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As important disaster-bearing bodies, buildings are the focus of attention in seismic disaster risk assessment and emergency rescue.
It is of great practical significance to extract buildings quickly and accurately with complex textures and variable scales and shapes
from high-resolution remote sensing images. We proposed an improved TransUnet model based on multiscale grouped convolu-
tion and attention named MATUnet to retain more local detail features and enhance the representation ability of global features,
while reducing the network parameters. We designed the multiscale grouped convolutional feature extraction module with
attention (GAM) to enhance the representation of detailed features. The convolutional positional encoding module (PEG) was
added to redetermine the number of transformer, it solved the problem of local feature information loss and the difficulty of
convergence of the network. The channel attention module (CAM) of the decoder enhanced the salient information of the features
and solved the problem of information redundancy after feature fusion. We experimented through MATUnet on the WHU
building dataset and Massachusetts dataset. MATUnet achieved the best IOU results of 92.14% and 83.22%, respectively, and
achieved better than the other generalized and state-of-the-art networks under the same conditions. We also have achieved good
segmentation results on the GF2 Xichang building dataset.

1. Introduction

Building extraction based on high-resolution remote sensing
images provides important technical support for earthquake
disaster risk assessment and postdisaster emergency response.
The development of high-resolution earth observation tech-
nology has led to more diverse and complex acquired remote
sensing image data [1], presenting both opportunities and
challenges for rapid and accurate building extraction. Mean-
while, the excellent performance of deep learning networks in
image feature extraction and nonlinear function fitting has
received extensive attention from scholars. With the great
advantage of fully convolutional networks (FCN) [2] in the
field of image segmentation, semantic segmentation methods
based on convolutional neural networks (CNN) started to be
proposed continuously. Subsequently, encoder–decoder struc-
tures have gradually been widely used in the field of segmen-
tation, Ronneberger et al. [3] designed the Unet network, and
Badrinarayanan et al. [4] designed the Segnet model, both of

which improved the extraction accuracy of the model through
the encoding–decoding structure, and brought new inspira-
tions for the framework of semantic segmentation network.
To improve the accuracy of deep learning methods in remote
sensing building extraction, some studies by Xu et al. [5–8]
have made a lot of improvements to the above-mentioned
network, mainly including three strategies, i.e., achieving a
larger receptive field by multiscale feature Extraction methods
[9], enriching feature information through multibranching
structure [10, 11], and reinforcing salient features through
attention mechanisms [8, 12]. Sun et al. [13] utilized a multi-
scale attention approach based on Unet to recognize buildings
with complex scales. Che et al. [14] proposed multiattention
feature fusion HRNet [15], which preserves more detailed
features based on the multibranch structure for accurate
semantic segmentation. MSRF-Net [16] used different scale
convolutional kernels with multiple branches in the encoder
and decoder to extract features on the different scales to
preserve multiscale contextual information. Yu et al. [17]
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adopted ConvNeXt [18] to extract multiscale abstract features,
and presented the attention module to selectively focus on
some important information, improving accuracy in building
extraction tasks. Shi et al. [19] employed channel–spatial
attention to the fuzed features of the encoder and decoder
for achieving discriminative and attentive features. The above
methods improve the extraction accuracy of buildings by
combining different strategies. However, due to the inherent
limitations of the convolutional kernel [20, 21], the model
receives limitations in capturing contextual dependencies,
resulting in suboptimal semantic segmentation results.

Given the exceptional capacity of the transformer struc-
ture [22] to capture contextual features, VIT [23] was the
pioneer in applying it to computer vision tasks. By creating
a pure transformer with a series of image chunks as input,
it achieved outstanding results in image classification tasks.
The swin transformer [24] introduced a feature pyramid
structure to address the low-output resolution of transformer
models like VIT. This innovation not only boosted perfor-
mance in semantic segmentation tasks but also decreased
computational requirements. Zheng et al. [25] introduced a
network known as SETR, which transforms the output of the
transformer from vectors into an image. This was the first
attempt to apply a transformer in the field of semantic seg-
mentation. Yuan and Xu [26] proposed a multiscale adaptive
network based on the swin transformer. This network effec-
tively integrates the multilevel feature maps of the swin trans-
former to capture multiscale information, thereby enhancing
the accuracy of semantic segmentation [27]. However, there
are few pure transformer networks for building extraction,
this is mainly because although transformers have excellent
capabilities in extracting global information, they are not
effective in extracting local detailed information [28]. The
transformer structure lacks translation invariance and local
correlation for convolution operation [23], which can neglect
local information [29] and result in the loss of building detail
features [30]. Therefore, some scholars have combined trans-
formers with CNN to improve the models’ feature extraction
performance. Chen et al. [31] connected it to the Unet
structure based on ResNet [32] and proposed the TransUnet
network, addressing the issues of traditional convolution
networks’ inability to model the relationship of global features
[33, 34], and achieved good results in the field of semantic
segmentation. But, TransUnet network still has some pro-
blems to be improved in remote sensing building extraction.
First, in the encoder, the traditional ResNet network has dee-
per layers, which may bring feature redundancy [35, 36]. The
feature fusion of the decoding process does not consider the
correlation between the features of different channels [37, 38],
and these problems can lead to useful feature information not
being effectively utilized. Second, the concatenation of convo-
lution and transformer is operated only by linear interpola-
tion, which can also result in the loss of feature information
[39].Meanwhile, the large computational volume of the trans-
former structure makes us think about the scope of applica-
tion of the number of transformer layers in the field of remote
sensing building extraction [40].

With the aim of further improving the extraction accu-
racy of remote sensing buildings, we proposed an improved
TransUnet model, MATUnet, based on multiscale grouped
convolution and attention mechanism in this paper. Differ-
ent from TransUnet, we first designed a multiscale grouped
convolutional feature extraction module with attention in the
encoder part to capture richer feature information through
grouped convolution with multiple branches in the shallow
andmiddle layers, and utilized attention to enhance the global
context information of the features on each convolutional
branch in the deep layer. Second, deep separable convolution
was utilized to implicitly construct the position information
within a sequence of image blocks, contributing to the expe-
ditious convergence of the transformer model [29, 41, 42].
In the decoder, the channel attention module (CAM) was
employed to enhance the cascade feature fusion from the
encoder, reinforcing the critical information of the features
in the channel dimension [43]. Our MATUnet network was
compared with other classical models and current state-of-
the-art building extraction networks on WHU building
dataset [44] and Massachusetts building dataset [45] to val-
idate the advantage of model accuracy. We also conducted
experiments on GF2 Xichang dataset to validate the effective-
ness of the MATUnet model in the practical applications.

Overall, the contributions of our paper are mainly in the
following areas:

(1) We proposed an improved TransUnet for building
semantic segmentation based on multiscale grouped
convolution and attention. Grouped convolution,
depth-separable convolution, and attention methods
enhance shallow feature representation and strengthen
the global information representation of the deeper
features, while the use of channel attention at the
decoder strengthens the representation of feature-
critical information, which improves the network
extraction accuracy relative to TransUnet and the
convergence speed.

