Hindawi

Journal of Sensors

Volume 2024, Article ID 4917097, 18 pages
https://doi.org/10.1155/2024/4917097

Research Article

Q@) Hindawi

Efficient Multistage License Plate Detection and Recognition
Using YOLOv8 and CNN for Smart Parking Systems

Mejdl Safran (), Abdulmalik Alajmi

Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178,
Riyadh 11543, Saudi Arabia

, and Sultan Alfarhood

Correspondence should be addressed to Mejdl Safran; mejdl@ksu.edu.sa
Received 2 September 2023; Revised 8 January 2024; Accepted 10 January 2024; Published 8 February 2024
Academic Editor: Stanislav Vitek

Copyright © 2024 Mejdl Safran et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Smart parking systems play a vital role in enhancing the efficiency and sustainability of smart cities. However, most existing
systems depend on sensors to monitor the occupancy of parking spaces, which entail high installation and maintenance costs and
limited functionality in tracking vehicle movement within the car park. To address these challenges, we propose a multistage
learning-based approach that leverages existing surveillance cameras within the car park and a self-collected dataset of Saudi
license plates. The approach combines YOLOVS5 for license plate detection, YOLOVS for character detection, and a new convolu-
tional neural network architecture for improved character recognition. We show that our approach outperforms the single-stage
approach, achieving an overall accuracy of 96.1% versus 83.9% of the single-stage approach. The approach is also integrated into a
web-based dashboard for real-time visualization and statistical analysis of car park occupancy and vehicle movement with an
acceptable time efficiency. Our work demonstrates how existing technology can be leveraged to improve the efficiency and

sustainability of smart cities.

1. Introduction

Smart cities are urban areas that use various technologies and
data sources to improve the quality of life and efficiency of
services for their citizens. One of the key aspects of smart
cities is smart transportation, which optimizes mobility and
safety in urban environments. Smart parking systems (SPSs)
are a crucial component of smart transportation, as they can
reduce traffic congestion, fuel consumption, air pollution,
and parking search time by providing real-time information
on parking availability and location [1]. Rapid advances in
communication and information technologies have enabled
the development of cost-effective SPSs [2]. These systems
benefit car park operators, drivers, and the environment [3].
Operators can analyze car park data to predict future parking
patterns and make pricing recommendations. Drivers can
find vacant parking spaces and locate their parked cars
more easily, reducing travel and search time. SPSs also reduce
air pollution by decreasing vehicle emissions [4].

Various SPS approaches have been proposed in the liter-
ature. According to Fahim et al. [5], there are 12 different

technological approaches to developing SPSs, with wireless
sensor networks, the Internet of Things, and computer
vision-based systems being the most popular. However,
designing and implementing SPSs presents several challenges.
One of the main challenges is monitoring parking space occu-
pancy reliably and cost-effectively. Many existing systems use
sensors, such as magnetic, ultrasonic, or infrared sensors, to
detect vehicle presence or absence in each parking space.
However, these systems often have high hardware and main-
tenance costs and limited capabilities for tracking vehicular
movement within the car park. While they can detect whether
a parking space is occupied, they do not provide information
about the vehicle’s identity occupying the space [6]. They may
also suffer from sensor failures, interference, or vandalism,
affecting their accuracy and reliability [7].

To address these limitations, some recent studies have
proposed to use of computer vision techniques to monitor
the occupancy of parking spaces using existing surveillance
cameras within car parks. These techniques can detect and
recognize the license plates of vehicles entering and exiting
car parks and update the occupancy status accordingly.

https://orcid.org/0000-0002-7445-7121
https://orcid.org/0009-0001-3628-7846
https://orcid.org/0009-0001-1268-9613
mailto:mejdl@ksu.edu.sa
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/4917097

Compared to sensor-based systems, these techniques can reduce
hardware and maintenance costs and have more flexibility in
tracking vehicle movement within car parks. Furthermore, these
techniques can provide additional information and functionality
for car park management, such as vehicle identification, access
control, security monitoring, and statistical analysis [8].

However, most of the existing computer vision techniques
for SPSs are designed for specific regions or countries and
may not be applicable or effective for Saudi Arabia, which
has different license plate formats, fonts, colors, or back-
grounds. Therefore, we propose a novel approach that is tai-
lored for the Saudi license plates and achieves better accuracy
and efficiency in detection and recognition. Our approach is
based on a multistage learning-based pipeline for SPSs that
utilizes existing surveillance cameras within car parks and
leverages a self-collected dataset of Saudi license plates. The
main contributions of this research are as follows:

(i) We introduce a new, local dataset of Saudi license plates,
which we collected and annotated ourselves. This data-
set covers various scenarios of license plate detection,
character detection, and character recognition.

(if) We develop a multistage learning-based approach
for SPSs that utilizes existing surveillance cameras
within the car park and our self-collected dataset of
Saudi license plates. Our approach consists of three
stages: license plate detection, character detection,
and character recognition.

(iii) We train and fine-tune the state-of-the-art YOLO
series (i.e., YOLOv5, YOLOv7, and YOLOvVS) for
robust and fast Saudi license plate detection and
character detection. We achieve a mean average pre-
cision of 99.4% for license plate detection using
YOLOvV5x and a mean average precision of 98.1%
for character detection using YOLOv8x.

(iv) We propose a new convolutional neural network
(CNN) architecture for improved license plate char-
acter recognition, which surpasses other existing
approaches with an accuracy of 97%.

(v) We demonstrate experimentally that our multistage
approach outperforms the single-stage approach
(YOLOvV8x) with an overall accuracy of 96.1% versus
83.9%, with a reasonable time efficiency.

(vi) We develop a web-based dashboard that enables
real-time monitoring and statistical analysis of car
park occupancy. This dashboard serves as a practical
demonstration of our system in a real-world
scenario.

The rest of this paper is organized as follows: In Section 2,
we provide a comprehensive review of the existing SPSs that
use deep learning techniques. In Section 3, we explain our
proposed approach in detail and describe the experiment prep-
aration and setup. In Sections 4 and 5, we present and analyze
the experimental results and discuss the limitations and future
work of our approach. Finally, in Section 6, we summarize the
main contributions and findings of this paper.

Journal of Sensors

2. Related Work

In this section, we review various techniques proposed in the
literature for SPSs using license plate detection and recognition
(LPDR). We then discuss LPDR approaches applied on Saudi
license plates and conclude by highlighting the contributions
of our proposed approach compared to existing works.

2.1. Overview of LPDR Approaches for SPSs. Several LPDR
approaches have been proposed for SPSs. One approach is to
use neural networks for identifying car license plates. For
example, Sirithinaphong and Chamnongthai [9] proposed
a method for identifying car license plates for an automatic
parking system using car license plate patterns and a four-
layer neural network with an accuracy of 96% for license plate
extraction and 92% for recognition on 70 car images with the
automatic parking system prototype. Another approach is to
use the YOLO model to find the license plate region and the
ResNet model to recognize the characters. Joshua et al. [10]
presented such a method for identifying vehicle license plates
for a parking system with around 80% accuracy for character
recognition on Indonesian license plates. A solution for live
detection and recognition of a moving vehicle’s license plate
number using computer vision techniques was proposed by
Darapaneni et al. [11] with the best performance in terms of
accuracy and speed using YOLOv3 with OpenCV. Thakur
et al. [12] presented a web-based system for parking lot car
management that uses computer vision and the YOLOv3
deep learning model for license plate recognition with an
accuracy of 99.2% for license plate detection and 96.1% for
character recognition. Neupane et al. [13] proposed SHINE, a
deep learning-based accessible parking management system
that detects vehicles, license plates, and disability badges in
real-time using a YOLOv7 model for both object detection
and license plate recognition with a mean average precision of
92.16% on a custom dataset of 30,000 images collected from
various parking lots in South Korea.

