An, J. Bao, and J. Li, “3-D RSS-AOA
based target localization method in wireless sensor networks
using convex relaxation,” IEEE Access, vol. 8, pp. 106901–
106909, 2020.

[14] K. Yu, “3-d localization error analysis in wireless networks,”
IEEE Transactions on Wireless Communications, vol. 6,
no. 10, pp. 3472–3481, 2007.

[15] H. Qi, L. Mo, and X. Wu, “SDP relaxation methods for
RSS/AOA-based localization in sensor networks,” IEEE Access,
vol. 8, pp. 55113–55124, 2020.

[16] S. Tomic, M. Beko, and M. Tuba, “A linear estimator for
network localization using integrated RSS and AOA
measurements,” IEEE Signal Processing Letters, vol. 26, no. 3,
pp. 405–409, 2019.

[17] S. Tomic, M. Beko, and R. Dinis, “3-D target localization in
wireless sensor networks using RSS and AoA measurements,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 4,
pp. 3197–3210, 2017.

[18] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[19] I. Pólik and T. Terlaky, “Interior point methods for nonlinear
optimization,” in Nonlinear Optimization, vol. 1989 of Lecture
Notes in Mathematics, pp. 215–276, Springer, Berlin, Heidel-
berg, 2010.

[20] S. Tomic and M. Beko, “A robust NLOS bias mitigation
technique for RSS-TOA-based target localization,” IEEE Signal
Processing Letters, vol. 26, no. 1, pp. 64–68, 2019.

[21] S. Chang, Y. Li, H. Wang, W. Hu, and Y. Wu, “RSS-based
cooperative localization in wireless sensor networks via
second-order cone relaxation,” IEEE Access, vol. 6, pp. 54097–
54105, 2018.

[22] S. M. Kay, Fundamentals of Statistical Signal Processing:
Estimation Theory, Prentice-Hall, Inc., 1993.

[23] Q. Qi, Y. Li, Y. Wu, Y. Wang, and Y. Yue, “RSS-AOA-based
localization via mixed semi-definite and second-order cone
relaxation in 3-D wireless sensor networks,” IEEE Access,
vol. 7, pp. 117768–117779, 2019.

[24] M. Grant, S. Boyd, and Y. Ye, “CVX users’ guide,” Tech. Rep.
Build. Cambridge Univ. 711, 2009.

8 Journal of Sensors