(2) We proposed a multiscale grouped convolutional fea-
ture extraction module with attention in the encoder
part to capture richer feature information through
grouped convolution with multiple branches in the
shallow and middle layers, and utilized attention to
enhance the global context information of the features
on each convolutional branch in the deep layer.

(3) We utilized depth-separable convolution to implicitly
encode the position information of the transformer
to accelerate network convergence, while revisiting
the number of layers of the transformer to ensure the
efficiency of the global information extraction of the
model while reducing the computational complexity of
the model. Meanwhile, we added a channel attention
module to the decoder so that the encoder and decoder
features are fuzed for channel-dimensional attention
enhancement, which significantly improves the key
information between channels.
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(4) We have achieved more significant results than the
current state-of-the-art methods on two publicly
available datasets, and we have also verified the effec-
tiveness of the present model in practical application
by applying the model in the GF2 image building
dataset in Xichang City, Sichuan Province, China.

The remainder of this paper was organized as follows:
Section 2 presented the related work. Section 3 described
the specifics of the methodology of this paper. The experi-
mental setup and the detailed analysis of results were shown
in Section 4. Section 5 described the analyses of the selection
of the different modules and covariates in the ablation experi-
ments. Finally, Section 6 concluded this paper.

2. Related Works

In this section, we first presented the structure of the tradi-
tional TransUnet model, and the principle of grouped con-
volution to facilitate the understanding of readers for our
proposed method.

2.1. TransUnet Model Overview. The TransUnet network model
(Figure 1) uses an encoder that combines CNN and transformer
networks, consisting of three main components: an encoder
module based on CNN and transformer, a decoder module
based on skip connections, and a feature extraction module.

(1) The encoder module based on CNN and transformer
tandem (the red rectangular box in Figure 1). In the

encoder, the original image is fed into the ResNet
backbone network to obtain shallow and deep fea-
tures of the buildings. The extracted shallow features
are fuzed with the cascaded features sampled on the
encoder, while the deep features are linearly interpo-
lated and embedded through the image blocks as
input to the transformer. The TransUnet network
has a 12-layer transformer module, which collects
global contextual information about the features by
acquiring correlations between image blocks through
the transformer’s multi-head attention mechanism.

(2) The decoder module based on skip connections (the
orange rectangular box in Figure 1). The deep fea-
tures are combined with the shallow features of the
same scale extracted by the CNN through upsam-
pling. This prevents the loss of local building features
that may occur solely from upsampling during image
recovery, while also serving the purpose of decoding
deep features and maintaining low-medium features.

(3) The feature extraction module (the green rectangular
box in Figure 1) consists of a convolutional layer with
a size of 3× 3 convolutional kernel. This layer aims to
maintain consistency between the feature map and
the actual building labels.

2.2. The Grouped Convolution. The grouped convolution
[45] (Figure 2) borrows the idea of the dot product between
the input vector and the weights in a neuron. For an input
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FIGURE 1: TransUnet network structure [31].
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vector with a channel size of D: x¼ ½x1; x2;…; xD� :, the output
obtained through the transformation of the neuron can be
represented as x¼ ½x1; x2;…; xD� :. Grouped convolution con-
siders the dot product operation in the neuron as three
stages: “split-transform-aggregate.” In other words, the input
vector x is divided into multiple low-dimensional vectors xi,
then transformed by the corresponding number of weights
ωi in the neuron, and finally aggregates the transformed low-
dimensional features, which is ∑D

i¼1ωixi. Applying this idea
to neural networks, for input features x, there exists a func-
tion F(x) that projects x onto a low-dimensional subspace
with C channels, performs transformations, and finally
aggregates the results, which is ∑c

i¼1FiðxÞ :. Each convolution
operation divides the network into C groups, with the num-
ber of channels in each subnetwork changed from din to
din=C. At this point, F(x) can be considered a function with
multiple convolution operations, i.e., FðxÞ: ¼fconv1×1;
conv3×3; conv1×1g:, and finally aggregates them through con-
catenation to obtain the final feature output, ∑c

i¼1FiðxÞ :.

3. Methodology

To further improve the extraction accuracy of remotely sensed
buildings, this paper proposed an improved TransUnet model
based on multiscale group convolution and attention mecha-
nism, MATUnet. Figure 3 represents the rough framework of
MATUnet. The model is an encoder–decoder structure, which
is different from TransUnet in that the encoder part con-
sists of a multiscale grouped convolutional feature extrac-
tion module with attention (MGM) and eight transformer
structures with convolutional position embedding module
(PEG), and the decoder part adds the CAM. Specifically,
MATUnet captures richer feature information at all four
scales of the encoder through MGM and utilizes attention
to enhance the global information of features in each con-
volutional branch. In addition, a depth-separable convolu-
tion with zero-padding in PEG is utilized to implicitly
encode the position information and speed up the conver-
gence of the transformer. In the decoder, MATUnet enhances
the encoder and upsampling fusion features with CAM to
strengthen the key information representation of features in
each channel of the grouped convolution.

We detailed the MGM in the encoder in Section 3.1, and
the PEG in Section 3.2, and validated the selection of the
number of transformer layers in the subsequent ablation
experiments. The CAM is introduced in Section 3.3, and
the loss function in Section 3.4.

3.1. Multibranch Grouped Convolutional Feature Extraction
Module. In encoder, traditional convolution brings redun-
dancy as the number of layers increases, so we designed
multibranch grouped convolutional feature extraction mod-
ule (MGM) with attention to improve the ability of building
feature extraction, which performed feature extraction by
convolution of different branches to get more subfeatures
than the traditional convolution. At the same time, to enhance
the interaction of the information between subfeatures with
different branches, we concatenated each subfeature with a
global enhancement, which improved the representation of
the salient information between subfeatures, and suppressed
the irrelevant features. The whole module was shown in
Figure 4.

First, to reduce the computational effort of high-resolution
images on the model, 7× 7 convolution kernel with a large
perceptual field is employed to reduce the image resolution
and preserve as many image features as possible. The input
image x2R512×512×3 is conducted convolution, and then max-
pooling is adopted to obtain the building features z1 2
R256×256×64, as shown in Equation (1).

z1 ¼ ReLU Maxpool3×3 conv7×7 xð Þð Þð Þ; ð1Þ

where conv7×7ð⋅Þ : denotes the 7× 7 convolution, Maxpoolð⋅Þ :

denotes max-pooling.
Subsequently, the features calculated throughEquation (1)

are input into the MGM to compute multiscale features. The
number of MGM for the three scales is 3, 3, and 9. EachMGM
contains a 1× 1, 3× 3, and 1× 1 grouped convolution, respec-
tively, with the number of groups set to 32. As shown in the
red font in Figure 4, the step size of the 3× 3 convolution in
the first convolution module of each scale is set to 2 to reduce
the feature scale. The features after the grouped convolution
module fuze multiple subfeature information, which are pooled
by global average and then subjected to SoftMax operation and
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multiplied with the original features to obtain the attention-
enhanced features. The three scales of shallow building features
are z2 2R128×128×256, z3 2R64×64×512, and z4 2R32×32×1; 024.