Some researchers have used autocorrelation, mean square
error, and structural similarity index for managing and col-
lecting parking fees using vehicle number plate recognition,
such as Rashid et al. [14], with a recognition rate of 95.6%
using the mean square error approach. Another approach is
to use license plate recognition and RFID for car parking
management, such as what was presented by Sen et al. [15].
Van et al. [16] presented a ticketless parking system that uses
automated license plate recognition (ALPR) and face verifica-
tion technologies to authenticate the vehicle’s owner with
high accuracy using various AI models and algorithms, such
as 99.2% accuracy for detecting four-wheeler license plates,
96.1% accuracy for recognizing car license plate characters,
95% average precision for detecting masked face features, and
76.67% for verifying face identity.

Thai-Nghe and Chi-Ngon [17] proposed a solution for
building an intelligent parking support system that integrates
three recognition techniques: automatic recognition for motor-
cycle license plate, barcode recognition, and semiautomatic
recognition via surveillance cameras with an accuracy of 99%
for license plate area recognition, 95.88% for letter area recog-
nition, and 98.99% for classification.

Journal of Sensors

A web-based system for car management parking lots that
uses computer vision and open automatic license plate recog-
nition (OpenALPR) technologies was presented by Shkurti
et al. [18] with the ability to recognize 85% of images captured
from the camera. Thai et al. [19] developed a system that can
predict parking availability based on a long short-term mem-
ory (LSTM) network and notify the drivers about forecast
information. Similarly, Dalarmelina et al. [20] used Tesseract
OCR, which implements an LSTM network, to detect parking
slot availability by recognizing license plate characters of vehi-
cles moving around or parked in the parking slots, achieving
an accuracy of 83%. Xiang and Pan [21] proposed a system
that uses sensors, wireless network, controller, and an
improved Faster R-CNN deep learning algorithm to monitor
and manage parking spaces with accuracies of 92.84%,
90.19%, and 85.31% in three different difficulty levels. Anuar
and Lingas [22] presented an SPS that focuses on car entrance,
exit, and parking management using sensors and technologies
to increase efficiency and reduce complications, achieving a
detection rate of 97.1% and a recognition rate of 48.6%.

2.2. LPDR Approaches Applied on Saudi License Plates.
Several LPDR approaches have been applied on Saudi license
plates. Some studies have focused on improving existing
LPDR techniques to make them more suitable for license
plates from Arabic countries such as Egypt, Saudi Arabia,
and the UAE. For instance, one study improved the Faster
R-CNN framework and achieved a recall of 98.65% and a
precision of 97.46% on a dataset of license plates from these
countries [23]. Another study applied transfer learning to
train the YOLOV5 framework to detect license plates and
alphanumerics and trained a CNN to recognize detected
alphanumerics with a recognition rate of 92.8% on 2,600 car
images collected from real traffic videos in Saudi Arabia [24].

Some approaches have utilized the information redun-
dancy of Saudi license plates’ Arabic and English characters
to boost the accuracy of license plate recognition while main-
taining real-time inference performance. For example, Ammar
et al. [25] introduced a multistage, real-time, deep learning-
based system for vehicle identification and license plate recog-
nition that achieved detection rates of 81.9% and 80% and
recognition rates of 67% and 95% on two videos of vehicles
and license plates at several parking entrance gates. Khan et al.
[26] presented a deep learning-based license plate recognition
system that utilizes bilingual text in license plates to restore
noise-affected missing or misidentified characters in the plate
with an accuracy of 99.5% for character recognition and 97%
for plate detection.

Other studies have proposed automatic license plate rec-
ognition systems using various combinations of deep learn-
ing techniques such as Faster-RCNN, CNN, YOLO, and
radial basis function (RBF) neural networks for license plate
detection and character recognition. For example, Driss et al.
[27] proposed an automatic license plate recognition system
that uses Faster-RCNN for license plate detection and CNN
for character recognition with a precision of 92% for license
plate detection and an accuracy of 98% for license plate
recognition. Maglad [28] proposed a system for detecting

and recognizing Saudi Arabian license plates using an RBF
neural network for both detection and recognition with an
accuracy of 95% for license plate detection, 99% for character
segmentation, and 91% for character recognition. Alyahya
et al. [29] presented a system for recognizing Saudi license
plate numbers using a bi-linear interpolation algorithm, pre-
processing techniques, and an OCR based on an ANN clas-
sifier with an accuracy of 92%.

Other studies have employed shallow machine learning
techniques, such as SVM, RBF, and k-nearest neighbors classi-
fiers, to recognize Saudi license plates. For example, Suwais et al.
[30] developed an SVM-based algorithm that achieved 93.3%
accuracy. Another study [31] compared the performance of
SVM and RBF classifiers and found that the RBF-based method
outperformed the SVM-based method. Alzubaidi et al. [32]
proposed a Raspberry PI-based system that used pixel distribu-
tion, horizontal projection profiles, distance classifier, and
k-nearest neighbors classifier to achieve 90.6% accuracy.

2.3. Remarks. Our proposed approach offers several distinct
advantages over existing SPSs utilizing LPDR approaches, as
well as over existing LPDR approaches applied specifically to
Saudilicense plates. First, our approach diverges from existing
systems that rely on sensors to monitor parking space occu-
pancy by leveraging preexisting surveillance cameras within
the car park in conjunction with our self-collected dataset of
Saudi license plates. This approach not only reduces installa-
tion and maintenance costs but also enhances functionality in
tracking vehicle movement within the car park. Second, our
approach for license plate detection and recognition addresses
the tradeoff between the accuracy and time efficiency of SPSs
using state-of-the-art YOLO models and a newly proposed
CNN architecture. Finally, we have developed a web-based
dashboard for real-time monitoring and statistical analysis of
car parks, demonstrating the efficacy of our approach in a
real-world scenario experiment. This dashboard provides a
practical solution for parking management systems, enabling
efficient monitoring and analysis of car park occupancy and
vehicle movement.

3. Materials and Methods

We herein detail our methodology. First, we discuss the pro-
posed system architecture. Then, we describe the stages
employed in the proposed deep learning approach. We
then present the application of our proposed system to a
use case in Saudi Arabia. Finally, we describe the experiment
preparation and setup, including the dataset, the hardware,
and the software. We also discuss the evaluation metrics that
we used to measure the performance of our system.

3.1. System Architecture. The proposed system architecture,
as illustrated in Figure 1, comprises three main components:

(i) The Car Park Agent consists of car park cameras
connected to a local PC equipped with the proposed
deep learning model to analyze the cameras’ footage
by detecting and recognizing car license plates. One
camera is positioned at the car park entrance, while

Journal of Sensors

Car park agent
Camera

I?, Cloud agent Client agent
ﬁ Database ﬁ Dashboard

— _— " _ D=

s = 5 ool

——

]
LPR model

FIGURE 1: Proposed system architecture.

Image acquisition
and preprocessing

License plate
detection

Character Character
detection recognition

vioy b()t
7653 TN]J

FiGURE 2: Phases of license plate detection and recognition.

additional cameras are located at the entrance of
each floor. The deep learning model leverages the
state-of-the-art YOLO series and a newly proposed
CNN architecture for improved license plate char-
acter recognition, achieving high accuracy and
acceptable time efficiency.

(ii) The Cloud Agent is a cloud-based database that

receives insights from the Car Park Agent via
APIs. To maintain privacy and confidentiality, cam-
era footage is not transmitted to the Cloud Agent.
Instead, the Cloud Agent receives insights derived
from the Car Park Agent’s analysis of the footage,
enabling real-time monitoring and analysis of car
park occupancy and vehicle movement.

(iii) The Client Agent is a web-based dashboard that

retrieves statistical results from the Cloud Agent
via APIs. These results are displayed to car park
operators, enabling efficient monitoring and analy-
sis of car park occupancy and vehicle movement in
real-time.

In the following subsection, we will delve into the details
of the proposed deep learning approach for license plate
detection and recognition, which is deployed in the Car
Park Agent. We will discuss the various stages of the model
and its implementation in detecting and recognizing Saudi
license plates.

3.2. License Plate Detection and Recognition. License plate
detection and recognition is a crucial component of the
Car Park Agent in our proposed system. We herein describe
in detail the steps involved in building the deep learning
model for detecting and recognizing Saudi license plates in
car parks. As illustrated in Figure 2, the model consists of
four phases: (a) image acquisition and preprocessing, (b)
license plate detection, (c) character detection, and (d) char-
acter recognition. We will discuss each of these phases in
detail in the following subsections.

3.2.1. Image Acquisition and Preprocessing. Image acquisition
and preprocessing is the first phase in our deep learning
model for license plate detection and recognition. Image

Journal of Sensors

Output

FIGURE 3: Preprocessing phase.

preprocessing plays a crucial role in the object detection model
pipeline by highlighting the desired region in the image. During
this phase, various filters are applied to the image to remove
impurities and enhance its quality. In our work, images are
resized to 640 X 640 pixels and converted to grayscale using
resize and cvtColor methods from the OpenCV-Python library,
respectively, as shown in Figure 3. These specific image dimen-
sions were chosen to match the standard dimensions used by
YOLO models trained on the COCO dataset [33], enabling the
use of transfer learning when training our proposed models in
subsequent phases. Images are also denoised using the fas-
tNIMeansDenoising method from the OpenCV-Python library
and transformed by increasing their brightness using the Col-
orJitter (brightness = 0.2) method provided by PyTorch. More-
over, we used augmentation techniques on the training set
images when training our YOLO and CNN models on our
dataset. These techniques helped us to simulate real-world sce-
narios in parking systems and improve the generalization of
our models. The validation and test sets were not augmented to
ensure an accurate evaluation of the proposed model perfor-
mance. We will discuss the augmentation techniques when we
present the training process of the proposed models.

3.2.2. License Plate Detection. License plate detection is the
second phase in our deep learning model for license plate
detection and recognition. The primary objective of this
phase is to identify and extract the license plate from an
image of a car. This is achieved by searching the car image
for the rectangle that contains the license plate. In this phase,
we train and fine-tune YOLOvV5x [34], YOLOv7x [35], and
YOLOv8x [36] on a self-collected dataset of Saudi license
plates, which will be discussed in detail later in this section.
The model receives a car image as input and outputs the
detected license plate, as illustrated in Figure 4.

YOLO object detection algorithms are based on the
single-shot detection framework, which makes object detec-
tion by dividing the input image into grids and predicting
bounding boxes and confidence scores for each grid cell.
YOLOV5 [34] uses a cross-stage partial network (CSPNet)
[37] and Darknet as a backbone, which is responsible for
extracting features from the input image. The neck of
YOLOVS5 is a path aggregation network (PANet) [38], which
fuzes features from different levels of the backbone. YOLOv5
also uses adaptive feature pooling to improve the accuracy of

Output

FIGURE 4: License plate detection phase.

TasLE 1: Specifications of all versions of YOLOvV5, YOLOvV7, and
YOLOVS.

Model Parameters (millions) Year Reference
YOLOv5n 1.8

YOLOV5s 7.1

YOLOvV5m 20.9 2020 [34]
YOLOv51 46.1

YOLOV5x 86.2

YOLOv7 37.2 2022 35]
YOLOvV7x 70.8

YOLOvV8n 3.0

YOLOVS8s 11.2

YOLOv8m 25.9 2023 (36]
YOLOvSI 43.6

YOLOvV8x 68.2

object location. YOLOVS5 has five different model scales that can
gain a tradeoff between size and performance: YOLOv5n,
YOLOv5s, YOLOv5m, YOLOVS5], and YOLOv5x. YOLOV?
[35] introduces the extended efficient layer aggregation network
(E-ELAN) [39] as a better version of the ELAN computational
block, which enables efficient learning without gradient loss.
YOLOV7 uses reparameterized convolutions (RepConv) [40]
as the basic building block and applies coarse label assignment
for the auxiliary head and acceptable label assignment for the
lead head. YOLOvV7 has two model sizes: YOLOv7 and
YOLOv7x. YOLOVS [36] is an anchor-free detector that reduces
the number of box predictions and speeds up the non-maximum
suppression, which is a process of removing overlapping bound-
ing boxes. YOLOV8 employs mosaic augmentation to enhance
the training process for various real-world applications. YOLOv8
is considered the state-of-the-art among YOLO object detectors
[41]. YOLOVS8 has five model scales: YOLOv8n, YOLOvSs,
YOLOv8m, YOLOVSI, and YOLOvS8x. Table 1 shows the speci-
fications of all versions of YOLOv5, YOLOv7, and YOLOVS.

3.2.3. Character Detection. Character detection is the process
of decomposing an image of a sequence of characters into
subimages of individual symbols. This involves extracting
individual letters and digits from an image, such as a detected
license plate.

(VoY [Loc

Journal of Sensors

(VveY |[Loc

olj>unx}

7653|TNJ

Input

ofj>nxi

7653 |TNJ

Output

Figure 5: Character detection phase.

Input image

50><50><3 50><50><64 25 %25 x 64

G@i@fi@fﬁ

12><12><64

6><6><64

3x3x32 lx1><288 1><1><64 1><l><27 Oulpul

PRI 2 R TR

y
Conv2D ReLU »f‘? Max pooling 2D Normalization ' Dropout Flatten Dense /Softmax

FIGURE 6: Character recognition model architecture.

We use adaptive thresholding to convert the detected
license plate to a binary image, which improves the detection
process. Adaptive thresholding is a technique that adjusts the
threshold value based on the local pixel neighborhood,
resulting in a more robust binarization. The OpenCV library
provides the cv2.adaptiveThreshold function for this pur-
pose. This function takes four parameters: ADAPTIVE_
THRESH_MEAN_C, THRESH_BINARY, 15, and 20. The
first parameter specifies that the function will use the mean
of the neighborhood area as a basis for the threshold value.
The second parameter specifies that the function will com-
pare each pixel value with the threshold value and assign it
either 0 or 255, depending on whether it is below or above
the threshold. The third parameter specifies the size of the
pixel neighborhood, which is a square of 15 X 15 pixels. The
fourth parameter specifies a constant value that the function
will subtract from the mean to fine-tune the threshold value.

Unnecessary characters, such as Arabic characters, Hindi
digits, plate boundaries, and constant characters (e.g., the
word KSA), are then eliminated. Two large bounding boxes
are extracted, one for the English letters and one for the
Arabic digits. Within these large bounding boxes, smaller
bounding boxes are extracted for each individual letter and
digit. To train models for character detection, a new dataset
is generated by manually annotating the regions of interest in
the detected license plates, which will be discussed in detail
later in this section. We train and fine-tune YOLOV5x,
YOLOvV7x, and YOLOVS8x to detect the bounding boxes of
the English letters and Arabic digits. The trained models then
detect each letter and digit within each bounding box.

The model receives the detected license plate as input
and outputs localized English letters and Arabic digits (the
regions of interest). Figure 5 shows an example of the input
and output of the character detection phase.

3.2.4. Character Recognition. Character recognition is the
process of recognizing detected characters and mapping
them to their corresponding Arabic letters and Hindi digits.

In this phase, a simple CNN framework is built and trained
for character recognition. The proposed CNN framework is
illustrated in Figure 6, which consists of four convolutional
layers and two dense layers. The first convolutional layer has
64 filters of size 4x4 and applies the same padding and
ReLU activation to the input images of shape 50 50X 3.
The output of this layer is then passed through a max pooling
layer with default parameters, a normalization layer that
scales the inputs to have zero mean and unit variance, and
a dropout layer that randomly sets 25% of the inputs to zero
to prevent overfitting. The second and third convolutional
layers have the same structure as the first one. The fourth
convolutional layer has 32 filters of size 2 X 2 and also applies
the same padding, ReLU activation, max pooling, normali-
zation, and dropout as the previous layers. The output of the
fourth convolutional layer is then flattened into a 1D vector
and fed into a dense layer with 64 units and ReLU activation.
Another dropout layer with a 50% rate is applied before the
final dense layer with 27 units and softmax activation, which
produces the probability distribution over the 27 classes. The
model has a total of 163,263 parameters, of which 162,811
are trainable and 452 are nontrainable. The nontrainable
parameters are from the normalization layers, which have
fixed statistics for scaling the inputs.