The MGM in this module (the red dashed rectangular
box in Figure 4) is calculated as shown in Equations (2)–(6).

ziþ1 ¼ z × softmax GAP zð Þð Þ; ð2Þ

z ¼ ReLU conv1×1 concate ∑
d

i¼1
yi3 þ zi

� �� �� �
; ð3Þ

yi3 ¼ ReLU convi1×1 yi2ð Þð Þ 0< i ≤ dð Þ; ð4Þ

yi2 ¼ ReLU convi3×3 yi1ð Þð Þ 0< i ≤ dð Þ; ð5Þ

yi1 ¼ ReLU convi1×1 x0ð Þð Þ 0< i ≤ dð Þ: ð6Þ

In Equation (2), GAP denotes global average pooling, in
Equation (3), concateð⋅Þ : denotes stitching the features∑d

i¼1y
i
3

obtained by d group convolutions with the building features
x, and the output of the convolution module z is obtained
after nonlinear activation ReLUð⋅Þ :. Equations (3)–(5) repre-
sent the calculation of the convolution module with three
layers of group convolution on features x0, where convi1×1ð⋅Þ :,
convi3×3ð⋅Þ :, and convi1×1ð⋅Þ :, respectively, denotes the group
convolution with convolution size of 1× 1, 3× 3, and 1× 1.
The i indicates the i-th group convolution. It improves the
channel local correlation of building features by d parallel
identical convolutions.
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The improved module is shown in the red rectangular
box ① in Figure 3.

3.2. Transformer Structures with PEG. In the transformer
structures with PEG, depthwise separable convolution, zero-
padding convolution, and the attention mechanism are
employed to fuze the local and global features of the building.

Transformer structure with PEG was shown in Figure 5, we
will introduce the PEG module in the next process.

First, the deep-level features X 2R32×32×1; 024 are input to
8× 8 convolution, which includes zero-padding, and the
channel size is reduced to X0 2R14×14×768, which preserves
more localized features compared to the original TransUnet
through linear interpolation operations. Meanwhile, the zero
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value of a filled position is computed in a convolution oper-
ation with other input values of nonfilled positions, thus
preserving the positional information in the output. This
implicit encoding of positional information helps the trans-
former to understand the relative relationship of different
positions in the sequence [46]. Subsequently, X0 is chunked
without overlapping to get the image block sequence X

00 2
RN×C as transformer input. After the attention calculation, the
features calculated by multi-head attention are spliced with
X

00
to get the image block sequence X

000 2RN×C . Subsequently,
X

000
is input into the MLP module for nonlinear transforma-

tion to obtain Y . And then Y is input into the PEG module,
which is resized as H ×W×D. Considering the excellent
extraction performance of depthwise separable convolution
in remote sensing semantic segmentation task [47], local
semantic information interaction is performed on building
features through depthwise separable convolution to obtain
positional encoding information Y

00 2RH×W×D. The image
boundary effect and the zero-padding operation of convolu-
tion are adopted to obtain the encoding position information
to achieve the purpose of strengthening the local semantic
information of the building [48]. Finally, the building fea-
tures Y

00
with location encoding information are reshaped

to the image block sequence size and added with trans-
former output features to obtain Z 2RN×C , and then Z is
input into the next module. The complete calculation pro-
cess is shown in Equations (7)–(12), the PEG calculation
process includes Equations (7) and (8).

Z ¼ reshape2 Y
00� �þ Y ; ð7Þ

Y
00 ¼ reshape1 Yð Þ þ GN DSW reshape1 Yð Þð Þð Þ; ð8Þ

Y ¼ concate W2 GeLU W1 LN X000ð Þð Þ þ b1ð Þð Þ þ b2ð Þ;
ð9Þ

X
000 ¼ concate MSA LN X

00� �� �þ X
00� �
; ð10Þ

X
00 ¼ split1×1 X0ð Þ; ð11Þ

X 0 ¼ conv8×8 Xð Þð Þ: ð12Þ

In Equation (7), reshape2ð⋅Þ : indicates reshaping the build-
ing features to a sequence of image blocks with size N ×C. In
Equation (8), reshape1ð⋅Þ : denotes reshaping the image block
sequence Y 2RN×C to the building features, DSWð⋅Þ : denotes
the depthwise separable convolution with a 7× 7 convolution
kernel and the padding 3. In Equation (9),W1, b1 andW2, b2
denote the weights of the two fully connected layers in the
multilayer perception (MLP), and GeLUð⋅Þ : [49] denotes the
nonlinear activation function. In Equation (10), LN denotes
the normalization ofX

00
inC dimensions [50],MSAð⋅Þ : indicates

the calculation of multi-head self-attention, and concateð⋅Þ :

denotes the stitching of X
00
with the features computed by

multi-head attention. In Equation (11), split1×1ð⋅Þ : denotes a
1× 1 image block split window. In Equation (12), conv8×8ð⋅Þ :

denotes the deep convolution with convolution kernel K (K ¼
8× 8), step size S (S¼ 3), and padding value (Padding¼ 1).

3.3. Channel Attention Module. Due to the differences in the
information on different channels of the shallow features
from the encoder and the deep features sampled on the
decoder, the channel attention enhancement module is
added at the skip connection to optimize the integration of
the two features. The most significant feature of the feature
on the channel dimension is computed using global maxi-
mum pooling, and the mean of the feature on the channel
dimension is computed using global average pooling, and the
two are used to aggregate the spatial information of the
features by summing and sigmoid nonlinear activation to
obtain the channel attention weight map, and finally ele-
mentwise multiplication operation is performed with the
input features to obtain the enhanced features on the channel
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y y̋ z
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Depthwise separable convolution

. . . . . .
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Conv8 × 8
Layer
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FIGURE 5: Transformer structure with PEG.
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dimension. The channel attention enhancement module is
shown in Figure 6.

In this module, global max pooling [44] and global aver-
age pooling [51] are performed on the building feature x2
RH×W×C in the channel dimension to obtain two 1× 1×C
building features, ymax and yavg. Subsequently, they are input
to a multilayer perceptron with shared weights for semantic
interaction, and then the features y0max and y0avg outputted
from the perceptron are summed and input into nonlinear
activation to obtain the channel attention weight map, and
finally multiplied with the spliced features to obtain the
channel-enhanced features zchannel. The complete calculation
process is shown in Equations (13)–(17).

zchannel ¼ x × Sigmoid y
0
avg þ y

0
max

� �
; ð13Þ

y
0
max ¼MLPC ReLU MLPC

r
ymaxð Þ

� �� �
; ð14Þ

y
0
avg ¼MLPC ReLU MLPC

r
yavg
� �� �� �

; ð15Þ

yavg ¼ GAP xð Þ; ð16Þ

ymax ¼ GMP xð Þ: ð17Þ

In Equation (13), Sigmoidð⋅Þ : is a nonlinear activation
function. In Equation (14), MLPC

r
ð⋅Þ : indicates the first layer

of the perceptron, which has C=r neurons (r is the reduction
rate, here r¼ 8), and ReLUð⋅Þ: is the activation function. In
Equation (15), MLPCð⋅Þ : is the second layer of the perceptron
which has C neurons. In Equation (16), GAPð⋅Þ : denotes
global average pooling operation. In Equation (17), GMPð⋅Þ :

is global max pooling operation.
Finally, other building features after attention enhance-

ment are up-sampled through three layers, and then the
results are input to a 3× 3 convolution for semantic segmen-
tation. The predicted building extraction results are obtained.
The improved module is shown in the green rectangular box
in Figure 3.

3.4. Loss Function. In this paper, the loss function Ltotal which
is combined cross-entropy loss function Lce with Dice loss
function LD [52] was selected to optimize the predicted values
in the training process. When the loss function corresponds
to the smallest loss value during the training process, weight

parameters ω in the network are solved, as shown in
Equation (18), and the weights of Lce and LD are set to 0.5.

argmin Ltotal ωjð Þ ¼ argmin 0:5 × Lce þ 0:5 × LD ωjð Þ;
ð18Þ

where Lce denotes the cross-entropy loss function, LD denotes
the Dice loss function.

Cross-entropy loss functionLce is defined as Equation (19).

Lce ¼
1
N
∑
i
Li ¼

1
N
∑
i
1 −

1
N

∑
C

c¼1
yilg pið Þ; ð19Þ

where C is the number of sample categories (in this paper
C¼ 1), and yi indicates the sample belongs to category or not
(yi ¼ 1 or 0). pi denotes the probability that sample i belongs
to category c. Lce is used to evaluate the loss incurred when
classifying pixels in the image segmentation process. It mea-
sures the degree of difference between the labels and the
predicted values. The smaller the function value, the more
similar they are, and the better the model prediction.

Dice loss function LD is defined as Equation (20).

LD ¼ 1 −
2 x ∩ yj j
xj j þ yj j ; ð20Þ

where jx ∩ yj: is the intersection of true samples and pre-
dicted samples, and jxj : þ jyj : denotes the union of true sam-
ples with predicted samples. jxj : and jyj : indicate the element
number of the samples, respectively. LD is the loss metric
used to evaluate the similarity between the predicted images
and the real images.

4. Materials and Methods

In this section, we focus on the dataset we used in Section 4.1
and the preprocessing of the data in Section 4.2.

4.1. Introduction of the Experimental Dataset

4.1.1.Wuhan University Building Dataset.To verify the build-
ing extraction capability of the network model proposed in
this paper, the sample dataset was produced using WHU
building dataset (http://gpcv.whu.edu.cn/data/building_data
set.html) to train, validate and test the model. The building

x Global average pooling

Input Global max pooling

C C
1 × 1 × C

1 × 1 × CSigmoid

1 × 1 × C

C/8yavg y´avg

y´max
ymax

FIGURE 6: Channel attention enhancement module [43].
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experiment dataset of the Wuhan University (Figure 7) is a
large building dataset composed of multisource remote sens-
ing images, mainly including aerial and satellite images, each
of which is 512× 512 pixels. Among them, there are 8,819
aerial images with 0.3m spatial resolution, covering ground
area about 450 km2, and 17,388 satellite images (Satellite
Dataset II (East Asia)) with 2.7m spatial resolution, covering
ground area about 550 km2. The labels of the whole building
dataset are divided into building and background. In this
paper, 65% of the images in the dataset were randomly
selected as the training set, 5% of the images were randomly
selected as the validation set, and the remaining 30% of the
images were the test set for training and testing the building
extraction capability of the network.

4.1.2. Massachusetts Dataset. To verify the building extraction
capability of the improved network in this paper, the Massa-
chusetts building dataset (https://www.cs.toronto.edu/-vmnih/
data/) was also selected for training and testing the network to
further demonstrate the robustness of the network model in
this paper. The dataset covers urban and suburban areas in
the Boston area of the United States, such as office buildings,
individual homes and garages, and other buildings. The data-
set includes 151 high-resolution remote sensing images with a
size of 1,500× 1,500 pixels and 1.0m spatial resolution, cov-
ering ground area about 340 km2. After random cropping,
an image dataset with 512× 512 pixels for each image were
generated (Figure 8). About 3,000,200 and 1,200 images were
randomly selected from them as the training, evaluation, and
test sets.

4.1.3. GF2 Xichang City Research Area. To verify the building
extraction capability of the improved network proposed in
this paper in the practical application process, the GF-2
remote sensing imagery collected in Xichang City, Liangshan

Yi Autonomous Prefecture, Sichuan Province was selected,
and 1m resolution image (Figure 9) was obtained after orthor-
ectification, image fusion, and mosaic. The images offered
regions from ①–④ in Figure 9 were selected as the training
images for the network model. Each red area has 3,000×
5,000 pixels, and the image in green area is the test data
with 6,500× 10,000 pixels. After random cropping, a sample
dataset with 512× 512 pixels for each image block was
obtained.

4.2. Dataset Preprocessing. Image enhancement can increase
the amount of data and improve the generalization perfor-
mance of the network. In this paper, data augmentation for
sample datasets was carried out from the following aspects:

(1) To prevent the network model from overfitting, the
sample datasets are subjected to data augmentation.
The training samples in the above three datasets are
rotated 90°, 180°, and 270° clockwise, flipped hori-
zontally and flipped vertically (Figure 10).

(2) During the training process, a random value in the
range of (0, 1) is randomly generated. When it is
greater than 0.5, random Gaussian noise with vari-
ance in the range of (0, 2) is added. Meanwhile,
random brightness transformation is performed to
simulate images collected under different sunlight
conditions. Data augmentation is performed through
the above operations (Figure 11) to prevent overfitting
of the network.

5. Experimental Results and Discussion

5.1. Network Training.The details of experimental environment
and hyperparameters are as follows. We used a Windows

ðaÞ

ðbÞ
FIGURE 7: Images (a) and sample labels (b) of WHU building dataset.
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operating system with an RTX2080Ti GPU with 11GB of
video memory and a 16-core CPU, and chose the PyTorch
framework to build the network. The optimizer is Adam,
which is a momentum-based algorithm that uses the same
learning rate for each parameter and reduces it adaptively as
the network learns. We set the batch size to 2 due to compu-
tational resource constraints, epoch count is 50, initial learn-
ing rate is 0.001.