The model receives a detected license plate image as
input and attempts to recognize the plate characters. As a
final step, English letters are mapped to Arabic letters, and
Arabic digits are mapped to Hindi digits, as shown in
Figure 7. An example of the input and output of the character
recognition phase is presented in Figure 8.

Our approach consists of detecting and recognizing only
English letters and Arabic digits from the license plates and
then mapping them to their corresponding Arabic letters and
Hindi digits. We have adopted this strategy for three main
reasons: (a) previous studies have demonstrated that using
only English letters and Arabic digits can achieve high accu-
racy, as evidenced by Khan et al. [24] and Ammar et al. [25];
(b) some Arabic letters and Hindi digits have similar or

Journal of Sensors 7
Arabic | English Arabic | English Hindi | Arabic
letter letter letter letter digit digit
) A o . 0
< B = T) 1
& by Y 2
& & E ¥ 3
€ 4 ¢ 4
d J = ° 5
d t G 1 6
3 D d K v 7
A J L A 8
2 R 8 Z 4 9
J 3 N
o S - H
G 3 U
wl X ¢ \Y%

Ficure 7: Mapping English letters to Arabic letters and Arabic digits to Hindi digits. Letters that are not used in Saudi license plates are
highlighted. Hindi digits, also known as Eastern Arabic numerals or Indic numerals, are derived from the Arabic script and used for writing
Arabic and other languages. Arabic digits, also known as Western Arabic numerals or Hindu-Arabic numerals, are the numerals that are

widely used in the Western world.

(VoY [LocE

Kl————> 7 |6 |5 |3 |T

7653 |TNJ}Z

Mapping

N |J
EE— The output: 7653 TNJ
YioY bz
\ A 4
o | ¢

FiGURE 8: Character recognition phase.

»

| J2
|ALH

Ofroxine

v
i

AW (25
816/ HGD

@®lrux;

FiGURE 9: Challenges in direct detection and recognition of Arabic letters and Hindi digits.

ambiguous shapes or orientations, which can lead to confu-
sion or errors in the recognition process. For instance, the
Arabic letter Alif (equivalent of English letter A) resembles
the Hindi digit one (equivalent of Arabic digit one); and (c)
many Saudi license plates are attached to the cars using bolts
on top-right and top-left regions which can interfere with the
Arabic letters and Hindi digits and make their detection and
recognition more challenging. For example, the bolts can
cause the Hindi digit one (equivalent of Arabic digit one)
to be read as the Hindi digit nine (equivalent of Arabic digit
nine), and the Arabic letter Alif (equivalent of English letter
A) to be read as Hindi digit nine (equivalent of Arabic digit
nine). Figure 9 shows some examples of these cases.

3.3. SPS Dashboard. The Client Agent provides a web-based
dashboard for sending and receiving data from the Cloud
Agent using APIs, as we discussed and showed in Figure 1.

The dashboard is designed to facilitate the management and
analysis of car park operations by providing real-time and
statistical information about car park occupancy and vehicle
movement. The dashboard has a user-friendly interface that
allows the operator to customize the display of information
according to various criteria, such as date range, car park
branch, floor number, and license plate number. The dash-
board also supports data visualization using graphs and charts
to enhance the understanding of the car park performance
and trends. The dashboard reflects the business workflow of
the proposed system, which consists of the following steps:

(i) Step 1: A car approaches the entrance gate of the car
park. A camera at the gate captures the image of the
car and sends it to the local PC, which has the pro-
posed deep-learning models for license plate detec-
tion and recognition installed.

N

Analytics Overview

2

Total floors

2

Number of gates

All park lots

2

Current cars

@ Number of cars

[
™

80

Number of cars

Ex

Journal of Sensors

Last 30 days Apply

) 4:02:55

Total cars Average time per car
Capacity
/80 2/80 2/80
Wed hu Fr

FIGURE 10: Smart parking system dashboard homepage.

(ii) Step 2: The YOLO models analyze the image and
detect the license plate of the car and its characters.
The license plate characters are then recognized using
the newly proposed CNN architecture. A unique ID is
assigned to the car, and the entry date and time are
recorded.

(iii) Step 3: The local PC sends the car ID, current floor

number, license plate number, and entry date and
time to the Cloud Agent via APIs. The Cloud Agent
stores this information in a cloud-based database
and updates the car park occupancy status. The Client
Agent receives a single to update the dashboard with
the latest information about car park occupancy and
vehicle movement. To avoid multiple detection and
recognition of the same car and to reduce the compu-
tation power required to process the frames, the
model implements a redundancy check mechanism.
The mechanism compares the license plate number of
the current frame with the license plate numbers of
the previous frames stored in a buffer. If the license
plate number of the current frame matches any of the
license plate numbers in the buffer, the model omits
sending and processing the current frame.

(iv) Step 4: If the car moves to another floor/zone, a camera
at the entrance or exit of each floor captures the image

of the car and sends it to the local PC. The local PC
verifies the license plate number of the car and records
the new floor number. It then sends this information to
the Cloud Agent and the Client Agent via APIs. The
Cloud Agent and the Client Agent update their respec-
tive databases and dashboards accordingly.

(v) Step 5: When the car is ready to exit the car park, it

approaches the exit gate. A camera at the exit gate
captures the image of the car and sends it to the local
PC. The local PC verifies the license plate number of
the car and records the exit date and time, and the
dwell time. It then sends this information to the Cloud
Agent and the Client Agent via APIs. The Cloud
Agent and the Client Agent update their respective
databases and dashboards accordingly.

The dashboard offers many features to enhance the effi-
ciency of car park management. Some of its key capabilities
are described below:

(@)

Homepage: The homepage, shown in Figure 10, dis-
plays real-time and statistical information about the
car park. The operator can filter the information by
date range, car park branch (for multibranch car
parks), and floor number. The homepage also shows

Journal of Sensors

N

Search for a specific car

Letters Digits
@ Q Q
Dwell 1h:10m:32s Floor 4 Dwell 9h: 02m: 25s
e Vol &Cl
o)
e 6251 EJA
@ In Out In

2023-01-25 22:24:10 2023-01-25 23:34:42

Dwell 5h:29m: 565 Floor 1

wdl

191

3191

2023-01-26 06:58:37 2023-01-26 16:01:02

Dwell 4h:28m:39s

Search
SS 9¢01\ sz
VVB 9451 DJA

2023-01-26 23:52:18 2023-01-26 23:55:23

Floor 2

AAVYV ToVY yol
8977 BGA 6572 RUA
C? 2:23»01—27 16:09:44 - 2223—01—27 17:11:01 -

FIGURE 11: A specific car localization page.

the current number of parked cars, the total number of
cars parked during the selected time period, the aver-

age parking time per car, and the number of floors and
gates in the selected car park (all displayed in blue
boxes). The operator can easily compare the car park’s
capacity with the number of parked cars during the
selected time period using a graph at the bottom of the
page. The x-axis shows the days, the y-axis shows the
total number of parked cars (green columns), and the
yellow columns show the capacity of the selected car
park or floor. If no filters are set, the default car park’s
results for the current week are displayed.

(ii) Locate a car: The “Locate a car” page, shown in
Figure 11, displays statistics about cars entering and
exiting the car park. Unless a specific car is specified in
the filter, this page normally displays the last 10 cars
that entered and exited. The operator can search for a
particular car by entering its license plate letters and
digits. Each car has its own profile with information
such as its license plate letters and digits in both Ara-
bic and English, floor number, dwell time, entry date,
and exit date (if applicable). Car profiles are updated
in real-time as cars enter and exit.