The training and validation loss curves for our network
on the WHU dataset and the Massachusetts dataset are
shown in Figure 12.

5.2. Precision Evaluation Index and Evaluation Strategy. Eval-
uation indexes are used to assess the performance strengths
and weaknesses of the model in the semantic segmentation
task. In this paper, after referring to relevant research results
[16, 17], Accuracy (Acc), Recall (R), Precision (P), F1 score
(F1), and intersection over union (IOU) are used to test the
prediction ability of the network model. They are defined as
follows in Equations (21)–(25).

Accuracy ¼ TPþ FN
TPþ TNþ FPþ FNð Þ ; ð21Þ

FIGURE 9: The samples selection on Xichang GF-2 image.

ðaÞ

ðbÞ
FIGURE 8: Images (a) and sample labels (b) of Massachusetts building dataset.
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ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ ðfÞ

ðgÞ
FIGURE 10: Image and label preprocessing. (a) Original image; (b) 90° clockwise rotate; (c) 180° clockwise rotate; (d) 270° clockwise rotate; (e)
horizontal mirroring; (f ) vertical mirroring; and (g) ground truth.

ðaÞ ðbÞ ðcÞ
FIGURE 11: Image data enhancement: (a) original image; (b) with gaussian noise; and (c) with brightness shift.
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Recall¼ TP
TPþ FNð Þ ; ð22Þ

Precision¼ TP
TPþ FP

; ð23Þ

IOU¼ TP
TPþ FPþ FNð Þ ; ð24Þ

F1¼ 2 ×
Precision × Recallð Þ
Precisionþ Recallð Þ : ð25Þ

TP is the number of samples labeled as building pixels
while predicted as building pixels. FN is the number of sam-
ples labeled as background pixels while predicted as back-
ground pixels. FP is the number of samples labeled as
background pixels whereas predicted as building pixels. TN
is the number of samples labeled as building pixels whereas
predicted as background pixels. Acc indicates the proportion
of building pixels and background pixels that are correctly
predicted to the predicted pixels and sample pixels. P is
proportion of the correctly predicted building pixels to the
predicted building pixels. R indicates the proportion of
building pixels correctly predicted to the building sample
pixels. IOU indicates the ratio of the intersection of the pre-
dicted building pixels and the building sample pixels to the
union of the predicted building pixels and the building sam-
ple pixels. F1 Score is used to comprehensively evaluate the
extraction results.

5.3. Building Extraction Results. To evaluate the effectiveness
of the network model proposed in this paper, the classical
semantic segmentation models Unet [3], Segnet [4], and the
building extraction model of TransUnet were used as the
baseline models for quantitative and qualitative evaluations
on three different datasets. Meanwhile, to further demon-
strate the advantages of our model, we also compared the
evaluation indicators with the state-of-the-art building extrac-
tion methods MAP-Net [53], MSRF-Net [16], and TransFuse
[54] on the two public baseline building datasets. MAP-Net
uses three independent paths to combine different scale fea-
tures in the encoding part. MSRF-Net is a block-level built-up
area extraction framework combing densely connected dual-
attention network and multiscale context, which used the
designed DCDA-Net [55] for feature representation and dis-
crimination of the image blocks. The proposed DCDA-Net is
a lightweight network that combines dense connection and
dual attention.

5.3.1. WHU Dataset.
(1) Quantitative Evaluation of Model Extraction Accuracy.
The experiments were conducted on the WHU dataset, and
the results of accuracy evaluation were obtained as shown in
Table 1.

From the comparison of the indicators, it can be found
that MATUnet is optimal in all metrics. P metric reaches
95.05%, which is an improvement of about 1.3% compared
to the traditional TransUnet. IOU reaches 92.14%, which

indicates that the MATUnet over TransUnet has resulted
in the improved performance. In the latest method, com-
pared with MAP-Net, the P metric of MATUnet improves
by 1.26% and IOU improves by 2.74%. MAP-Net learns the
spatial locations of multiscale features through multiple par-
allel paths while applying an attention-based approach to
enhance the features. As reflected from the accuracy metrics,
the combination of our multibranching strategy and the
attention mechanism outperforms MAP-Net in terms of per-
formance. Compared with the TransFuse model, our net-
work improves the P metric by 0.88% and the IOU by
2.21%. TransFuse combines the transformer and CNN in
parallel to capture global and spatially detailed features, but
integrating the features extracted by both of them at a shal-
low level led to redundancy of extracted information, while
our MATUnet fully utilizes the strengths of CNN and trans-
former to accurately extract local features and global fea-
tures, and enhances the channel attention on the features
during upsampling to improve the accuracy of the model.

As shown in Figure 13, by comparing the number of
parameters and efficiency (flops) of different networks, we
can find that the number of parameters of MATUnet network

TABLE 1: Evaluation indicators of different networks.

Method P (%) R (%) F1 (%) IOU (%) Acc (%)

Segnet 95.01 74.82 83.71 81.88 93.20
Unet 93.71 81.93 87.42 85.43 94.51
MAP-Net 93.79 90.82 92.28 89.40 96.17
MSRF-Net (k= 38) 94.97 91.68 93.29 90.16 96.65
TransUnet 93.75 87.21 90.36 88.49 95.66
TransFuse-L 94.17 90.18 92.12 89.93 96.84
MATUnet 95.05 92.23 93.62 92.14 97.06

Note. Bold numbers indicate the best performance of each indicator.

0
0 20 40 60 80

Parameters (M)
100 120 140 160

25

50

75

150

Fl
op

s (
G

) 125

150

175

90.16%
85.43%

89.40%

TransFuse
MSRFNet
MAPNet

MATUnet
TransUnet
Segnet
Unet

92.14%

89.93%

88.49%

81.88%

Total paras vs. flops
200
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is larger compared with those of Unet and Segnet, but smaller
than that of TransUnet, and the IOU of MATUnet is better
than that of TransUnet.

Meanwhile, we plotted the receiver operating character-
istic (ROC) curve of the model on the WHU dataset to judge
the performance of the model. As shown in Figure 14, The
ROC curve is obtained by changing the threshold of classifi-
cation, which in turn yields a series of points, and then the
obtained points are plotted as a curve according to the
threshold from small to large. The horizontal coordinate of
the curve represents the true positive rate (TPR), i.e., Recall,
and the vertical coordinate represents the false positive rate
(FPR). The area encircled by the curve is called the area
under the curve (AUC), and a larger area of AUC indicates
better performance.

(2) Qualitative Analysis of Model Extraction Results. To
qualitatively compare the results of the classical models, the
building recognition results were visualized and compared.
The prediction result is overlaid with the labeled image,
where white pixels represent the building that are correctly
predicted by the network, red pixels represent the wrongly
extracted building, and blue pixels represent the unextracted
building, as shown from Figures 15–17.

By comparing the yellow boxes in the first row in Figure 15,
we can find that the buildings of the images extracted from
MATUnet network are more complete, the buildings have a
lower miss detection rate in the small buildings extraction
results. By comparing the yellow boxes in the second row,
we can find that MATUnet is able to distinguish building
pixels with high similarity and maintains the integrity of

buildings. Meanwhile, MATUnet has a lower false alarm rate
compared with TransUnet.

From the extracted results shown in Figure 16, we can
find that MATUnet has better extraction results for large
buildings, with more complete building boundaries and no
combination phenomenon that occurs in other networks for
building prediction. By comparing the yellow box area in the
first row, we can find that Unet wrongly extracts nonbuilding
objects, and Segnet and TransUnet also wrongly extract
some nonbuilding objects. Compared to the other networks,
MATUnet reduces this phenomenon and accurately distin-
guishes between building and nonbuilding objects. By com-
paring the yellow box area in the second row, we can find
that for buildings surrounded by forests, MATUnet has
achieved complete and accurate extraction of the area not
covered by forests, which is a segmentation advantage differ-
ent from the other general networks.

We can see that in the building extraction results ofWHU
dataset (Figure 17) with 0.45m image resolution, MATUnet
still obtains good extraction results and can keep the integ-
rity of the buildings relative to the other network extraction
results. By comparing the yellow area in the first row of
Figures 17(c) and 17(f ), we can find that Unet has missed
some building pixels when buildings and backgrounds are
similar in the extraction process. Segnet and TransUnet
have extracted relatively few building pixels, whereas MATU-
net can extract the complete buildings compared to other
networks. By comparing the yellow area in the second row
of Figure 17(d)–17(f), we can find that TransUnet incorrectly
extracts the nonbuilding objects, whereas Segnet and MATU-
net have correctly extracted buildings. By comparing the yel-
low area in the third row, we can find that those are relatively
dense and large buildings. Although MATUnet can extract
relatively complete buildings compared with other networks,
it does not distinguish the buildings when the buildings are
close together. It is due to the distance between buildings is
too short, resulting in the incorrect extraction of some pixels.

5.3.2. Massachusetts Dataset. To further validate the building
extraction capability of the network model, the Massachu-
setts dataset is also used in experiment. The Massachusetts
dataset is adopted the same enhancement method in this
paper.

(1) Quantitative Evaluation of Model Extraction Accu-
racy. By analyzing the prediction accuracy results of each
network in the Massachusetts dataset (Table 2), we can see
that in this dataset, the metrics of MATUnet are significantly
better than those of the other classical network models,
which further suggests that MATUnet has a better building
extraction performance. In the latest network, we can find
that the P metrics and IOU metrics of TransFuse and Trans-
Unet are lower than some convolution-based networks,
which due to the smaller number of Massachusetts dataset,
it is more difficult for TransFuse and TransUnet with multi-
ple transformer structures to converge, which leads to the
two models have a lower accuracy on this dataset. Whereas
our network reconsiders the number of transformer layers
after adding convolutional positional coding, which reduces
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FIGURE 14: ROC on WHU dataset.
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the number of references while making the network easier to
converge, and therefore has higher accuracy.

Similarly, we plotted the ROC curve of the model on the
Massachusetts dataset (Figure 18) to determine the perfor-
mance of the model, and the AUC area of our network in
Figure 18 indicates that our method has a good performance.

(2) Qualitative Analysis of Model Extraction Results. As
can be seen in Figure 19, MATUnet outperforms other net-
work models in building extraction on this dataset. From the
first row and fourth row images, we find that MATUnet can
extract more building pixels correctly in white color and less
wrongly and missed building pixels in red and blue color,
respectively. From the fifth-row images, we can find that
Unet, Segnet, and TransUnet have poor ability in the extrac-
tion of large buildings, whereas MATUnet shows excellent
extraction performance and keeps the integrity and accuracy
of buildings. From the third-row images, we can find that for
buildings with complex shapes, although MATUnet extracts
better integrity of buildings compared to the other networks,

there are still incorrect extractions due to the presence of
shadows between the buildings, and the network model is
not able to distinguish the boundaries of buildings due to the
small spacing.

5.3.3. Generalization Ability Assessment. To verify the feature
extraction effect of the model proposed in this paper in scene
transferring applications, the prediction of buildings is per-
formed for the GF-2 Xichang study area. The images are
cropped to 512× 512 nonoverlapping image blocks. The
512× 512 resulting map is obtained after network model
prediction, and then the resulting map is merged into a raster
map with geospatial location information using Python and
GDAL open-source library. We chose three networks, Unet,
Segnet, and TransUnet, which have been widely applied in
the practical scenarios, to compare with our MATUnet. All
four networks were tested for prediction in the designated
areas, respectively, and the results are displayed as shown in
Figure 20.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ
FIGURE 15: Extraction results of small buildings (0.3m resolution): (a) original image; (b) ground truth; (c) Unet; (d) Segnet; (e) TransUnet;
(f ) MATUnet; (g) MAPNet; (h) MSRFNet; and (i) TransFuse.
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As can be seen in Figure 20, MATUnet extracts more
building areas and fewer wrongly extracted buildings com-
pared with Unet, Segnet, and TransUnet, which shows that
MATUnet has more excellent extraction performance. From
the local images of prediction results (Figure 20(b)), we can
find that MATUnet can identify more complete and regular
building boundaries compared with the other networks. To a
certain extent, it shows that MATUnet has better generaliza-
tion ability than the other general models.

5.3.4. Analysis of Ablation Studies to Model Structure. To
explore the impact of the three modules improved in this
paper on the feature extraction performance of the model,
the following ablation experiments were conducted on the
WHU dataset by means of control variables:

(1) Effect of MGM on the Network. To verify the ability of
MGM, we designed two networks. The first one is to replace
the convolution module in TransUnet with MGM, named
TransUnet+MGM, this network is to verify whether there is
any improvement in the performance of TransUnet after
adding MGM. The second network is to replace the MGM

inMATUnet with the standard convolutional module, named
MATUnet-Group, which is to verify whether there is any
performance degradation of the network after removing the
MGM.Our prediction results forMATUnet, MATUnet-MGM,
TransUnet, and TransUnet+MGM are shown in Table 3.

By comparing the prediction accuracies of TransUnet
and TransUnet+MGM, we can find that after adding MGM,
the P-accuracy of TransUnet+MGM is 2.37% higher than
that of conventional TransUnet, and the IOU is higher than
1.21%. By comparing the prediction accuracies of MATUnet
and MATUnet-MGM (without MGM), we can find that after
removingMGM, the P-accuracy ofMATUnet-MGM is 0.08%
lower than that of MATUnet, and the IOU is 1.67% lower
than MATUnet, which shows the advantage of MGM in
improving the model accuracy. Meanwhile, by comparing
the number of parameters of the network model between
MATUnet-MGM and MATUnet, we can find that MGM
does not make the parameters of the network not increase
significantly, which proves the effectiveness of MGM.