3.4. Experiment Preparation and Setup. In our experiments,
we used a self-collected dataset of 2,528 images of Saudi car
license plates. The images were captured using an iPhone 13
Pro camera at different times of day (morning, afternoon,
and evening) and from different positions (front and back
license plates), with each image containing only one license
plate. The dataset includes a mix of two sizes: 335 mm X 155
mm (1,688 images) and 550 mm X 110 mm (840 images).
Figure 12 shows examples of the collected Saudi car license
plates in both sizes. We have incorporated real-world distor-
tions into our dataset to make it sufficiently representative of
the conditions in a typical car park. Specifically, we have
applied a series of transformations to our images to simulate
the effects of lighting, weather, and distance variations that a
typical surveillance camera in a car park would encounter.
These transformations include brightness adjustments, noise
addition, and perspective transformations, and also involve
resizing the images to 640 X 640 pixels and converting them to
grayscale. In addition to these transformations, we have also
performed data augmentation on our training images, which
include techniques such as HSV adjustment, translation, scal-
ing, horizontal flipping, and mosaic. These techniques further
enhance the robustness of our models by providing a diverse set
of training samples that cover a wide range of real-world scenar-
ios. By incorporating these real-world distortions, we believe our

10

B [

Ficure 13: Examples from the dataset used for character detection.

dataset provides a sufficiently realistic representation of real-
world scenarios and the challenges that our proposed solution
would confront in a practical deployment scenario.

We manually annotated the license plates in the dataset
using the Labellmg tool [42] in TXT format to meet the
YOLO series standard. For character detection, we manually
annotated the regions of interest (bounding boxes on the
English letters and Arabic digits) in 1,849 instances from
the main dataset. Figure 13 shows some instances from the
character detection dataset. For character recognition, we
manually annotated the detected characters to create a new
balanced dataset containing 27,000 characters with their
ground truth labels. Figure 14 shows some instances from
the character recognition dataset. Table 2 summarizes the
sizes of the main dataset used for license plate detection and
the two datasets used for character detection and recognition.

We conducted our experiments on a Windows 10 system
with PyTorchl1.13 [43] and Tensorflow2.8 [44] frameworks.
We used a NVIDIA GeForce RTX 4080 Ti video card with
16 GB of video memory and 64 GB of RAM. Table 3 sum-
marizes the experimental environment configuration.

Journal of Sensors

i R AT

(d)

FiGure 12: Examples of collected Saudi car license plates: (a and b) size of 335 mm X 155 mm and (¢ and d) size of 550 mm X 110 mm.

Ficure 14: Examples from the dataset used for character
recognition.

TasLE 2: Number of instances in each dataset.

Dataset Number of instances
License plate detection 2,528
Character detection 1,849
Character recognition 27,000

TasLE 3: Experimental environment configuration.

Parameter Configuration

CPU Intel Core i9-13980HX (13th Gen)
GPU NVIDIA GeForce RTX 4080 Ti
System environment Windows 10
Acceleration environment CUDA 11.7

Language Python3.11.3

Journal of Sensors 11
TasLE 4: Hyperparameters used for training YOLOv5x, YOLOvV7x, and YOLOV8x.
Model Image size Batch size Epochs Loss Learning rate Optimizer Augmentation
YOLOVSX SGD hsv (h: 0.015; s: 0.7, v: 0.4), translate: 0.1
sv (h: 0.015; s: 0.7, v: 0.4), translate: 0.1,
igtgvgx 640 x 640 16 >0 0.02 0.01 (0.937 momentum) scale: 0.5, flip left-right: 0.5, mosaic: 1.0
v8x

3.5. Evaluation Metrics. To evaluate the performance of
object detection models, several metrics are commonly
used, such as precision, recall, average precision, and mean
average precision. These metrics are based on the concept of
intersection over union (IoU), which measures how much
two bounding boxes overlap and it determines whether a
prediction is correct or not. The IoU threshold is used to
decide whether a prediction is considered a true positive (TP)
or a false positive (FP). A prediction is a TP if its [oU with
the ground truth box is above the threshold and an FP oth-
erwise. The IoU threshold determines how strictly the model
is evaluated in terms of detection accuracy. A higher thresh-
old requires a more precise localization of the object to be a
TP, while a lower threshold allows for more leniency in the
localization.

Precision (P) is the ratio of TP to all predicted positives
(TP + FP), and it reflects how accurate the model is in detect-
ing objects. Recall (R) is the ratio of TP to all ground truth
positives (TP +FN), where EN is false negatives, and it
reflects how complete the model is in detecting objects. Pre-
cision and recall can be computed using the following
equations, respectively:

b TP B
" TP+ FP’
TP
R=—" . 2
TP + FN)

AP is the average of precision values at different recall
levels for each class, and it reflects how well the model can
detect objects across various confidence thresholds. It can be
computed using the following equation:

AP = / 'P(R) dR, 3)

0

where P(R) is the precision at a given recall level R.

Mean average precision (mAP) is the mean of AP values
for all classes, and it summarizes the overall performance of
the model for multiple classes. It can be computed using the
following equation:

1
AP

mAP =— is
NS

M=

(4)

where N represents the number of classes, and AP; is the
average precision for class i.

TasLE 5: Evaluation results of license plate detection.

Model mAP@0.5 mAP@0.95
YOLOv8x 0.973 0.844
YOLOv7x 0.920 0.730
YOLOv5x 0.994 0.892

In this study, we used two types of mAP:

(i) mAP@0.5: A mAP computed using an IoU threshold
of 0.5.

(i) mAP@0.5: 0.95 (denoted as mAP@0.95 for simpler
presentation): A mAP computed using a range of
thresholds from 0.5 to 0.95, increasing by 0.05 each
time. This is a stricter metric than mAP@0.5 and is
often used to evaluate models that need high detec-
tion accuracy, such as license plate detection.

4. Results and Discussion

In this section, we evaluate the performance of our proposed
system through various experiments. We first present the
training process and evaluation results for each stage of our
system: license plate detection, character detection, and charac-
ter recognition. We then compare our multistage approach with
the single-stage approach and analyze their accuracy. We also
demonstrate the practicality of our system by implementing it
in a real-world scenario and analyzing its time efficiency. Finally,
we discuss the limitations and future work of our system.

4.1. Experimental Results

4.1.1. License Plate Detection. For license plate detection, we
used our self-collected dataset of 2,528 images of Saudi car
license plates. The dataset was divided into training (70%,
1,769 images), validation (20%, 506 images), and testing (10%,
253 images) sets. We trained and finetuned the YOLOV5x,
YOLOvV7x, and YOLOV8x frameworks with hyperparameters’
values given in Table 4. We evaluated these models on the test
set, and the accuracy results are presented in Table 5. YOLOv5x
outperformed the other two models in detecting license plates
with mAP@0.5 of 0.994 and mAP@0.95 of 0.892. Therefore, we
chose YOLOWV5x for license plate detection in our final approach.
Figure 15 shows the training and validation loss versus the epoch
of the YOLOV5x for license plate detection.

4.1.2. Character Detection. We annotated the regions of
interest (English letters and Arabic digits) in 1,849 license
plates detected by YOLOv5x in the previous phase. We

12

Loss_value

0 5 10 15 20 25 30 35 40 45
Epoch

—— Training loss
—— Validation loss

Figure 15: Training and validation loss versus epoch of the
YOLOV5x for license plate detection.

TABLE 6: Evaluation results of character detection.

Model mAP@0.5 mAP@0.95

YOLOvV8x 0.981 0.827

YOLOvV7x 0.977 0.711

YOLOvV5x 0.978 0.819
1.3 4

Loss_value

e o @ ==
~ [oe] el — —_ [\S}
! L ! ! ! L

Epoch

— Training loss
— Validation loss

Figure 16: Training and validation loss versus epoch of the
YOLOV8x for character detection.

created a dataset of these annotated images and split it into
training (70%, 1,295 images), validation (20%, 370 images),
and testing (10%, 184 images) sets. We used the same train-
ing settings as before to train and finetune the YOLOV5x,
YOLOv7x, and YOLOv8x frameworks for character detec-
tion. We tested these models on the test set, and Table 6
shows the accuracy results. YOLOv8x achieved the best per-
formance for character detection with mAP@0.5 of 0.981
and mAP@0.95 of 0.827. Figure 16 plots the training and
validation loss versus epoch for the YOLOv8x model.

The trained models generate nine bounding boxes, each
with its own set of coordinates. To ensure that the segmented
elements are characters or digits and to preserve their order
on the license plate, we compare the coordinates of the
resulting bounding boxes. This allows us to determine which

Journal of Sensors

TasLE 7: Hyperparameters used to train the proposed CNN model.