The feature maps of the standard convolutional layer in
TransUnet (corresponding to three blocks) and the MGM in

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ
FIGURE 16: Extraction results of large buildings (0.3m resolution): (a) original image; (b) ground truth; (c) Unet; (d) Segnet; (e) TransUnet;
(f ) MATUnet; (g) MAPNet; (h) MSRFNet; and (i) TransFuse.
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MATUnet were visualized. Specifically, we output the feature
maps after 1× 1 convolution, 3× 3 convolution, and 1× 1
convolution in the standard convolutional had and MGM,
and the results are shown in Figure 21(a)–21(f), where
Figure 21(a)–21(c) are the outputs of the standard convolu-
tional layer at three scales and Figure 21(d)–21(f) are the

outputs of the MGM. The color in the figure represents the
feature value. The brighter the color, the higher the feature
value.

In Figure 21(a), 21(b), 21(d), and 21(e) all have nine con-
volutional feature maps, Figures 21(c) and 21(f) have 27 con-
volutional feature maps. By comparing the feature maps, we

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ
FIGURE 17: Extraction results of dense buildings (0.45m resolution): (a) original image; (b) ground truth; (c) Unet; (d) Segnet; (e) TransUnet;
(f ) MATUnet; (g) MAPNet; (h) MSRFNet; and (i) TransFuse.
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can find that the semantic information (e.g., texture, etc.)
obtained from the network containing the standard convolu-
tion gradually decreases as the network layer gets deeper, and
the representation of features tends to be categorized, with the
semantic information becoming more abstract. However, the
features output fromMGM end up with abstract semantic infor-
mationwhile retaining some localized detailed semantic informa-
tion, which helps the model to recover the detailed information
of the features by sampling on the encoder. This indicates to
some extent that our MGM has a better ability to capture
architectural object information than the standard convolu-
tion, which helps to improve the accuracy of the building
feature extraction.

In contrast to increasing the depth and width of the
network, group convolution improves the channel local cor-
relation of building features by increasing the number of

groups, which improves the building feature extraction capa-
bility of the network without significantly increasing the
number of parameters.

(2) Effect of Transformer with PEG on the Network. To
verify the impact of transformer with PEG on the model fea-
ture extraction performance, this paper conducts experiments
from two aspects.

First, the number of transformer layers in the transformer
with PEG is discussed and analyzed in this paper. In previous
studies, some scholars [33] explored the influence of trans-
former layers on the performance of network feature extrac-
tion in the field of remote sensing semantic segmentation.
We also set different layers of transformer structure for
building extraction from remote sensing images to explore
the feature extraction effect of different transformer layers
in the remote sensing semantic segmentation task. The

TABLE 2: Evaluation indicators of different networks.

Method P (%) R (%) F1 (%) IOU (%) Acc (%)

Unet 82.28 69.31 75.24 74.37 90.16
Segnet 78.82 65.04 71.27 72.13 90.24
MAP-Net 85.94 79.80 82.76 70.59 —

MSRF-Net (k= 32) 86.53 80.88 83.61 71.84 93.09
TransUnet 80.80 71.95 76.11 74.96 90.26
TransFuse-L 82.54 78.97 80.48 72.02 92.76
MATUnet 89.17 81.22 85.01 83.22 93.82

Note. Bold numbers indicate the best performance of each indicator, and “−” indicates the network did not use this indicator in the original article.
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ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ ðfÞ ðgÞ ðhÞ ðiÞ
FIGURE 19: Building extraction results of different networks: (a) original image; (b) ground truth; (c) Unet; (d) Segnet; (e) TransUnet;
(f ) MATUnet; (g) MAPNet; (h) MSRFNet; and (i) TransFuse.

ðaÞ

ðbÞ
FIGURE 20: Building extraction results of different networks: (a) overall building extraction results and (b) local extraction results. In sequence,
the columns represent the original image, label, Unet, Segnet, TransUnet, and our network, MATUnet.
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TABLE 3: Evaluation indicators of different networks.

Method P (%) R (%) F1 (%) IOU (%) Acc (%) Paras (M)

MATUnet 95.05 92.23 93.62 92.14 97.06 64.98
MATUnet-MGM 94.97 90.56 92.71 91.16 96.70 64.98
TransUnet 93.75 87.21 90.36 88.49 95.66 93.23
TransUnet+MGM 96.12 87.38 91.57 89.78 96.12 93.23

ðaÞ

ðbÞ

ðcÞ

ðdÞ

ðeÞ
FIGURE 21: Continued.
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numbers of transformer groups in different networks in
this paper are designed to be 4, 8 (8 layers for MATUnet),
and 12, respectively, which are named MATUnet-4, MATU-
net, and MATUnet-12. The above networks were trained and
predicted in theWHU building dataset, and the segmentation
accuracy results of each network were obtained as shown in
Figure 22.MATUnet network has the highest extraction accu-
racy. The extraction accuracy of MATUnet-12 network is
higher than that of MATUnet-4. MATUnet has reduced the
number of layers compared with MATUnet-12, and the fea-
ture extraction accuracy has been further improved. Compar-
ing the numbers of parameters and flops of three network
models in Figure 23, we can see that although the number
of parameters of MATUnet-12 is larger than that of MATU-
net, the accuracy index of MATUnet-12 is not better than that
of MATUnet. Therefore, the model of 8-layer transformer struc-
ture is selected as MATUnet.

Second, we conducted a comparative experiment on the
position encoding methods in the transformer structure
through designing two networks, respectively. One network
is TransUnet+PEG, and the other network is MATUnet-
PEG. TransUnet+PEG is to add the PEG module to TransU-
net and delete the original position encodingmethod. By com-
paring the TransUnet and TransUnet+PEG networks, we can
show that adding the PEG module will improve the accuracy
of the network. MATUnet-PEG is to delete the PEG module
based on our MATUnet and adopts the position encoding
method of the traditional TransUnet. By comparing MATU-
net and MATUnet-PEG networks, we can show that the PEG
module contributes to the high performance of MATUnet,
and the PEGmodule is necessary. We conduct the experiments
on the WHU dataset using TransUnet, TransUnet+ PEG,
MATUnet, MATUnet-PEG to compare the indicators. The
extraction accuracies of four networks are shown in Table 4.

ðfÞ
FIGURE 21: Feature visualization of standard convolution features ((a) Block 1, (b) Block 2, and (c) Block 3) and MGM features ((d) Block 1,
(e) Block 2, and (f ) Block 3).
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FIGURE 22: Comparison of transformer structure with different layers.
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TABLE 4: The impact of location encoding on the networks.