Training component Approach and values

Number of epochs 50 with early stopping

Batch size 16

Learning rate 0.01

Loss function Categorical Cross-entropy
Weight decay 0.01

Optimizer Adam

main bounding box the segmented characters and digits
belong to. Additionally, we compare the coordinates of
each segmented character and digit within a single main
bounding box to maintain the correct order of the characters
and digits on the license plate.

4.1.3. Character Recognition. For character recognition, we
manually annotated the detected characters (English letters
and Arabic digits) from the previous phase to create a new
dataset containing 27,000 characters with their ground truth
labels. The dataset was divided into three subsets: training
(70%, 18,900 images), validation (20%, 5,400 images), and
testing (10%, 2,700 images). Each subset had a balanced
distribution of images among the digits and letters.

We trained our CNN framework for character recogni-
tion on our dataset with hyperparameters given in Table 7
(including a learning rate of 0.01, which was chosen based on
initial experimentation that showed good model generaliza-
tion with this value). As shown in Figures 17 and 18, our
CNN model exhibits high training and validation accuracy
and low loss versus epochs. It achieved an average accuracy
of 0.970, precision of 0.985, recall of 0.985, and F1-score of
0.982. Table 8 further presents a detailed comparison of the
recall, precision, and F1 scores for all classes, and Figure 19
illustrates the performance using a confusion matrix.

4.2. Advantages of the Proposed Multistage Approach over a
Single-Stage Approach. This study aims to compare the per-
formance of a multistage approach and a single-stage
approach for real-time SPSs. We use different versions of
YOLO frameworks (including YOLOVS, which has not
been applied to this domain before) for the comparison.
We could not find any suitable techniques from the prior
art that match our criteria, as most of them are designed for
different license plate formats or other applications. There-
fore, this work, along with its proposed dataset, could pave
the way for more advanced and affordable solutions for SPSs
for diverse application scenarios.

We compared the accuracy and efficiency of our pro-
posed multistage approach, which uses YOLOv5x and
YOLOVS8x for license plate and character detection, respec-
tively, and a separate classification CNN for character recog-
nition, with a single-stage approach that uses YOLOv8x for
both detection and recognition tasks. We conducted this
experiment using 181 new images and measured the overall
performance of the two approaches.

YOLOv5x and YOLOv8x are multiclass detectors that
need minimal training for customization to a specific detection

Journal of Sensors 13
0.9
Q
2 0.
g|
B 0.
g
g o
<
0.5
0.4
0 5 10 15 20
Epoch
— Training accuracy
—— Validation accuracy
FIGURE 17: Training and validation accuracy versus epoch of the proposed CNN for character recognition.
2
1.5
E
g
g 1
8
—
0.5
0 T T T
0 5 10 15 20
Epoch
—— Training loss
—— Validation loss
Ficure 18: Training and validation loss versus epoch of the proposed CNN for character recognition.
TasLE 8: Evaluation of character classification of proposed CNN.
Character Precision Recall F1-score
0 0.98 0.99 0.98
1 0.95 0.98 0.96
2 0.96 0.97 0.96
3 0.99 0.98 0.98
4 1 0.98 0.98
5 0.99 0.99 0.99
6 0.97 0.98 0.97
7 0.97 0.97 0.97
8 0.99 0.98 0.98
9 0.99 0.97 0.98
A 1 0.98 0.99
B 1 1 1
D 0.99 0.97 0.98
E 0.98 0.99 0.98
G 1 0.98 0.99
H 0.98 1 0.99
] 0.97 0.96 0.96
K 0.99 0.99 0.99

14 Journal of Sensors

TasLE 8: Continued.

Character Precision Recall Fl1-score
L 0.97 1 0.98
N 0.99 0.99 0.99

R 0.99 1 0.99

S 0.99 0.98 0.98

T 1 1 1

U 0.99 0.99 0.99

\ 1 0.99 0.99

X 0.99 0.99 0.99

Z 0.98 1 0.99

Confusion matrix

00 o o0 o o0 2 o0 0 0 0 0 o0 0 o0 o0 o o o o o o O o0 o0 o0 o

190 20 0 0 o0 3 0 O o0 o0 o0 o0 o o o o o o o o O 0O o0 o0 o0
241 0 o o0 o o0 o0 o0 o0 o o o o o o o o o o o o0 o
340 0 O o o0 1 0 O O O o o o o o o o o o o o0 o0 o
440 0 0 o o o o0 o0 o o0 o o o o o o o o o o o o0 o
540 0 0 o o0 1 0 0O O o o o o o o o o o0 o O o0 0 o0
640 0 O o 2 o0 o0 o0 o0 o0 o o o o o o o o o o o o0 o
740 2 1 o o o o0 o0 o0 o0 o o o o o o o o o o o o0
840 0 O O O O O O 10 o0 o0 o0 o o o o o o o o O 0 o0 0 o0
940 0 0 1 O O O 0 O o o o0 o0 o0 o0 o o o o o o o o o o0 o0
Aq40 O O O O O O O 0 o0 o o0 o o0 o0 o0 o o o o o o o o0 o0 o0

B40 0 O O O O O O O O Opp€¥ o o o0 o O O O O O O O O o o0 o0

gD-O o o0 o0 o o o o o o0 0 O 1 0 0 0 0 O O o o o O o0 o0 O
%E-O o o o o o o o o o o0 o0 o0 o o o0 o o0 o o 2 0 0 0 0 O
£G-O o o o o o o o o o o O 0 O o 0o o o0 o o0 o O o o0 o0 o
H40 O O O O o0 0O o0 0O o0 1 O o0 o0 o0 o o o 1 0 O O O O o0 O
Jj90 0 o0 o0 O o o0 o O O 1 0 0 0O 0 O o o0 o o0 o O 1 0 1 o0
K40 0 O o o o o o o o o o o0 o o0 o0 o o o0 o o o o 1 0 O
L0 0 o o0 o0 o0 O o o o o o 1 o o0 o0 2 O o o0 o o o0 o0 0 o0
N40 O O o0 o0 o0 o0 o0 o O0O o0 o o o0 1 0 o0 0 o0 o o0 o o o0 0 o0

Rq4q0 O O O o o o o O o O o0 o0 o0 1 0 0 O O O gy 0 0 O O O O

T4 0 0 O O o o o o o o o o o o o o o o o o0 0 o0 o 0 0 O
vq40 0 o0 o0 o0 o o o o o o o o o o o0 1 O O O o0 0 o0 0o 0 0
vq40 0 O0 o0 o o0 o o0 o o o0 o o o o o o o o o o o o0 o 0 0
X460 0 O o o0 o o0 o0 o0 o0 o o o o o0 o o0 1 o0 O o o0 o0 o0 o0 0

z40 o0 o0 o o0 o o o o o o o0 2 o0 o0 o o0 o o0 o o0 o0 0 0 0 0 pu

0 1 2 3 4 5 6 7 8 9 A B D E G H J K L N R S T U V X Z
Actual

FiGure 19: Confusion matrix of proposed CNN for character recognition.

Journal of Sensors

15

TasLE 9: Overall accuracy of the proposed multistage approach versus the single-stage approach.

Single-stage approach

Proposed approach

Number of license plate images
Correctly detected license plates
Fully correctly recognized license plates

181 181
179 (98.8%) 179 (98.8%)
152 (83.9%) 174 (96.1%)

Dotactad Licsnes Plate
o
EAVT 3l

Ficure 20: Examples of license plate detection and recognition in a real-world car park using our proposed system.

task, such as license plate detection in our case. By using
transfer learning, we trained YOLOv5x and YOLOvV8x on
our small dataset and achieved a very high detection accuracy
of 98.8%. However, while YOLOv5x and YOLOv8x are effec-
tive for detection tasks with minimal training, they require
more intensive training for recognition tasks on a large data-
set. This is because the recognition task involves 27 classes
(17 letters and 10 digits) and requires more fine-grained fea-
tures to distinguish between similar characters, such as O and
0 or B and 8. On the other hand, our proposed approach uses
a smaller customized CNN that is specifically designed and
trained for the recognition task on our limited dataset. The
CNN has fewer parameters and layers than YOLOv8x and
uses dropout and regularization to prevent overfitting. The
CNN also takes advantage of the character detection results
from YOLOV8x, which provide a good localization and seg-
mentation of the characters.

As shown in Table 9, our proposed approach achieved an
overall accuracy of 96.1%, which is 12.2% higher than the
single-stage approach with 83.9% accuracy. The single-stage
approach suffers from low recognition accuracy, especially
for small and blurry characters, due to the lack of sufficient
training data and the complexity of the recognition task.
Therefore, we opted for our proposed two-stage approach
instead of using YOLOv8x or YOLOV5x algorithms for both
detection and recognition tasks.

4.3. Evaluating the Proposed System in a Real-World Car
Park. To evaluate the practical performance of the proposed
system, a real-world experiment was conducted in a car park

in Saudi Arabia. A camera was mounted at the entrance of
the car park and connected to a local PC equipped with a
GeForce RTX 2050 GPU. The proposed model, deployed on
the local PC, analyzed frames from the camera footage and
sent the results to the dashboard via APIs. Figure 20 shows
some images from the real-world experiment.

We also measured the time required to process each frame
on the local PC and send the results to the dashboard via API.
In addition to its high accuracy, our proposed approach dem-
onstrated acceptable time efficiency for use in a parking man-
agement system, where cars must slow down at the entrance.
Our approach also implemented a redundancy check mecha-
nism to avoid processing the same car multiple times. The
mechanism compared the license plate number of the current
frame with a buffer of previous frames. If there was a match,
the model skipped the current frame. Otherwise, the model
sent the current frame to the Cloud Agent and the Client
Agent via APIs and updated the buffer. This feature ensured
that the model only sent and processed new or updated infor-
mation. Experimental results showed that the entire process,
including license plate recognition, took an average of 264.7
ms/frame.

The potential enhancement of our system’s performance
through the introduction of real-world distortions to our
dataset is noteworthy. Given that our model operates with
relatively small image sizes, denoising the images enables it
to work effectively with a variety of real-world cameras. Our
preprocessing techniques are designed to mitigate these dis-
tortions, thereby ensuring robust performance even under
challenging conditions. This real-world study not only

16

demonstrated the effectiveness and efficiency of our proposed
system but also highlighted its potential resilience to real-
world distortions, further validating its suitability for practical
deployment in SPSs.

5. Limitations and Future Work

Our system has some limitations that we acknowledge and
plan to address in our future work. These are: (i) Our system
relies on the quality and availability of the surveillance cam-
eras within the car park. If the cameras are not well-
positioned, calibrated, or maintained, the system may fail
to detect or recognize the license plates correctly. Therefore,
we need to ensure that the cameras are properly installed and
monitored. (ii) Our system may not be able to handle some
challenging scenarios, such as occluded, damaged, or fake
license plates. These scenarios may require more advanced
techniques, such as attention mechanisms, adversarial learn-
ing, or anomaly detection, to improve the robustness and
security of the system. (iii) Our system is currently designed
for Saudi license plates in particular, which have a specific
format and character set. To generalize our system to other
countries or regions, we need to collect and annotate more
data from different license plate types and adapt our models
accordingly. In addition to these limitations, we also identify
some opportunities for future work. These are: (i) To inte-
grate additional data sources, such as motorcycle license
plates and special license plates, to further improve the accu-
racy and functionality of the system. (ii) To conduct a large-
scale deployment of the system in a real-world setting, such
as a car park with multiple floors and gates, to evaluate its
effectiveness in practice through real experiments. (iii) To
extend our comparison to other state-of-the-art algorithms
(besides YOLO models) and to test our approach on differ-
ent license plate types and domains in the future. These
directions would help us to enhance the performance and
applicability of our methods for smart parking systems.

6. Conclusions

This article proposes a solution for SPSs that addresses the
challenges of high installation and maintenance costs and
limited functionality in tracking vehicle movement within car
parks. The proposed approach leverages existing surveillance
cameras and a self-collected dataset of Saudi license plates.
The approach trains and fine-tunes state-of-the-art YOLO
series for accurate Saudi car license plate detection and recog-
nition, with YOLOv5x achieving mAP@0.5 of 99.4% and
mAP@0.95 of 89.2% for license plate detection and YOLOv8x
achieving mAP@0.5 of 98.1% and mAP@0.95 of 82.7% for
character detection. A new CNN architecture is introduced
for improved license plate character recognition, achieving an
average accuracy of 97%, average precision of 98.5%, average
recall of 98.5%, and average F1-score of 98.2%. Experimental
results show that the proposed approach is more effective
than the single-stage approach, with overall accuracy of
96.1% compared to overall accuracy of 83.9% for our pro-
posed approach and the single-stage approach, respectively.
The proposed approach is also integrated into a web-based

Journal of Sensors

dashboard for real-time visualization and statistical analysis,
with an acceptable time efficiency of 264.7 ms/frame. This
approach has the potential to enhance the efficiency and sus-
tainability of smart cities through its innovative use of existing
technology.

Data Availability

The weights and scripts of the proposed models are publicly
available through https://github.com/abdulmalik-99/Efficie
nt-Multi-Stage-License-Plate-Detection-and-Recognition.
The data presented in this study are available upon request
from the corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors extend their appreciation to King Saud Univer-
sity for funding this research through researchers supporting
project number (RSPD2024R1027), King Saud University,
Riyadh, Saudi Arabia.

References

[1] R Nithya, V. Priya, C.S. Kumar, J. Dheeba, and
K. A. Chandraprabha, “Smart parking system: an IoT based
computer vision approach for free parking spot detection using
faster R-CNN with YOLOv3 method,” Wireless Personal
Communications, vol. 125, no. 4, pp. 3205-3225, 2022.

[2] M. G. D. Ogas, R. Fabregat, and S. Aciar, “Survey of smart
parking systems,” Applied Sciences, vol. 10, no. 3872, 2020.

[3] C.]J.Rodier, S. A. Shaheen, and C. Kemmerer, “Smart parking
management field test: a Bay Area rapid transit (BART)
district parking demonstration,” University of California,
Berkeley, Final report, 2008.

[4] M. Y. I Idris, Y. Y. Leng, E. M. Tamil, N. M. Noor, and

Z. Razak, “Car park system: a review of smart parking system

and its technology,” Information Technology Journal, vol. 8,

no. 2, pp. 101-113, 2009.

A. Fahim, M. Hasan, and M. A. Chowdhury, “Smart parking

systems: comprehensive review based on various aspects,”

Heliyon, vol. 7, no. 5, Article ID 07050, 2021.

[6] C.-F. Chien, H.-T. Chen, and C.-Y. Lin, “A low-cost on-street

parking management system based on bluetooth beacons,”

Sensors, vol. 20, no. 16, Article ID 4559, 2020.

B. Budihala, T. Ivascu, and S. tefaniga, “Motorage—computer

vision-based self-sufficient smart parking system,” in

Proceedings of the 2022 24th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), pp. 250-257, 1IEEE, Linz, Austria, 2022.

M. Dixit, C. Srimathi, R. Doss, S. Loke, and M. Saleemdurai,

“Smart parking with computer vision and iot technology,” in

Proceedings of the 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP), pp. 170-

174, IEEE, Italy, 2020.

T. Sirithinaphong and K. Chamnongthai, “The recognition of

car license plate for automatic parking system,” Proceedings of

the ISSPA °99. Proceedings of the Fifth International

(5

[}

[7

—

(8

[t}

©
s

https://github.com/abdulmalik-99/Efficient-Multi-Stage-License-Plate-Detection-and-Recognition
https://github.com/abdulmalik-99/Efficient-Multi-Stage-License-Plate-Detection-and-Recognition
https://github.com/abdulmalik-99/Efficient-Multi-Stage-License-Plate-Detection-and-Recognition

Journal of Sensors

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Symposium on Signal Processing and Its Applications, vol. 1,
pp. 455-457, 1999.