Method P (%) R (%) F1 (%) IOU (%) Acc (%)

TransUnet 93.75 87.21 90.36 88.49 95.66
TransUnet+PEG 95.03 96.67 90.66 88.84 95.83
MATUnet-PEG 94.61 91.62 93.08 91.52 96.82
MATUnet 95.05 92.23 93.62 92.14 97.06
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FIGURE 24: Comparison of parameters (M) and flops (G) of different network models (the marked percentage is IOU of the model).
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In Table 4, comparing the extraction accuracies of Trans-
Unet and TransUnet+PEG, we can find that TransUnet+
PEG have higher accuracy indicators than those of TransU-
net. P has improved by 1.28% compared to the correspond-
ing indicator of TransUnet. It indicates that the addition of
the PEG module can help the network model to extract more
accurate building pixels. Similarly, by comparing the evaluation
indicators of the MATUnet and MATUnet-PEG networks, we
can find that the MATUnet with the PEG module has a certain
improvement in feature extraction evaluation indicators com-
pared with theMATUnet-PEGwithout the PEGmodule. Com-
paring the numbers of parameters and Flops of four network
models in Figure 24, we can see that the number of parameters
of MATUnet is increasing, and the validation indicators of the
model are also better.

At the same time, extracted features are visualized after
the multi-head attention layer calculation in the MATUnet
and MATUnet-PEG networks. The highlighted color in the
feature map denotes a network with high-corresponding values,
while the dark black color denotes a network with low-response
values. We can find the changes in features extracted before
and after improvement. The results are shown in Figure 25.

From Figure 25, we can find that MATUnet can extract
clearer building edge features than MATUnet-PEG. MATU-
net makes the difference between the features of building and
features of the background more obvious. In the final output
feature map (h), MATUnet can determine nonbuilding
objects as background, whereas MATUnet-PEG misidenti-
fies nonbuildings as buildings. The above results show that
PEG module not only provides an implicit encoding method
through convolution calculation, but also compensates for
the local semantic loss due to interpolation. The PEGmodule
has the multi-head attention mechanism to fuze local and
global semantic information of image, which improves the
extraction accuracy of building features.

(3) Effect of the CAM on the Network. To verify the effect
of CAM on feature extraction performance, we designed
two networks. One is TransUnet with CAM, which is named
TransUnet+CAM, and the other is MATUnet without
CAM, which is named MATUnet-CAM. By comparing the
accuracy indicators of TransUnet and TransUnet+CAM,
we explore whether the CAM module is effective in improv-
ing network performance. Meanwhile, we hope that through
the comparison of MATUnet and MATUnet-CAM net-
works, we could find that the contribution of CAM module
to the high performance of MATUnet. And the CAM mod-
ule is necessary. Similarly, the above networks were used for
the building extraction experiment on the WHU dataset, and
the results of feature extraction accuracy are shown in
Table 5.

From Table 5, we find that the evaluation indicators of
TransUnet+CAM are higher than those of TransUnet after
adding channel attention. Similarly, the feature evaluation
indicators of MATUnet with CAM module are improved
compared with MATUnet-CAM which does not include
the CAM module. Comparing the numbers of parameters
and flops of four network models in Figure 26, we can see
that the number of parameters of MATUnet has increased,
and the validation indicators of the model are also better. To
a certain extent, it shows the effectiveness of the channel
attention enhancement module in improving the ability of
network feature extraction.

At the same time, to intuitively reflect the effect of the
channel attention enhancement module, the output features
of convolutional layer before and after adding the CAM are
visualized. The Grad-Cam heat map of the features in this
layer before and after enhancement was obtained by calcu-
lating the product of the gradient of the backward propaga-
tion and the feature map of the network in this layer. The
calculated results are shown in Figure 27. The color in the
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FIGURE 25: Features visualization output from multi-headed attention modules under two position coding methods. (a)–(h): Encoder
1–Encoder 8.

TABLE 5: The impact of CAM on network performance.

Method P (%) R (%) F1 (%) IOU (%) Acc (%)

TransUnet 93.75 87.21 90.36 88.49 95.66
TransUnet+CAM 93.88 91.06 92.45 90.78 96.53
MATUnet 95.05 92.23 93.62 92.14 97.06
MATUnet-CAM 94.91 91.75 93.30 91.77 96.92
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figure represents the correlation of the network to the area.
The brighter the color, the higher the correlation.

As can be seen in Figure 27, after calculation byDecoder 1,
the heat map shows that the background information has
a high value, which means that after adding the CAM, the
attention of the network pays more attention to the back-
ground information at this layer, which shows that the

enhanced image background features are more obvious.
After calculation by Decoder 2 and Decoder 3, the attention
of the network pays more attention to building information
at these layers, and the building features are more obvious,
which indicates that the network has higher attention to
building features at these layers. We can find from the above
analysis that after adding the channel attention module, the

Decoder 1

Decoder 2

Decoder 3

Decoder 1

Decoder 2

Decoder 3

(a) (b) (d) (e) (f)(c)

FIGURE 27: Effect of feature enhancement module on model segmentation: (a) heat map of large buildings before enhancement; (b) feature
map of large buildings after enhancement; (c) heat map of large buildings after enhancement; (d) heat map of dense buildings before
enhancement; (e) feature map of dense buildings after enhancement; and (f ) heat map of dense buildings after enhancement.
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FIGURE 26: Comparison of parameters (M) and flops (G) of different network models (the marked percentage is IOU of the model).
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ability of the network to extract building features has been
greatly improved.

6. Conclusion

In this paper, we propose an improved TransUnet model,
MATUnet, based onmultiscale grouped convolution and atten-
tion to preserve more local detailed features and enhance the
representation of global features while reducing network
parameters. We designed the multiscale grouped convolu-
tional feature extraction module (GAM) with attention to
enhance the representation of detailed features. A convolu-
tional PEG is added to redetermine the number of transfor-
mers, which solves the problems of loss of local feature
information and network convergence difficulties. CAM of
the decoder enhances the salient information of the features
and solves the problem of information redundancy after fea-
ture fusion. The experimental results show that the network
has significant accuracy improvement and good application
prospects compared with other ordinary networks. Further
research will be carried out in the future on the lightweight
and efficient processing of the model and the application of
engineering deployment, to solve the problems of the trans-
former structure relying on a large amount of training data
and the redundancy of model parameters.

Although, MATUnet achieves better results in building
extraction, there are still some limitations: (1) The samples of
MATUnet come from semantically segmented labels, and
labels need to be input manually, which makes MATUnet
have a larger sample collection cost, (2) Transformer in
MATUnet still needs to compute attention on the whole
graph, which is different from the convolution-based models,
and (3) the recognition effect for dense buildings in moun-
tainous areas needs to be improved. Based on the above
problems, further research will be carried out on the light-
weight and efficient processing of the model as well as engi-
neering deployment applications in the future, to solve the
problem that the transformer structure relies on a large
amount of training data and the redundancy of model param-
eters. We expect Transformer-based lightweight networks to
be integrated on UAV hardware or satellite sensor devices to
improve the real-time of remote sensing semantic segmenta-
tion tasks.
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