Joshua, J. Hendryli, and D. E. Herwindiati, “Automatic license
plate recognition for parking system using convolutional
neural networks,” in Proceedings of the 2020 International
Conference on Information Management and Technology
(ICIMTech), pp. 71-74, 1EEE, Indonesia, 2020.

N. Darapaneni, K. Mogeraya, S. Mandal et al., “Computer
vision based license plate detection for automated vehicle
parking management system,” in Proceedings of the 2020 11th
IEEE Annual Ubiquitous Computing, Electronics Mobile
Communication Conference (UEMCON), pp. 0800-0805,
IEEE, New York, 2020.

N. Thakur, S. M. N. Islam, Z. Neyaz, D. Sadhwani, and R. Jain,
“Smart parking system using YOLOV3 deep learning model,”
in Applications of Artificial Intelligence, Big Data and Internet
of Things in Sustainable Development, S. Goundar, A. Purwar,
and A. Singh, Eds., CRC Press, chapter 4, 2022.

D. Neupane, A. Bhattarai, S. Aryal et al., “Shine: a deep
learning-based accessible parking management system,” Expert
Systems with Applications, vol. 238, Article ID 122205, 2023.
M. M. Rashid, A. Musa, M. A. Rahman, N. Farahana, and
A. Farhana, “Automatic parking management system and
parking fee collection based on number plate recognition,”
International Journal of Machine Learning and Computing,
vol. 2, no. 2, pp. 93-97, 2012.

E.J. Sen, K. D. M. Dixon, A. Anto et al., “Advanced license
plate recognition system for car parking,” in Proceedings of the
2014 International Conference on Embedded Systems (ICES),
pp- 162-165, IEEE, India, 2014.

Q. T. Van, H. N. Van, L. D. V. Hoang et al., “Intelligent
parking system using automated license plate recognition and
face verification,” Proceedings of the Proceedings of Interna-
tional Conference on Computing and Communication Net-
works; Springer Nature Singapore, pp. 219-227, 2022.

N. Thai-Nghe and N. Chi-Ngon, “An approach for building an
intelligent parking support system,” in Proceedings of the
Proceedings of the 5th Symposium on Information and
Communication Technology; Association for Computing
Machinery, pp. 192-201, Association for Computing Machin-
ery, New York, NY, USA, 2014.

L. Shkurti, A. Aliu, and F. Kabashi, “ParkingKS: parking
management system using open automatic license plate
recognition,” in Proceedings of the 2021 International
Conference on Electrical, Computer and Energy Technologies
(ICECET), pp. 1-5, IEEE, Cape Town, South Africa, 2021.
H. T. Thai, T. L. Nguyen-Tran, and K. H. Le, “Toward a
predictive smart parking system in IoT-enabled cities,” in
Proceedings of the 2022 9th NAFOSTED Conference on
Information and Computer Science (NICS), pp. 1-6, 2022.

N. Dalarmelina, M. A. Teixeira, and R. I. Meneguette, “A real-
time automatic plate recognition system based on optical
character recognition and wireless sensor networks for ITS,”
Sensors, vol. 20, no. 1, Article ID 55, 2020.

Z. Xiang and J. Pan, “Design of intelligent parking
management system based on ARM and wireless sensor
network,” Mobile Information Systems, vol. 2022, Article ID
2965638, 13 pages, 2022.

F. Anuar and N. Lingas, “Smart campus initiative: car
entrance, exit and parking management prototype develop-
ment,” AIP Conference Proceedings, vol. 2643, Article ID
040029, 2023.

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

W
2

(37]

17

T. Saidani and Y. E. Touati, “Vehicle plate recognition system
based on deep learning algorithms,” Multimedia Tools and
Applications, vol. 80, no. 30, pp. 36237-36248, 2021.

I. R. Khan, S. T. A. Ali, A. Siddiq et al., “Automatic license
plate recognition in real-world traffic videos captured in
unconstrained environment by a mobile camera,” Electronics,
vol. 11, no. 9, Article ID 1408, 2022.

A. Ammar, A. Koubaa, W. Boulila, B. Benjdira, and
Y. Alhabashi, “A multi-stage deep-learning-based vehicle
and license plate recognition system with real-time edge
inference,” Sensors, vol. 23, no. 4, Article ID 2120, 2023.

I. R. Khan, S. T. A. Ali, A. Siddiq, and S. O. Shim, “Multi-
string missing characters restoration for automatic license
plate recognition system,” International Journal of Advanced
Computer Science and Applications, vol. 14, no. 95, 2023.

M. Driss, I. Almomani, R. Al-Suhaimi, and H. Al-Harbi,
“Automatic Saudi Arabian license plate detection and
recognition using deep convolutional neural networks,” in
Proceedings of the Advances on Intelligent Informatics and
Computing, pp. 3-15, Springer International Publishing,
Cham, 2022.

K. W. Maglad, “A vehicle license plate detection and
recognition system,” Journal of Computer Science, vol. 8,
no. 3, pp. 310-315, 2012.

H. M. Alyahya, M. K. Alharthi, A. M. Alattas, and
V. Thayananthan, “Saudi license plate recognition system
using artificial neural network classifier,” in Proceedings of the
2017 International Conference on Computer and Applications
(ICCA), pp. 220-226, IEEE, Doha, Qatar, 2017.

K. Suwais, R. Al-Otaibi, and A. Alshahrani, “Saudi license plate
recognition algorithm based on support vector machine,”
Journal of Electronic Science and Technology, vol. 11, pp. 424-
428, 2013.

F. Kurniawan and M. S. Khalil, “Performance comparison
between SVM-based and RBF-based for detection of Saudi
license plate,” in Proceedings of the 2012 8th International
Conference on Information Science and Digital Content
Technology (ICIDT2012), pp. 537-541, I1EEE, Jeju, Korea
(South), 2012.

L. Alzubaidi, G. Latif, and J. Alghazo, “Affordable and portable
realtime Saudi license plate recognition using SoC,”
Proceedings of the 2019 2nd International Conference on New
Trends in Computing Sciences (ICTCS), pp. 1-5, 2019.

T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context,” European Conference on
Computer Vision, vol. 8693, pp. 740-755, 2014.

G. Jocher, “Ultralytics/Yolov5:v3.1—bug fixes and perfor-
mance improvements,” 2020, Zenodo, https://zenodo.org/re
cord/4154370.

C. Wang, A. Bochkovskiy, and H. Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object
detectors,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1571-1580,
IEEE, New Orleans, LA, USA, 2022.

ultralytics/ultralytics, 2023, https://github.com/ultralytics/
ultralytics.

C.Y. Wang, H. Y. Mark Liao, Y. H. Wu, P. Y. Chen,
J. W. Hsieh, and I. H. Yeh, “CSPNet: a new backbone that can
enhance learning capability of CNN,” in Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 1571-1580, IEEE,
Seattle, WA, USA, 2020.

https://zenodo.org/record/4154370
https://zenodo.org/record/4154370
https://zenodo.org/record/4154370
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

18

(38]

(39]

[40]

[41]

[42]

(43]

(44]

K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng, “PANet:
few-shot image semantic segmentation with prototype
alignment,” in Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 9196-9205, IEEE,
Seoul, Republic of Korea, 2019.

C. Wang, H. M. Liao, I. Yeh, and E. M. Corporation,
“Designing network design strategies through gradient path
analysis,” arXiv 2014, arXiv: 2211.04800

X. Ding, X. Zhang, J. Han, G. Ding, and J. Sun, “RepVGG:
making VGG-style convnets great again,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13728-13737, Long Beach, CA, USA, 2019.
M. Sportelli, O.E. Apolo-Apolo, M. Fontanelli et al,
“Evaluation of YOLO object detectors for weed detection in
different turfgrass scenarios,” Applied Sciences, vol. 13, no. 14,
Article ID 8502, 2023.

Tzutalin, “Labellmg,” 2015, https://github.com/tzutalin/labell
mg.

A. Paszke, S. Gross, F. Massa et al., “PyTorch: an imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32; Curran Associates,
Inc, pp. 8024-8035, 2019.

TensorFlow, [Online; accessed 2023-08-05], https://www.te
nsorflow.org.

Journal of Sensors

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org

